首页 > 最新文献

Cellular reprogramming最新文献

英文 中文
Reprogramming Stars #16: Reprogramming, from Cells to Embryos-An Interview with Dr. José Silva. 重编程之星 #16:重编程,从细胞到胚胎--专访何塞-席尔瓦博士。
IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 DOI: 10.1089/cell.2024.26895.jcrs
José C R Silva, Carlos-Filipe Pereira
{"title":"Reprogramming Stars #16: Reprogramming, from Cells to Embryos-An Interview with Dr. José Silva.","authors":"José C R Silva, Carlos-Filipe Pereira","doi":"10.1089/cell.2024.26895.jcrs","DOIUrl":"https://doi.org/10.1089/cell.2024.26895.jcrs","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 3","pages":"85-90"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Senescent Cells on Limb Regeneration. 衰老细胞对肢体再生的影响
IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2024-05-07 DOI: 10.1089/cell.2024.0021
Marlene J Oesterle, Nicholas D Leigh

Cellular senescence is a state in which cells enter cell cycle arrest. However, senescent cells have the ability to secrete signaling molecules such as chemokines, cytokines, and growth factors. This secretory activity is an important feature of senescent cells, since the secreted factors impact the surrounding cellular microenvironment. Indeed, senescent cells and their secretome play a crucial role during limb development. However, whether the process of limb regeneration also relies on senescent cells remains unclear. Creation of a novel targeted depletion strategy that can eliminate senescent cells in the regenerating limb has now demonstrated an important role for senescent cells in limb regeneration. This role is linked to senescent cell-derived Wnt signaling. These findings reveal a previously unknown role for senescent cells during limb regeneration through Wnt signaling.

细胞衰老是细胞进入细胞周期停滞的一种状态。然而,衰老细胞有能力分泌信号分子,如趋化因子、细胞因子和生长因子。这种分泌活动是衰老细胞的一个重要特征,因为分泌的因子会影响周围的细胞微环境。事实上,衰老细胞及其分泌物在肢体发育过程中起着至关重要的作用。然而,肢体再生过程是否也依赖于衰老细胞仍不清楚。现在,一种新颖的靶向消耗策略能够消除再生肢体中的衰老细胞,它证明了衰老细胞在肢体再生中的重要作用。这种作用与衰老细胞衍生的 Wnt 信号有关。这些发现揭示了衰老细胞通过 Wnt 信号在肢体再生过程中扮演的一个未知角色。
{"title":"The Impact of Senescent Cells on Limb Regeneration.","authors":"Marlene J Oesterle, Nicholas D Leigh","doi":"10.1089/cell.2024.0021","DOIUrl":"10.1089/cell.2024.0021","url":null,"abstract":"<p><p>Cellular senescence is a state in which cells enter cell cycle arrest. However, senescent cells have the ability to secrete signaling molecules such as chemokines, cytokines, and growth factors. This secretory activity is an important feature of senescent cells, since the secreted factors impact the surrounding cellular microenvironment. Indeed, senescent cells and their secretome play a crucial role during limb development. However, whether the process of limb regeneration also relies on senescent cells remains unclear. Creation of a novel targeted depletion strategy that can eliminate senescent cells in the regenerating limb has now demonstrated an important role for senescent cells in limb regeneration. This role is linked to senescent cell-derived Wnt signaling. These findings reveal a previously unknown role for senescent cells during limb regeneration through Wnt signaling.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":"91-92"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Prospective on Malignant Transformation of Mesenchymal Stem Cells: An Issue in Cell Therapy. 间充质干细胞恶性转化的分子前瞻:细胞疗法中的一个问题。
IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 DOI: 10.1089/cell.2024.0026
Maryam Kaviani, Saeede Soleimanian, Somayeh Keshtkar, Negar Azarpira, Zahra Asvar, Sara Pakbaz

Mesenchymal stem cell (MSCs) therapy, as a rapidly developing area of medicine, holds great promise for the treatment of a variety of medical conditions. MSCs are multipotent stem cells that can be isolated from various tissues and could self-renew and differentiate. They secrete cytokines and trophic factors that create a regenerative microenvironment and have immunomodulatory properties. Although clinical trials have been conducted with MSCs in various diseases, concerns regarding the possibility of malignant transformation of these cells have been raised. The studies showed a higher rate of hematological malignancy and carcinogenesis in experimental models after MSC transplantation. The mechanisms underlying malignant transformation of MSCs are complex and not fully understood, but they are believed to involve the presence of special signaling molecules and alterations in cell behavior regulation pathways. Possible pathways that lead to MSCs' oncogenic transformation occur through two mechanisms: spontaneous and stimulated malignant transformation, including cell fusion, fusion proteins, and the tumor microenvironment. MSC-based therapies have the potential to revolutionize medicine, and addressing the issue of malignancy is crucial to ensure their safety and efficacy. Therefore, the purpose of the present review is to summarize the potential mechanisms of the malignant transformation of MSCs. [Figure: see text].

间充质干细胞(MSCs)疗法是一个快速发展的医学领域,在治疗各种疾病方面前景广阔。间充质干细胞是从各种组织中分离出来的多能干细胞,可以自我更新和分化。它们能分泌细胞因子和营养因子,创造再生微环境,并具有免疫调节特性。虽然已经开展了间充质干细胞治疗各种疾病的临床试验,但人们对这些细胞可能发生恶性转化表示担忧。研究表明,在实验模型中,间充质干细胞移植后血液恶性肿瘤和癌变的发生率较高。间充质干细胞恶性转化的机制复杂,尚未完全明了,但据信涉及特殊信号分子的存在和细胞行为调节途径的改变。导致间充质干细胞致癌转化的可能途径有两种:自发和受刺激的恶性转化,包括细胞融合、融合蛋白和肿瘤微环境。基于间充质干细胞的疗法有可能给医学带来革命性的变化,而解决恶性转化问题对于确保其安全性和有效性至关重要。因此,本综述旨在总结间充质干细胞恶性转化的潜在机制。[图:见正文]。
{"title":"Molecular Prospective on Malignant Transformation of Mesenchymal Stem Cells: An Issue in Cell Therapy.","authors":"Maryam Kaviani, Saeede Soleimanian, Somayeh Keshtkar, Negar Azarpira, Zahra Asvar, Sara Pakbaz","doi":"10.1089/cell.2024.0026","DOIUrl":"https://doi.org/10.1089/cell.2024.0026","url":null,"abstract":"<p><p>Mesenchymal stem cell (MSCs) therapy, as a rapidly developing area of medicine, holds great promise for the treatment of a variety of medical conditions. MSCs are multipotent stem cells that can be isolated from various tissues and could self-renew and differentiate. They secrete cytokines and trophic factors that create a regenerative microenvironment and have immunomodulatory properties. Although clinical trials have been conducted with MSCs in various diseases, concerns regarding the possibility of malignant transformation of these cells have been raised. The studies showed a higher rate of hematological malignancy and carcinogenesis in experimental models after MSC transplantation. The mechanisms underlying malignant transformation of MSCs are complex and not fully understood, but they are believed to involve the presence of special signaling molecules and alterations in cell behavior regulation pathways. Possible pathways that lead to MSCs' oncogenic transformation occur through two mechanisms: spontaneous and stimulated malignant transformation, including cell fusion, fusion proteins, and the tumor microenvironment. MSC-based therapies have the potential to revolutionize medicine, and addressing the issue of malignancy is crucial to ensure their safety and efficacy. Therefore, the purpose of the present review is to summarize the potential mechanisms of the malignant transformation of MSCs. [Figure: see text].</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 3","pages":"96-106"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Defined Induced Pluripotent Stem Cell Lines Mimic Donor Red Blood Cell Antigen Profiles for Therapeutic and Diagnostic Use. 高度定义的诱导多能干细胞系模拟供体红细胞抗原谱,用于治疗和诊断。
IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 DOI: 10.1089/cell.2024.0018
Lucas Ferioli Catelli, Péricles Natan Mendes da Costa, Felipe Augusto Rós, Evandra Strazza Rodrigues, Fernanda Ferreira Ursoli, Flávia Leite Souza Santos, Mayra Dorigan, Lílian Maria de Castilho, Dimas Tadeu Covas, Simone Kashima

Our group generated two induced pluripotent stem cell (iPSC) lines for in vitro red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated in vitro and in vivo iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.

我们的研究小组从具有广泛已知红细胞抗原谱的献血者中产生了两个诱导多能干细胞(iPSC)系,用于体外生产红细胞(RBC)。其中一个品系旨在为镰状细胞病(SCD)患者的输血生产红细胞,而另一个品系则是为了生产红细胞检测试剂。根据红细胞表型选择了两名献血者,并进一步辅以高通量 DNA 阵列分析,以获得更全面的红细胞抗原谱。利用非整合质粒载体将供血者外周血单核细胞中丰富的红细胞群体重编程为 iPSC。iPSC PB02 和 iPSC PB12 表现出体外和体内 iPSC 的特征,并保留了每位献血者红细胞抗原谱的基因型。集落形成细胞测定证实,iPSC PB02 和 iPSC PB12 产生了造血祖细胞。生成的这两种 iPSC 系具有明确的红细胞抗原谱、自我更新能力和造血分化潜能。随着造血分化能力的提高,这些细胞将来有可能更有效地分化成红细胞。它们可以作为一种补充方法,用于获得独立于捐献者的红细胞,并满足输血的特定需求。
{"title":"Highly Defined Induced Pluripotent Stem Cell Lines Mimic Donor Red Blood Cell Antigen Profiles for Therapeutic and Diagnostic Use.","authors":"Lucas Ferioli Catelli, Péricles Natan Mendes da Costa, Felipe Augusto Rós, Evandra Strazza Rodrigues, Fernanda Ferreira Ursoli, Flávia Leite Souza Santos, Mayra Dorigan, Lílian Maria de Castilho, Dimas Tadeu Covas, Simone Kashima","doi":"10.1089/cell.2024.0018","DOIUrl":"https://doi.org/10.1089/cell.2024.0018","url":null,"abstract":"<p><p>Our group generated two induced pluripotent stem cell (iPSC) lines for <i>in vitro</i> red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated <i>in vitro</i> and <i>in vivo</i> iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 3","pages":"107-115"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revitalizing the Aging Immune System Through Selective Stem Cell Targeting. 通过选择性干细胞靶向激活老化的免疫系统
IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 DOI: 10.1089/cell.2024.0029
Anna Konturek-Ciesla, David Bryder

The interplay between aging and immune system deterioration presents a formidable challenge to human health, especially in the context of a globally aging population. Aging is associated with a decline in the body's ability to combat infections and an increased risk of various diseases, underlining the importance of rejuvenating the immune system as a strategy for promoting healthier aging. In issue 628 of Nature (2024), Ross et al. present a compelling study that introduces a novel strategy for rejuvenating the aged immune system (Ross et al., 2024). By using antibodies to selectively eliminate "aberrant" hematopoietic stem cells (HSCs), this research opens new avenues for addressing age-related immune deterioration.

衰老与免疫系统退化之间的相互作用给人类健康带来了严峻的挑战,尤其是在全球人口老龄化的背景下。衰老与机体抗感染能力下降和罹患各种疾病的风险增加有关,这凸显了振兴免疫系统作为促进健康老龄化战略的重要性。在第 628 期《自然》杂志(2024 年)上,罗斯等人发表了一项引人注目的研究,介绍了一种使衰老的免疫系统恢复活力的新策略(罗斯等人,2024 年)。这项研究利用抗体选择性地消除 "异常 "造血干细胞(HSCs),为解决与年龄有关的免疫衰退问题开辟了新途径。
{"title":"Revitalizing the Aging Immune System Through Selective Stem Cell Targeting.","authors":"Anna Konturek-Ciesla, David Bryder","doi":"10.1089/cell.2024.0029","DOIUrl":"https://doi.org/10.1089/cell.2024.0029","url":null,"abstract":"<p><p>The interplay between aging and immune system deterioration presents a formidable challenge to human health, especially in the context of a globally aging population. Aging is associated with a decline in the body's ability to combat infections and an increased risk of various diseases, underlining the importance of rejuvenating the immune system as a strategy for promoting healthier aging. In issue 628 of Nature (2024), Ross et al. present a compelling study that introduces a novel strategy for rejuvenating the aged immune system (Ross et al., 2024). By using antibodies to selectively eliminate \"aberrant\" hematopoietic stem cells (HSCs), this research opens new avenues for addressing age-related immune deterioration.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 3","pages":"93-95"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making Human Hematopoietic Stem Cells Without Transgenes. 制作不含转基因的人类造血干细胞。
IF 1.6 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-01 Epub Date: 2024-03-26 DOI: 10.1089/cell.2024.0020
Luis G Palma, Anna Bigas

Creating hematopoietic stem cells (HSCs) capable of multilineage engraft while possessing the ability to self-renew stands as a pivotal achievement within the field of regenerative medicine. However, achieving the generation of these cells without transgene expression or teratoma formation has not been fully accomplished. In a recent publication featured in Cell Stem Cell, Piau et al. document the production of functional HSCs derived from human-induced pluripotent stem cells (hiPSCs). They achieved this through a one-step differentiation protocol that notably does not require any transgene expression. hiPSCs-derived HSCs can engraft and self-renew upon serial transplantation and they are able to reconstitute lymphoid, myeloid, and erythroid compartments. This study presents a promising system to further study human HSC ontogeny, and it might represent a crucial step to obtain HSCs.

造血干细胞(HSCs)能够多系移植,同时具有自我更新能力,这是再生医学领域的一项关键成就。然而,在没有转基因表达或畸胎瘤形成的情况下生成这些细胞的工作尚未完全完成。在最近发表在《细胞干细胞》(Cell Stem Cell)上的一篇文章中,Piau 等人记录了从人类诱导多能干细胞(hiPSCs)中产生功能性造血干细胞的过程。hiPSCs衍生的造血干细胞在连续移植后可进行移植和自我更新,并能重建淋巴、骨髓和红细胞区系。这项研究为进一步研究人类造血干细胞的本体发育提供了一个很有前景的系统,它可能是获得造血干细胞的关键一步。
{"title":"Making Human Hematopoietic Stem Cells Without Transgenes.","authors":"Luis G Palma, Anna Bigas","doi":"10.1089/cell.2024.0020","DOIUrl":"10.1089/cell.2024.0020","url":null,"abstract":"<p><p>Creating hematopoietic stem cells (HSCs) capable of multilineage engraft while possessing the ability to self-renew stands as a pivotal achievement within the field of regenerative medicine. However, achieving the generation of these cells without transgene expression or teratoma formation has not been fully accomplished. In a recent publication featured in <i>Cell Stem Cell</i>, Piau et al. document the production of functional HSCs derived from human-induced pluripotent stem cells (hiPSCs). They achieved this through a one-step differentiation protocol that notably does not require any transgene expression. hiPSCs-derived HSCs can engraft and self-renew upon serial transplantation and they are able to reconstitute lymphoid, myeloid, and erythroid compartments. This study presents a promising system to further study human HSC ontogeny, and it might represent a crucial step to obtain HSCs.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":"43-45"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 1.6 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-12-22 DOI: 10.1089/cell.2024.29105.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/cell.2024.29105.ack","DOIUrl":"10.1089/cell.2024.29105.ack","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 1","pages":"1"},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of Transient Morula-Like Cells in Mice Through STAT3 Activation. 通过 STAT3 激活诱导小鼠瞬时类木耳细胞
IF 1.6 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-01 Epub Date: 2024-01-31 DOI: 10.1089/cell.2023.0116
Celia Fernandez-Rial, Miguel Fidalgo

Developing in vitro cell models that faithfully replicate the molecular and functional traits of cells from the earliest stages of mammalian development presents a significant challenge. The strategic induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, coupled with carefully defined culture conditions, facilitates the efficient reprogramming of mouse pluripotent cells into a transient morula-like cell (MLC) state. The resulting MLCs closely mirror their in vivo counterparts, exhibiting not only molecular resemblance but also the ability to differentiate into both embryonic and extraembryonic lineages. This reprogramming approach provides valuable insights into controlled cellular fate choice and opens new opportunities for studying early developmental processes in a dish.

开发体外细胞模型以忠实复制哺乳动物发育最早阶段细胞的分子和功能特征是一项重大挑战。策略性地诱导信号转导子和转录激活子3(STAT3)磷酸化,再加上精心定义的培养条件,有助于高效地将小鼠多能细胞重编程为瞬时的类髓鞘细胞(MLC)状态。由此产生的 MLC 与体内的 MLC 非常相似,不仅表现出分子相似性,还能分化成胚胎和胚外系。这种重编程方法为控制细胞命运选择提供了宝贵的见解,并为在培养皿中研究早期发育过程带来了新的机遇。
{"title":"Induction of Transient Morula-Like Cells in Mice Through STAT3 Activation.","authors":"Celia Fernandez-Rial, Miguel Fidalgo","doi":"10.1089/cell.2023.0116","DOIUrl":"10.1089/cell.2023.0116","url":null,"abstract":"<p><p>Developing <i>in vitro</i> cell models that faithfully replicate the molecular and functional traits of cells from the earliest stages of mammalian development presents a significant challenge. The strategic induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, coupled with carefully defined culture conditions, facilitates the efficient reprogramming of mouse pluripotent cells into a transient morula-like cell (MLC) state. The resulting MLCs closely mirror their <i>in vivo</i> counterparts, exhibiting not only molecular resemblance but also the ability to differentiate into both embryonic and extraembryonic lineages. This reprogramming approach provides valuable insights into controlled cellular fate choice and opens new opportunities for studying early developmental processes in a dish.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":"8-9"},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. 部分重编程作为老化生物体神经组织再生的一种方法
IF 1.6 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-01 DOI: 10.1089/cell.2023.0123
Ali Saber Sichani, Somayeh Khoddam, Shayan Shakeri, Zahra Tavakkoli, Arad Ranji Jafroodi, Reza Dabbaghipour, Mohsen Sisakht, Jafar Fallahi

Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.

衰老会引发许多与年龄有关的疾病,导致人类死亡。然而,基于细胞表观遗传修饰的返老还童策略是对抗衰老过程中疾病进展的一种可行方法。对成年体细胞进行细胞重编程,使其具有多能性,这应该是治疗老年相关疾病的一种很有前景的工具。然而,研究人员无法控制这一过程,因为细胞会失去其命运,导致潜在的癌细胞或意想不到的细胞表型。近年来,直接重编程和部分重编程相继问世,并得到了不同的应用。虽然直接重编程会使细胞失去其特性,但它在再生医学中却有多种应用。在一些实验环境中,山中因子的临时和调节性体内过表达已被证明是可以实现的,并被用于小鼠模型的再生。这种再生可通过改变成体细胞的表观遗传学特征,使之成为年轻细胞的特征来实现。部分重编程的最大优势在于,这种方法不会让细胞在重置表观遗传时钟时失去自己的身份。这是一种在体内短期表达 Oct3/4、Sox2、Klf4 和 c-Myc 的方案,可防止完全重编程为多能状态,避免肿瘤发生和出现不需要的未分化细胞。我们知道,许多与神经系统有关的老年疾病,如阿尔茨海默病、中风、痴呆症和帕金森病,是人在生命最后几十年死亡的主要原因。因此,科学家们特别倾向于采用神经再生方法来延长人类的寿命。
{"title":"Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms.","authors":"Ali Saber Sichani, Somayeh Khoddam, Shayan Shakeri, Zahra Tavakkoli, Arad Ranji Jafroodi, Reza Dabbaghipour, Mohsen Sisakht, Jafar Fallahi","doi":"10.1089/cell.2023.0123","DOIUrl":"10.1089/cell.2023.0123","url":null,"abstract":"<p><p>Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated <i>in vivo</i> overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression <i>in vivo</i> that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 1","pages":"10-23"},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Therapy-Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice. 基因疗法介导的部分重编程延长了老年小鼠的寿命并逆转了与年龄有关的变化。
IF 1.6 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-01 DOI: 10.1089/cell.2023.0072
Carolina Cano Macip, Rokib Hasan, Victoria Hoznek, Jihyun Kim, Yuancheng Ryan Lu, Louis E Metzger, Saumil Sethna, Noah Davidsohn

Aging is a complex progression of changes best characterized as the chronic dysregulation of cellular processes leading to deteriorated tissue and organ function. Although aging cannot currently be prevented, its impact on life- and healthspan in the elderly can potentially be minimized by interventions that aim to return these cellular processes to optimal function. Recent studies have demonstrated that partial reprogramming using the Yamanaka factors (or a subset; OCT4, SOX2, and KLF4; OSK) can reverse age-related changes in vitro and in vivo. However, it is still unknown whether the Yamanaka factors (or a subset) are capable of extending the lifespan of aged wild-type (WT) mice. In this study, we show that systemically delivered adeno-associated viruses, encoding an inducible OSK system, in 124-week-old male mice extend the median remaining lifespan by 109% over WT controls and enhance several health parameters. Importantly, we observed a significant improvement in frailty scores indicating that we were able to improve the healthspan along with increasing the lifespan. Furthermore, in human keratinocytes expressing exogenous OSK, we observed significant epigenetic markers of age reversal, suggesting a potential reregulation of genetic networks to a younger potentially healthier state. Together, these results may have important implications for the development of partial reprogramming interventions to reverse age-associated diseases in the elderly.

衰老是一个复杂的变化过程,其最大特点是细胞过程长期失调,导致组织和器官功能衰退。虽然衰老目前无法预防,但通过干预措施,使这些细胞过程恢复到最佳功能,就有可能最大限度地减少衰老对老年人生命和健康寿命的影响。最近的研究表明,利用山中因子(或其子集:OCT4、SOX2 和 KLF4;OSK)进行部分重编程,可以在体外和体内逆转与衰老有关的变化。然而,山中因子(或其子集)是否能延长野生型(WT)小鼠的寿命仍是一个未知数。在这项研究中,我们发现在124周大的雄性小鼠体内系统递送的腺相关病毒编码了一种可诱导的OSK系统,与WT对照组相比,中位剩余寿命延长了109%,并提高了多项健康指标。重要的是,我们观察到虚弱评分有了明显改善,这表明我们在延长寿命的同时也改善了健康状况。此外,在表达外源 OSK 的人类角质形成细胞中,我们观察到了显著的年龄逆转表观遗传标记,这表明基因网络有可能被重新调节到更年轻、更健康的状态。总之,这些结果可能对开发部分重编程干预措施以逆转老年人与年龄相关的疾病具有重要意义。
{"title":"Gene Therapy-Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice.","authors":"Carolina Cano Macip, Rokib Hasan, Victoria Hoznek, Jihyun Kim, Yuancheng Ryan Lu, Louis E Metzger, Saumil Sethna, Noah Davidsohn","doi":"10.1089/cell.2023.0072","DOIUrl":"10.1089/cell.2023.0072","url":null,"abstract":"<p><p>Aging is a complex progression of changes best characterized as the chronic dysregulation of cellular processes leading to deteriorated tissue and organ function. Although aging cannot currently be prevented, its impact on life- and healthspan in the elderly can potentially be minimized by interventions that aim to return these cellular processes to optimal function. Recent studies have demonstrated that partial reprogramming using the Yamanaka factors (or a subset; <i>OCT4</i>, <i>SOX2,</i> and <i>KLF4; OSK)</i> can reverse age-related changes <i>in vitro</i> and <i>in vivo</i>. However, it is still unknown whether the Yamanaka factors (or a subset) are capable of extending the lifespan of aged wild-type (WT) mice. In this study, we show that systemically delivered adeno-associated viruses, encoding an inducible OSK system, in 124-week-old male mice extend the median remaining lifespan by 109% over WT controls and enhance several health parameters. Importantly, we observed a significant improvement in frailty scores indicating that we were able to improve the healthspan along with increasing the lifespan. Furthermore, in human keratinocytes expressing exogenous OSK, we observed significant epigenetic markers of age reversal, suggesting a potential reregulation of genetic networks to a younger potentially healthier state. Together, these results may have important implications for the development of partial reprogramming interventions to reverse age-associated diseases in the elderly.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 1","pages":"24-32"},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular reprogramming
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1