首页 > 最新文献

Cellular Oncology最新文献

英文 中文
Suppressing SENP1 inhibits esophageal squamous carcinoma cell growth via SIRT6 SUMOylation. 抑制 SENP1 可通过 SIRT6 SUMOylation 抑制食管鳞癌细胞生长
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2025-02-01 Epub Date: 2024-07-02 DOI: 10.1007/s13402-024-00956-4
Jianmin Gu, Shaoyuan Zhang, Dong Lin, Wenhan Wang, Jinke Cheng, Quan Zheng, Hao Wang, Lijie Tan

Purpose: Esophageal squamous cell carcinoma (ESCC) is a prevalent tumor in the gastrointestinal tract, but our understanding of the molecular mechanisms underlying ESCC remains incomplete. Existing studies indicate that SUMO specific peptidase 1 (SENP1) plays a crucial role in the development and progression of various malignant tumors through diverse molecular mechanisms. However, the functional mechanism and clinical implications of SENP1 in the progression of ESCC remain unclear.

Methods: Bulk RNA-Sequencing (RNA-seq) was used to compare potential genes in the esophageal tissues of mice with ESCC to the control group. The up-regulated SENP1 was selected. The protein level of SENP1 in ESCC patient samples was analyzed by immunohistochemistry and western blot. The potential prognostic value of SENP1 on overall survival of ESCC patients was examined using tissue microarray analysis and the Kaplan-Meier method. The biological function was confirmed through in vitro and in vivo knockdown approaches of SENP1. The role of SENP1 in cell cycle progression and apoptosis of ESCC cells was analyzed by flow cytometry and western blot. The downstream signaling pathways regulated by SENP1 were investigated via using RNA-Seq. SENP1-associated proteins were identified through immunoprecipitation. Overexpression of Sirtuin 6 (SIRT6) wildtype and mutant was performed to investigate the regulatory role of SENP1 in ESCC progression in vitro.

Results: Our study discovered that SENP1 was upregulated in ESCC tissues and served as a novel prognostic factor. Moreover, SENP1 enhanced cell proliferation and migration of ESCC cell lines in vitro, as well as promoted tumor growth in vivo. Thymidine kinase 1 (TK1), Geminin (GMNN), cyclin dependent kinase 1(CDK1), and cyclin A2 (CCNA2) were identified as downstream genes of SENP1. Mechanistically, SENP1 deSUMOylated SIRT6 and subsequently inhibited SIRT6-mediated histone 3 lysine 56 (H3K56) deacetylation on those downstream genes. SIRT6 SUMOylation mutant (4KR) rescued the growth inhibition upon SENP1 depletion.

Conclusions: SENP1 promotes the malignant progression of ESCC by inhibiting the deacetylase activity of SIRT6 pathway through deSUMOylation. Our findings suggest that SENP1 may serve as a valuable biomarker for prognosis and a target for therapeutic intervention in ESCC.

目的:食管鳞状细胞癌(ESCC)是胃肠道中的一种常见肿瘤,但我们对其分子机制的了解仍不全面。现有研究表明,SUMO 特异性肽酶 1(SENP1)通过不同的分子机制在各种恶性肿瘤的发生和发展过程中起着至关重要的作用。然而,SENP1在ESCC进展过程中的功能机制和临床意义仍不清楚:方法:采用大量 RNA 序列分析(RNA-seq)方法比较了 ESCC 小鼠食管组织与对照组中的潜在基因。筛选出上调的 SENP1。通过免疫组化和免疫印迹分析了 ESCC 患者样本中 SENP1 的蛋白水平。利用组织芯片分析和 Kaplan-Meier 法研究了 SENP1 对 ESCC 患者总生存期的潜在预后价值。通过体外和体内敲除 SENP1 的方法证实了其生物学功能。流式细胞术和 Western 印迹分析了 SENP1 在 ESCC 细胞周期进展和凋亡中的作用。通过RNA-Seq研究了SENP1调控的下游信号通路。通过免疫沉淀鉴定了 SENP1 相关蛋白。过表达Sirtuin 6(SIRT6)野生型和突变型,研究SENP1在ESCC体外进展中的调控作用:结果:我们的研究发现,SENP1在ESCC组织中上调,是一种新的预后因子。此外,SENP1 在体外可增强 ESCC 细胞系的细胞增殖和迁移,在体内可促进肿瘤生长。研究发现胸苷激酶1(TK1)、Geminin(GMNN)、细胞周期蛋白依赖性激酶1(CDK1)和细胞周期蛋白A2(CCNA2)是SENP1的下游基因。从机理上讲,SENP1 对 SIRT6 进行去 SUMOO 化,从而抑制了 SIRT6 介导的组蛋白 3 赖氨酸 56(H3K56)在这些下游基因上的去乙酰化。SIRT6 SUMOylation突变体(4KR)能挽救SENP1耗竭后的生长抑制作用:结论:SENP1通过去SUMOylation抑制SIRT6通路的去乙酰化酶活性,从而促进ESCC的恶性进展。我们的研究结果表明,SENP1 可作为 ESCC 有价值的预后生物标志物和治疗干预靶点。
{"title":"Suppressing SENP1 inhibits esophageal squamous carcinoma cell growth via SIRT6 SUMOylation.","authors":"Jianmin Gu, Shaoyuan Zhang, Dong Lin, Wenhan Wang, Jinke Cheng, Quan Zheng, Hao Wang, Lijie Tan","doi":"10.1007/s13402-024-00956-4","DOIUrl":"10.1007/s13402-024-00956-4","url":null,"abstract":"<p><strong>Purpose: </strong>Esophageal squamous cell carcinoma (ESCC) is a prevalent tumor in the gastrointestinal tract, but our understanding of the molecular mechanisms underlying ESCC remains incomplete. Existing studies indicate that SUMO specific peptidase 1 (SENP1) plays a crucial role in the development and progression of various malignant tumors through diverse molecular mechanisms. However, the functional mechanism and clinical implications of SENP1 in the progression of ESCC remain unclear.</p><p><strong>Methods: </strong>Bulk RNA-Sequencing (RNA-seq) was used to compare potential genes in the esophageal tissues of mice with ESCC to the control group. The up-regulated SENP1 was selected. The protein level of SENP1 in ESCC patient samples was analyzed by immunohistochemistry and western blot. The potential prognostic value of SENP1 on overall survival of ESCC patients was examined using tissue microarray analysis and the Kaplan-Meier method. The biological function was confirmed through in vitro and in vivo knockdown approaches of SENP1. The role of SENP1 in cell cycle progression and apoptosis of ESCC cells was analyzed by flow cytometry and western blot. The downstream signaling pathways regulated by SENP1 were investigated via using RNA-Seq. SENP1-associated proteins were identified through immunoprecipitation. Overexpression of Sirtuin 6 (SIRT6) wildtype and mutant was performed to investigate the regulatory role of SENP1 in ESCC progression in vitro.</p><p><strong>Results: </strong>Our study discovered that SENP1 was upregulated in ESCC tissues and served as a novel prognostic factor. Moreover, SENP1 enhanced cell proliferation and migration of ESCC cell lines in vitro, as well as promoted tumor growth in vivo. Thymidine kinase 1 (TK1), Geminin (GMNN), cyclin dependent kinase 1(CDK1), and cyclin A2 (CCNA2) were identified as downstream genes of SENP1. Mechanistically, SENP1 deSUMOylated SIRT6 and subsequently inhibited SIRT6-mediated histone 3 lysine 56 (H3K56) deacetylation on those downstream genes. SIRT6 SUMOylation mutant (4KR) rescued the growth inhibition upon SENP1 depletion.</p><p><strong>Conclusions: </strong>SENP1 promotes the malignant progression of ESCC by inhibiting the deacetylase activity of SIRT6 pathway through deSUMOylation. Our findings suggest that SENP1 may serve as a valuable biomarker for prognosis and a target for therapeutic intervention in ESCC.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"67-81"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion. 禁食与索拉非尼:二甲双胍鸡尾酒结合使用,会削弱细胞的可塑性,并通过多代谢衰竭促进肝癌细胞死亡。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2025-02-01 Epub Date: 2024-07-11 DOI: 10.1007/s13402-024-00966-2
Juan L López-Cánovas, Beatriz Naranjo-Martínez, Alberto Diaz-Ruiz

Purpose: Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M).

Results: Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death.

Conclusion: Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.

目的:在癌症治疗中,针对葡萄糖和氧化代谢的双重干预正受到越来越多的关注。索拉非尼(Sorafenib,S)和二甲双胍(Metformin,M)这两种治疗肝癌的金标准因其线粒体抑制能力而闻名。禁食作为一种葡萄糖限制策略,也正在成为化疗的辅助手段。在此,我们探讨了营养限制联合索拉非尼:二甲双胍(NR-S:M)的抗癌反应:结果:我们的数据表明,与肝癌的侵袭性无关,禁食能协同提高索拉非尼:二甲双胍联合治疗的抗增殖效果。代谢和细胞可塑性是通过检测线粒体和糖酵解活性、细胞周期调节、细胞凋亡激活以及关键信号传导和代谢酶的调节来确定的。在 NR-S:M 条件下,发现早期凋亡事件和促凋亡 Bcl-xS/Bcl-xL 比率增加。NR-S:M 诱导的细胞 SubG1 期保留率最高,这与细胞凋亡 DNA 片段的存在一致。在 NR-S:M 条件下,线粒体功能、线粒体 ATP 链接呼吸、最大呼吸和备用呼吸能力均被削弱。基础糖酵解、糖酵解储备和糖酵解能力,以及糖原生成酶(PKM)、葡萄糖生成酶(PCK1 和 G6PC3)和糖原分解酶(PYGL、PGM1 和 G6PC3)的表达也受到 NR-S:M 的负面影响。最后,TMT-蛋白组学方法证实了肝癌代谢重编程与分子通路激活同步进行,以驱动类似静息状态的能量塌缩和细胞死亡:总之,我们的研究表明,基于能量的综合疗法 NR-S:M 可削弱肝癌的细胞、代谢和分子可塑性。尽管这项研究是体外设计的,但它是一种很有前景的治疗工具,值得对这种肿瘤病理学进行探索。
{"title":"Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion.","authors":"Juan L López-Cánovas, Beatriz Naranjo-Martínez, Alberto Diaz-Ruiz","doi":"10.1007/s13402-024-00966-2","DOIUrl":"10.1007/s13402-024-00966-2","url":null,"abstract":"<p><strong>Purpose: </strong>Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M).</p><p><strong>Results: </strong>Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death.</p><p><strong>Conclusion: </strong>Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"161-182"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2. 注:瘦素通过上调ACAT2促进乳腺癌细胞的迁移和侵袭。
IF 4.8 2区 医学 Q1 Medicine Pub Date : 2025-02-01 DOI: 10.1007/s13402-025-01035-y
Yunxiu Huang, Qianni Jin, Min Su, Feihu Ji, Nian Wang, Changli Zhong, Yulin Jiang, Yifeng Liu, Zhiqian Zhang, Junhong Yang, Lan Wei, Tingmei Chen, Bing Li
{"title":"Retraction Note: Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2.","authors":"Yunxiu Huang, Qianni Jin, Min Su, Feihu Ji, Nian Wang, Changli Zhong, Yulin Jiang, Yifeng Liu, Zhiqian Zhang, Junhong Yang, Lan Wei, Tingmei Chen, Bing Li","doi":"10.1007/s13402-025-01035-y","DOIUrl":"10.1007/s13402-025-01035-y","url":null,"abstract":"","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"265"},"PeriodicalIF":4.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12630171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pre-existing cell subpopulations in primary prostate cancer tumors display surface fingerprints of docetaxel-resistant cells. 原发性前列腺癌肿瘤中预先存在的细胞亚群显示出多西他赛耐药细胞的表面指纹。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2025-02-01 Epub Date: 2024-08-20 DOI: 10.1007/s13402-024-00982-2
Stanislav Drápela, Barbora Kvokačková, Eva Slabáková, Anna Kotrbová, Kristína Gömöryová, Radek Fedr, Daniela Kurfürstová, Martin Eliáš, Vladimír Študent, Frederika Lenčéšová, Ganji Sri Ranjani, Vendula Pospíchalová, Vítězslav Bryja, Wytske M van Weerden, Martin Puhr, Zoran Culig, Jan Bouchal, Karel Souček

Purpose: Docetaxel resistance is a significant obstacle in the treatment of prostate cancer (PCa), resulting in unfavorable patient prognoses. Intratumoral heterogeneity, often associated with epithelial-to-mesenchymal transition (EMT), has previously emerged as a phenomenon that facilitates adaptation to various stimuli, thus promoting cancer cell diversity and eventually resistance to chemotherapy, including docetaxel. Hence, understanding intratumoral heterogeneity is essential for better patient prognosis and the development of personalized treatment strategies.

Methods: To address this, we employed a high-throughput single-cell flow cytometry approach to identify a specific surface fingerprint associated with docetaxel-resistance in PCa cells and complemented it with proteomic analysis of extracellular vesicles. We further validated selected antigens using docetaxel-resistant patient-derived xenografts in vivo and probed primary PCa specimens to interrogate of their surface fingerprint.

Results: Our approaches revealed a 6-molecule surface fingerprint linked to docetaxel resistance in primary PCa specimens. We observed consistent overexpression of CD95 (FAS/APO-1), and SSEA-4 surface antigens in both in vitro and in vivo docetaxel-resistant models, which was also observed in a cell subpopulation of primary PCa tumors exhibiting EMT features. Furthermore, CD95, along with the essential enzymes involved in SSEA-4 synthesis, ST3GAL1, and ST3GAL2, displayed a significant increase in patients with PCa undergoing docetaxel-based therapy, correlating with poor survival outcomes.

Conclusion: In summary, we demonstrate that the identified 6-molecule surface fingerprint associated with docetaxel resistance pre-exists in a subpopulation of primary PCa tumors before docetaxel treatment. Thus, this fingerprint warrants further validation as a promising predictive tool for docetaxel resistance in PCa patients prior to therapy initiation.

目的:多西他赛耐药性是治疗前列腺癌(PCa)的一大障碍,导致患者预后不良。瘤内异质性通常与上皮细胞向间质转化(EMT)有关,以前曾被认为是一种有利于适应各种刺激的现象,从而促进了癌细胞的多样性,最终导致对包括多西他赛在内的化疗产生耐药性。因此,了解瘤内异质性对于改善患者预后和制定个性化治疗策略至关重要:为了解决这个问题,我们采用了一种高通量单细胞流式细胞仪方法来识别与多西他赛耐药性相关的PCa细胞特异性表面指纹,并辅以细胞外囊泡的蛋白质组学分析。我们利用体内多西他赛耐药患者衍生异种移植物进一步验证了所选抗原,并对原发性PCa标本进行了探查,以研究其表面指纹:我们的方法揭示了与原发性 PCa 标本中多西他赛耐药相关的 6 个分子表面指纹。我们在体外和体内多西他赛耐药模型中观察到了CD95(FAS/APO-1)和SSEA-4表面抗原的一致过表达,在表现出EMT特征的原发性PCa肿瘤细胞亚群中也观察到了这一现象。此外,在接受多西他赛治疗的 PCa 患者中,CD95 以及参与 SSEA-4 合成的重要酶 ST3GAL1 和 ST3GAL2 的数量显著增加,这与患者的不良生存预后有关:总之,我们证明了在多西他赛治疗前,与多西他赛耐药相关的6分子表面指纹已存在于原发性PCa肿瘤亚群中。因此,这一指纹值得进一步验证,它有望在开始治疗前成为预测 PCa 患者多西他赛耐药性的工具。
{"title":"Pre-existing cell subpopulations in primary prostate cancer tumors display surface fingerprints of docetaxel-resistant cells.","authors":"Stanislav Drápela, Barbora Kvokačková, Eva Slabáková, Anna Kotrbová, Kristína Gömöryová, Radek Fedr, Daniela Kurfürstová, Martin Eliáš, Vladimír Študent, Frederika Lenčéšová, Ganji Sri Ranjani, Vendula Pospíchalová, Vítězslav Bryja, Wytske M van Weerden, Martin Puhr, Zoran Culig, Jan Bouchal, Karel Souček","doi":"10.1007/s13402-024-00982-2","DOIUrl":"10.1007/s13402-024-00982-2","url":null,"abstract":"<p><strong>Purpose: </strong>Docetaxel resistance is a significant obstacle in the treatment of prostate cancer (PCa), resulting in unfavorable patient prognoses. Intratumoral heterogeneity, often associated with epithelial-to-mesenchymal transition (EMT), has previously emerged as a phenomenon that facilitates adaptation to various stimuli, thus promoting cancer cell diversity and eventually resistance to chemotherapy, including docetaxel. Hence, understanding intratumoral heterogeneity is essential for better patient prognosis and the development of personalized treatment strategies.</p><p><strong>Methods: </strong>To address this, we employed a high-throughput single-cell flow cytometry approach to identify a specific surface fingerprint associated with docetaxel-resistance in PCa cells and complemented it with proteomic analysis of extracellular vesicles. We further validated selected antigens using docetaxel-resistant patient-derived xenografts in vivo and probed primary PCa specimens to interrogate of their surface fingerprint.</p><p><strong>Results: </strong>Our approaches revealed a 6-molecule surface fingerprint linked to docetaxel resistance in primary PCa specimens. We observed consistent overexpression of CD95 (FAS/APO-1), and SSEA-4 surface antigens in both in vitro and in vivo docetaxel-resistant models, which was also observed in a cell subpopulation of primary PCa tumors exhibiting EMT features. Furthermore, CD95, along with the essential enzymes involved in SSEA-4 synthesis, ST3GAL1, and ST3GAL2, displayed a significant increase in patients with PCa undergoing docetaxel-based therapy, correlating with poor survival outcomes.</p><p><strong>Conclusion: </strong>In summary, we demonstrate that the identified 6-molecule surface fingerprint associated with docetaxel resistance pre-exists in a subpopulation of primary PCa tumors before docetaxel treatment. Thus, this fingerprint warrants further validation as a promising predictive tool for docetaxel resistance in PCa patients prior to therapy initiation.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"205-218"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Downregulation of beta-catenin in chemo-tolerant TNBC through changes in receptor and antagonist profiles of the WNT pathway: Clinical and prognostic implications. 在耐化疗TNBC中,β -连环蛋白通过WNT通路受体和拮抗剂谱的改变而下调:临床和预后意义。
IF 4.8 2区 医学 Q1 Medicine Pub Date : 2025-02-01 DOI: 10.1007/s13402-025-01036-x
Saimul Islam, Hemantika Dasgupta, Mukta Basu, Anup Roy, Neyaz Alam, Susanta Roychoudhury, Chinmay Kumar Panda
{"title":"Retraction Note: Downregulation of beta-catenin in chemo-tolerant TNBC through changes in receptor and antagonist profiles of the WNT pathway: Clinical and prognostic implications.","authors":"Saimul Islam, Hemantika Dasgupta, Mukta Basu, Anup Roy, Neyaz Alam, Susanta Roychoudhury, Chinmay Kumar Panda","doi":"10.1007/s13402-025-01036-x","DOIUrl":"10.1007/s13402-025-01036-x","url":null,"abstract":"","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"267"},"PeriodicalIF":4.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12627114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features. 下一代 BCMA 靶向嵌合抗原受体 CARTemis-1:制造过程对 CAR T 细胞特征的影响。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2025-02-01 Epub Date: 2024-08-27 DOI: 10.1007/s13402-024-00984-0
Belén Sierro-Martínez, Virginia Escamilla-Gómez, Laura Pérez-Ortega, Beatriz Guijarro-Albaladejo, Paola Hernández-Díaz, María de la Rosa-Garrido, Maribel Lara-Chica, Alfonso Rodríguez-Gil, Juan Luis Reguera-Ortega, Luzalba Sanoja-Flores, Blanca Arribas-Arribas, Miguel Ángel Montiel-Aguilera, Gloria Carmona, Maria Jose Robles, Teresa Caballero-Velázquez, Javier Briones, Hermann Einsele, Michael Hudecek, Jose Antonio Pérez-Simón, Estefanía García-Guerrero

Purpose: CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness.

Methods: CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness.

Results: Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10).

Conclusions: CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).

目的:作为多发性骨髓瘤的治疗方法,以 BCMA 为靶点的 CAR 疗法正在接受研究。然而,由于大多数研究都缺乏高原效应,因此寻求更有效的替代疗法势在必行。我们介绍了一种新型优化抗 BCMA CAR(CARTemis-1)的临床前和临床验证。此外,我们还探讨了生产过程如何影响 CAR-T 细胞产品质量和适用性:方法:我们在体外和体内对 CARTemis-1 的临床前优化进行了评估。在 GMP 条件下验证了 CARTemis-1 的生成,研究了从白细胞分离到最终产品的免疫表型动态。在此,我们研究了生产过程对 CAR-T 细胞的影响,以确定最佳细胞培养方案和扩增时间,从而提高产品的适应性:结果:我们比较了带有不同间隔的两种不同版本的 CARTemis-1。结果:比较了带有不同间隔物的两种不同版本的CARTemis-1。在 CARTemis-1 结构中加入安全基因 EGFRt 可用作监测标记。CARTemis-1没有受到可溶性BCMA的抑制,在体外和体内都有很强的抗肿瘤作用。通过比较 IL-2 或 IL-7/IL-15 的扩增效果,发现 IL-7/IL-15 的扩增效果更好,分化更少,耗竭更少。连续三批 CARTemis-1 都是在 GMP 指导下生产的,符合所有要求的规格。在 GMP 条件下生产的 CARTemis-1 细胞显示出记忆亚群增加、衰竭标志物减少以及对 MM 细胞系和原发性骨髓瘤细胞的选择性抗肿瘤功效。获得最佳产品的最佳释放时间点大于 6 和结论:CARTemis-1 经过合理设计,提高了抗肿瘤疗效,克服了 sBCMA 抑制作用,并加入了安全基因的表达。CARTemis-1 的生产成功通过了 GMP 标准的验证。将对多发性骨髓瘤患者进行 I/II 期临床试验(EuCT 编号 2022-503063-15-00)。
{"title":"Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features.","authors":"Belén Sierro-Martínez, Virginia Escamilla-Gómez, Laura Pérez-Ortega, Beatriz Guijarro-Albaladejo, Paola Hernández-Díaz, María de la Rosa-Garrido, Maribel Lara-Chica, Alfonso Rodríguez-Gil, Juan Luis Reguera-Ortega, Luzalba Sanoja-Flores, Blanca Arribas-Arribas, Miguel Ángel Montiel-Aguilera, Gloria Carmona, Maria Jose Robles, Teresa Caballero-Velázquez, Javier Briones, Hermann Einsele, Michael Hudecek, Jose Antonio Pérez-Simón, Estefanía García-Guerrero","doi":"10.1007/s13402-024-00984-0","DOIUrl":"10.1007/s13402-024-00984-0","url":null,"abstract":"<p><strong>Purpose: </strong>CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness.</p><p><strong>Methods: </strong>CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness.</p><p><strong>Results: </strong>Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10).</p><p><strong>Conclusions: </strong>CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"219-237"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. 类固醇激素受体通过染色质相互作用和增强子重编程对基因转录的调控机制。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-11-14 DOI: 10.1007/s13402-024-01011-y
Ge Sun, Chunguang Zhao, Jing Han, Shaoya Wu, Yan Chen, Jing Yao, Li Li

Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.

类固醇激素受体(SHRs)对转录重编程的调控对乳腺癌的进展至关重要。包括雌激素受体(ER)、雄激素受体(AR)、孕酮受体(PR)和糖皮质激素受体(GR)在内的类固醇激素受体在重塑乳腺癌细胞转录组方面发挥着关键作用。然而,SHRs调控增强子区域染色质景观和转录因子相互作用的分子机制在很大程度上仍然未知。在这篇综述中,我们总结了 3 种 SHR(AR、PR 和 GR)通过染色质相互作用和增强子重编程对基因转录的调控作用。具体来说,AR和PR对ER介导的基因转录具有双向调控作用(既有抑制作用,也有促进作用),而GR则能调节ER阳性乳腺癌细胞中促增殖基因的转录。此外,我们还介绍了四种增强子重编程机制(转录因子合作、先锋因子结合、动态辅助加载和系链)以及增强子-启动子多重接触模型。基于这些机制和模型,本综述提出了多种治疗策略的组合,如SHRs的激动剂/拮抗剂加内分泌治疗,以及采用最新的测序技术,有望提高ER阳性乳腺癌的治疗效果。
{"title":"Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming.","authors":"Ge Sun, Chunguang Zhao, Jing Han, Shaoya Wu, Yan Chen, Jing Yao, Li Li","doi":"10.1007/s13402-024-01011-y","DOIUrl":"10.1007/s13402-024-01011-y","url":null,"abstract":"<p><p>Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2073-2090"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma. USP28 通过稳定胆管癌中的 PKM2/Hif1-α 促进肿瘤进展和糖酵解。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-17 DOI: 10.1007/s13402-024-01002-z
Qian Qiao, Jifei Wang, Shuochen Liu, Jiang Chang, Tao Zhou, Changxian Li, Yaodong Zhang, Wangjie Jiang, Yananlan Chen, Xiao Xu, Mingyu Wu, Xiangcheng Li

Background: Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.

Methods: In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques.

Results: Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression.

Conclusion: In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.

背景:泛素化是蛋白质的重要修饰之一,可通过去泛素化酶(DUBs)逆转。泛素特异性蛋白酶28(USP28)属于去泛素化酶家族,在胰腺癌、乳腺癌等多种癌症中发挥促癌作用。迄今为止,USP 28 在胆管癌中的分子功能和意义仍不清楚:在本研究中,我们使用组织芯片(TMA)、逆转录聚合酶链反应(qRT-PCR)和在线数据库评估了 USP28 的表达。我们通过体外和体内功能实验研究了 USP28 对 CCA 进展的影响。此外,我们还利用 Western 印迹(WB)、免疫荧光(IF)和质谱技术探索了下游分子通路:结果:我们发现胆管癌组织的 USP 28 表达高于正常胆管组织,而且高 USP 28 水平与胆管癌患者的恶性表型和较差的预后显著相关。在体外和体内,USP28都能介导PKM2的去泛素化,从而激活下游Hif1-α信号通路,促进糖酵解和能量供应,最终促进肿瘤进展:综上所述,USP28通过降低PKM2的泛素化水平激活了下游的Hif1-α,进一步促进了CCA细胞的糖酵解水平,从而促进了肿瘤的进展。
{"title":"USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma.","authors":"Qian Qiao, Jifei Wang, Shuochen Liu, Jiang Chang, Tao Zhou, Changxian Li, Yaodong Zhang, Wangjie Jiang, Yananlan Chen, Xiao Xu, Mingyu Wu, Xiangcheng Li","doi":"10.1007/s13402-024-01002-z","DOIUrl":"10.1007/s13402-024-01002-z","url":null,"abstract":"<p><strong>Background: </strong>Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.</p><p><strong>Methods: </strong>In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques.</p><p><strong>Results: </strong>Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression.</p><p><strong>Conclusion: </strong>In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2217-2231"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HNRNPH1 stabilizes FLOT2 mRNA in a non-canonical m6A-dependent manner to promote malignant progression in nasopharyngeal carcinoma. HNRNPH1 以非典型 m6A 依赖性方式稳定 FLOT2 mRNA,促进鼻咽癌的恶性发展。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-11-21 DOI: 10.1007/s13402-024-01016-7
Qiguang Li, Jie Liu, Chong Zeng, Daogang Qin, Zijian Zhang, Qiaoli Lv, Jingao Li, Wei Huang

Purpose: The mechanism underlying the upregulation of FLOT2 in tumors, especially its regulatory mechanism at the RNA level, remains unclear. The purpose of this study is to investigate the regulatory mechanism of FLOT2 upregulation in tumors, particularly at the RNA level, and its role in nasopharyngeal carcinoma (NPC) progression.

Methods: We identified the role of HNRNPH1 in maintaining FLOT2 mRNA stability and its dependency on the m6A modification. We explored the interaction between HNRNPH1 and METTL14, a key enzyme in m6A modification, and its impact on FLOT2 mRNA stability. We also assessed the expression levels of HNRNPH1 and METTL14 in NPC and their correlation with patient malignancy and prognosis. Experimental approaches included in vitro and in vivo assays to study the effects of HNRNPH1 knockdown on NPC cell proliferation and invasion.

Results: HNRNPH1 is highly expressed in NPC and stabilizes FLOT2 mRNA through an m6A-dependent mechanism. HNRNPH1 interacts with METTL14 to prevent its degradation by STUB1 E3 ligases, leading to increased m6A modification of FLOT2 by METTL14. Additionally, IGF2BP3 was shown to recognize the m6A modification on FLOT2 mRNA, further stabilizing it. High expression of HNRNPH1 and METTL14 were observed in NPC and were positively associated with increased malignancy and poorer patient outcomes. HNRNPH1 knockdown significantly reduced the proliferation and invasive capabilities of NPC cells. Restoration of METTL14 in HNRNPH1-depleted cells could rescue FLOT2 expression and the malignant phenotype, but this effect was negated by the knockdown of FLOT2.

Conclusion: Our study elucidates a novel mechanism where HNRNPH1 and METTL14 work together to maintain the stability of FLOT2 mRNA, thereby promoting NPC progression. Targeting this pathway presents a promising therapeutic strategy for the treatment of NPC.

目的:FLOT2在肿瘤中上调的机制,尤其是其在RNA水平的调控机制仍不清楚。本研究旨在探讨FLOT2在肿瘤中上调的调控机制,尤其是在RNA水平的调控机制,及其在鼻咽癌(NPC)进展中的作用:我们确定了 HNRNPH1 在维持 FLOT2 mRNA 稳定性中的作用及其对 m6A 修饰的依赖性。我们探讨了 HNRNPH1 与 m6A 修饰的关键酶 METTL14 之间的相互作用及其对 FLOT2 mRNA 稳定性的影响。我们还评估了 HNRNPH1 和 METTL14 在鼻咽癌中的表达水平及其与患者恶性程度和预后的相关性。实验方法包括体外和体内试验,以研究 HNRNPH1 基因敲除对鼻咽癌细胞增殖和侵袭的影响:结果:HNRNPH1在鼻咽癌中高表达,并通过m6A依赖性机制稳定FLOT2 mRNA。HNRNPH1与METTL14相互作用,阻止其被STUB1 E3连接酶降解,从而导致METTL14对FLOT2的m6A修饰增加。此外,IGF2BP3 还能识别 FLOT2 mRNA 上的 m6A 修饰,从而进一步稳定 FLOT2。在鼻咽癌中观察到 HNRNPH1 和 METTL14 的高表达,它们与恶性程度增加和患者预后较差呈正相关。敲除 HNRNPH1 能显著降低鼻咽癌细胞的增殖和侵袭能力。在HNRNPH1缺失的细胞中恢复METTL14可以挽救FLOT2的表达和恶性表型,但这种效果被FLOT2的敲除所抵消:我们的研究阐明了一种新的机制,即HNRNPH1和METTL14共同维持FLOT2 mRNA的稳定性,从而促进鼻咽癌的进展。靶向这一通路是治疗鼻咽癌的一种很有前景的治疗策略。
{"title":"HNRNPH1 stabilizes FLOT2 mRNA in a non-canonical m6A-dependent manner to promote malignant progression in nasopharyngeal carcinoma.","authors":"Qiguang Li, Jie Liu, Chong Zeng, Daogang Qin, Zijian Zhang, Qiaoli Lv, Jingao Li, Wei Huang","doi":"10.1007/s13402-024-01016-7","DOIUrl":"10.1007/s13402-024-01016-7","url":null,"abstract":"<p><strong>Purpose: </strong>The mechanism underlying the upregulation of FLOT2 in tumors, especially its regulatory mechanism at the RNA level, remains unclear. The purpose of this study is to investigate the regulatory mechanism of FLOT2 upregulation in tumors, particularly at the RNA level, and its role in nasopharyngeal carcinoma (NPC) progression.</p><p><strong>Methods: </strong>We identified the role of HNRNPH1 in maintaining FLOT2 mRNA stability and its dependency on the m6A modification. We explored the interaction between HNRNPH1 and METTL14, a key enzyme in m6A modification, and its impact on FLOT2 mRNA stability. We also assessed the expression levels of HNRNPH1 and METTL14 in NPC and their correlation with patient malignancy and prognosis. Experimental approaches included in vitro and in vivo assays to study the effects of HNRNPH1 knockdown on NPC cell proliferation and invasion.</p><p><strong>Results: </strong>HNRNPH1 is highly expressed in NPC and stabilizes FLOT2 mRNA through an m6A-dependent mechanism. HNRNPH1 interacts with METTL14 to prevent its degradation by STUB1 E3 ligases, leading to increased m6A modification of FLOT2 by METTL14. Additionally, IGF2BP3 was shown to recognize the m6A modification on FLOT2 mRNA, further stabilizing it. High expression of HNRNPH1 and METTL14 were observed in NPC and were positively associated with increased malignancy and poorer patient outcomes. HNRNPH1 knockdown significantly reduced the proliferation and invasive capabilities of NPC cells. Restoration of METTL14 in HNRNPH1-depleted cells could rescue FLOT2 expression and the malignant phenotype, but this effect was negated by the knockdown of FLOT2.</p><p><strong>Conclusion: </strong>Our study elucidates a novel mechanism where HNRNPH1 and METTL14 work together to maintain the stability of FLOT2 mRNA, thereby promoting NPC progression. Targeting this pathway presents a promising therapeutic strategy for the treatment of NPC.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2279-2295"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumour cell-released autophagosomes promote lung metastasis by upregulating PD-L1 expression in pulmonary vascular endothelial cells in breast cancer. 肿瘤细胞释放的自噬体通过上调乳腺癌肺血管内皮细胞中PD-L1的表达促进肺转移
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-07 DOI: 10.1007/s13402-024-00994-y
Xu-Ru Wang, Xiao-He Zhou, Xiao-Tong Sun, Yu-Qing Shen, Yu-Yang Wu, Cheng-Dong Wu, Feng-Jiao Zhu, Yi-Ting Wei, Jin-Peng Chen, Jing Chen, Shi-Ya Zheng, Li-Xin Wang

Purpose: Establishing an immunosuppressive premetastatic niche (PMN) in distant organs is crucial for breast cancer metastasis. Vascular endothelial cells (VECs) act as barriers to transendothelial cell migration. However, the immune functions of PMNs remain unclear. Tumour cell-released autophagosomes (TRAPs) are critical modulators of antitumour immune responses. Herein, we investigated the mechanism through which TRAPs modulate the immune function of pulmonary VECs in lung PMN in breast cancer.

Methods: Immortalised mouse pulmonary microvascular endothelial cells were incubated with TRAPs in vitro. RNA sequencing, flow cytometry, and western blotting were employed to assess immunosuppressive function and mechanism. In vivo, TRAP-trained and autophagy-deficient tumour mice were used to detect immunosuppression, and high-mobility group box 1 (HMGB1)-deficient TRAP-trained and TLR4 knockout mice were utilised to investigate the underlying mechanisms of pulmonary VECs. Additionally, the efficacy of anti-programmed cell death ligand-1 (PD-L1) immunotherapy was evaluated in early tumour-bearing mice.

Results: HMGB1 on TRAPs surfaces stimulated VECs to upregulate PD-L1 via a TLR4-MyD88-p38/STAT3 signalling cascade that depended on the cytoskeletal movement of VECs. Importantly, PD-L1 on TRAP-induced VECs can inhibit T cell function, promote lung PMN immunosuppression, and result in more pronounced lung metastasis. Treatment with anti-PD-L1 reduces lung metastasis in early stage tumour-bearing mice.

Conclusions: These findings revealed a novel role and mechanism of TRAP-induced immunosuppression of pulmonary VECs in lung PMN. TRAPs and their surface HMGB1 are important therapeutic targets for reversing immunosuppression, providing a new theoretical basis for the treatment of early stage breast cancer using an anti-PD-L1 antibody.

目的:在远处器官建立免疫抑制性转移前生态位(PMN)对乳腺癌转移至关重要。血管内皮细胞(VEC)是跨内皮细胞迁移的屏障。然而,PMN 的免疫功能仍不清楚。肿瘤细胞释放的自噬体(TRAPs)是抗肿瘤免疫反应的关键调节因子。在此,我们研究了TRAPs调节乳腺癌肺PMN中肺VECs免疫功能的机制:方法:将固定化的小鼠肺微血管内皮细胞与 TRAPs 在体外培养。采用 RNA 测序、流式细胞术和 Western 印迹法评估免疫抑制功能和机制。在体内,利用TRAP训练小鼠和自噬缺陷肿瘤小鼠检测免疫抑制,并利用高移动性基团框1(HMGB1)缺陷TRAP训练小鼠和TLR4基因敲除小鼠研究肺血管内皮细胞的潜在机制。此外,还在早期肿瘤小鼠中评估了抗程序性细胞死亡配体-1(PD-L1)免疫疗法的疗效:结果:TRAPs表面的HMGB1通过TLR4-MyD88-p38/STAT3信号级联刺激VECs上调PD-L1,该信号级联依赖于VECs的细胞骨架运动。重要的是,TRAP 诱导的 VECs 上的 PD-L1 可抑制 T 细胞功能,促进肺 PMN 免疫抑制,并导致更明显的肺转移。抗PD-L1可减少早期肿瘤小鼠的肺转移:这些发现揭示了TRAP诱导的肺VECs免疫抑制在肺PMN中的新作用和机制。TRAP及其表面的HMGB1是逆转免疫抑制的重要治疗靶点,为使用抗PD-L1抗体治疗早期乳腺癌提供了新的理论基础。
{"title":"Tumour cell-released autophagosomes promote lung metastasis by upregulating PD-L1 expression in pulmonary vascular endothelial cells in breast cancer.","authors":"Xu-Ru Wang, Xiao-He Zhou, Xiao-Tong Sun, Yu-Qing Shen, Yu-Yang Wu, Cheng-Dong Wu, Feng-Jiao Zhu, Yi-Ting Wei, Jin-Peng Chen, Jing Chen, Shi-Ya Zheng, Li-Xin Wang","doi":"10.1007/s13402-024-00994-y","DOIUrl":"10.1007/s13402-024-00994-y","url":null,"abstract":"<p><strong>Purpose: </strong>Establishing an immunosuppressive premetastatic niche (PMN) in distant organs is crucial for breast cancer metastasis. Vascular endothelial cells (VECs) act as barriers to transendothelial cell migration. However, the immune functions of PMNs remain unclear. Tumour cell-released autophagosomes (TRAPs) are critical modulators of antitumour immune responses. Herein, we investigated the mechanism through which TRAPs modulate the immune function of pulmonary VECs in lung PMN in breast cancer.</p><p><strong>Methods: </strong>Immortalised mouse pulmonary microvascular endothelial cells were incubated with TRAPs in vitro. RNA sequencing, flow cytometry, and western blotting were employed to assess immunosuppressive function and mechanism. In vivo, TRAP-trained and autophagy-deficient tumour mice were used to detect immunosuppression, and high-mobility group box 1 (HMGB1)-deficient TRAP-trained and TLR4 knockout mice were utilised to investigate the underlying mechanisms of pulmonary VECs. Additionally, the efficacy of anti-programmed cell death ligand-1 (PD-L1) immunotherapy was evaluated in early tumour-bearing mice.</p><p><strong>Results: </strong>HMGB1 on TRAPs surfaces stimulated VECs to upregulate PD-L1 via a TLR4-MyD88-p38/STAT3 signalling cascade that depended on the cytoskeletal movement of VECs. Importantly, PD-L1 on TRAP-induced VECs can inhibit T cell function, promote lung PMN immunosuppression, and result in more pronounced lung metastasis. Treatment with anti-PD-L1 reduces lung metastasis in early stage tumour-bearing mice.</p><p><strong>Conclusions: </strong>These findings revealed a novel role and mechanism of TRAP-induced immunosuppression of pulmonary VECs in lung PMN. TRAPs and their surface HMGB1 are important therapeutic targets for reversing immunosuppression, providing a new theoretical basis for the treatment of early stage breast cancer using an anti-PD-L1 antibody.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2147-2162"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular Oncology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1