首页 > 最新文献

Cellular reprogramming最新文献

英文 中文
Testosterone Supplementation Promotes Estrogen Synthesis of Buffalo Cumulus Cells Surrounding In Vitro-Matured Oocytes. 补充睾酮可促进水牛体外成熟卵母细胞周围的雌激素合成
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-05 DOI: 10.1089/cell.2023.0121
Jun Zhang, Junming Sun, Meizhen Ou, Yiqiang Ouyang, Deshun Shi, F. Lu
Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17β-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.
水牛体腔细胞(CC)可合成卵泡发育所必需的雌激素。然而,雄激素对水牛CCs产生雌激素的影响仍然未知。本研究调查了睾酮对体外成熟卵母细胞周围水牛CCs雌激素合成的影响。结果表明,补充睾酮可提高体外成熟卵母细胞周围水牛CCs中雌激素合成相关基因(CYP11A1、CYP19A1和17β-HSD)的表达水平和雌二醇的分泌水平。此外,睾酮还能提高体外成熟卵母细胞周围的水牛CC对卵泡刺激素(FSH)的敏感性。该研究表明,补充睾酮主要是通过增强体外成熟卵母细胞周围水牛CC对FSH的反应性来促进雌激素的合成。本研究为水牛体细胞核移植获得优质受体卵母细胞奠定了基础。
{"title":"Testosterone Supplementation Promotes Estrogen Synthesis of Buffalo Cumulus Cells Surrounding In Vitro-Matured Oocytes.","authors":"Jun Zhang, Junming Sun, Meizhen Ou, Yiqiang Ouyang, Deshun Shi, F. Lu","doi":"10.1089/cell.2023.0121","DOIUrl":"https://doi.org/10.1089/cell.2023.0121","url":null,"abstract":"Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17β-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140739832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making Human Hematopoietic Stem Cells Without Transgenes. 制作不含转基因的人类造血干细胞。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 Epub Date: 2024-03-26 DOI: 10.1089/cell.2024.0020
Luis G Palma, Anna Bigas

Creating hematopoietic stem cells (HSCs) capable of multilineage engraft while possessing the ability to self-renew stands as a pivotal achievement within the field of regenerative medicine. However, achieving the generation of these cells without transgene expression or teratoma formation has not been fully accomplished. In a recent publication featured in Cell Stem Cell, Piau et al. document the production of functional HSCs derived from human-induced pluripotent stem cells (hiPSCs). They achieved this through a one-step differentiation protocol that notably does not require any transgene expression. hiPSCs-derived HSCs can engraft and self-renew upon serial transplantation and they are able to reconstitute lymphoid, myeloid, and erythroid compartments. This study presents a promising system to further study human HSC ontogeny, and it might represent a crucial step to obtain HSCs.

造血干细胞(HSCs)能够多系移植,同时具有自我更新能力,这是再生医学领域的一项关键成就。然而,在没有转基因表达或畸胎瘤形成的情况下生成这些细胞的工作尚未完全完成。在最近发表在《细胞干细胞》(Cell Stem Cell)上的一篇文章中,Piau 等人记录了从人类诱导多能干细胞(hiPSCs)中产生功能性造血干细胞的过程。hiPSCs衍生的造血干细胞在连续移植后可进行移植和自我更新,并能重建淋巴、骨髓和红细胞区系。这项研究为进一步研究人类造血干细胞的本体发育提供了一个很有前景的系统,它可能是获得造血干细胞的关键一步。
{"title":"Making Human Hematopoietic Stem Cells Without Transgenes.","authors":"Luis G Palma, Anna Bigas","doi":"10.1089/cell.2024.0020","DOIUrl":"10.1089/cell.2024.0020","url":null,"abstract":"<p><p>Creating hematopoietic stem cells (HSCs) capable of multilineage engraft while possessing the ability to self-renew stands as a pivotal achievement within the field of regenerative medicine. However, achieving the generation of these cells without transgene expression or teratoma formation has not been fully accomplished. In a recent publication featured in <i>Cell Stem Cell</i>, Piau et al. document the production of functional HSCs derived from human-induced pluripotent stem cells (hiPSCs). They achieved this through a one-step differentiation protocol that notably does not require any transgene expression. hiPSCs-derived HSCs can engraft and self-renew upon serial transplantation and they are able to reconstitute lymphoid, myeloid, and erythroid compartments. This study presents a promising system to further study human HSC ontogeny, and it might represent a crucial step to obtain HSCs.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reprogramming Stars #15: Colliding Cellular Reprogramming Paths- An Interview with Dr. Stefan Stricker. 重编程之星 #15:细胞重编程路径的碰撞--采访斯特凡-斯特里克博士。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 DOI: 10.1089/cell.2024.29115.shs
Stefan H Stricker, Carlos-Filipe Pereira
{"title":"Reprogramming Stars #15: Colliding Cellular Reprogramming Paths- An Interview with Dr. Stefan Stricker.","authors":"Stefan H Stricker, Carlos-Filipe Pereira","doi":"10.1089/cell.2024.29115.shs","DOIUrl":"https://doi.org/10.1089/cell.2024.29115.shs","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140797521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Roles of Signaling Pathways in Maintaining Pluripotency of Mouse and Human Embryonic Stem Cells. 信号通路在维持小鼠和人类胚胎干细胞多能性中的动态作用
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 DOI: 10.1089/cell.2024.0002
Anagha Oke, Sonal M Manohar
Culturing of mouse and human embryonic stem cells (ESCs) in vitro was a major breakthrough in the field of stem cell biology. These models gained popularity very soon mainly due to their pluripotency. Evidently, the ESCs of mouse and human origin share typical phenotypic responses due to their pluripotent nature, such as self-renewal capacity and potency. The conserved network of core transcription factors regulates these responses. However, significantly different signaling pathways and upstream transcriptional networks regulate expression and activity of these core pluripotency factors in ESCs of both the species. In fact, ample evidence shows that a pathway, which maintains pluripotency in mouse ESCs, promotes differentiation in human ESCs. In this review, we discuss the role of canonical signaling pathways implicated in regulation of pluripotency and differentiation particularly in mouse and human ESCs. We believe that understanding these distinct and at times-opposite mechanisms-is critical for the progress in the field of stem cell biology and regenerative medicine.
体外培养小鼠和人类胚胎干细胞(ESC)是干细胞生物学领域的一大突破。这些模型之所以很快受到欢迎,主要是因为它们具有多能性。显而易见,小鼠和人类的干细胞因其多能性而共享典型的表型反应,如自我更新能力和效力。这些反应由保守的核心转录因子网络调控。然而,在这两个物种的 ESCs 中,这些核心多能性因子的表达和活性受明显不同的信号通路和上游转录网络调控。事实上,大量证据表明,在小鼠间充质干细胞中维持多能性的途径,在人类间充质干细胞中却能促进分化。在这篇综述中,我们讨论了与多能性和分化调控有关的典型信号通路在小鼠和人类 ESCs 中的作用。我们认为,了解这些不同的、有时是相反的机制,对干细胞生物学和再生医学领域的进步至关重要。
{"title":"Dynamic Roles of Signaling Pathways in Maintaining Pluripotency of Mouse and Human Embryonic Stem Cells.","authors":"Anagha Oke, Sonal M Manohar","doi":"10.1089/cell.2024.0002","DOIUrl":"https://doi.org/10.1089/cell.2024.0002","url":null,"abstract":"Culturing of mouse and human embryonic stem cells (ESCs) in vitro was a major breakthrough in the field of stem cell biology. These models gained popularity very soon mainly due to their pluripotency. Evidently, the ESCs of mouse and human origin share typical phenotypic responses due to their pluripotent nature, such as self-renewal capacity and potency. The conserved network of core transcription factors regulates these responses. However, significantly different signaling pathways and upstream transcriptional networks regulate expression and activity of these core pluripotency factors in ESCs of both the species. In fact, ample evidence shows that a pathway, which maintains pluripotency in mouse ESCs, promotes differentiation in human ESCs. In this review, we discuss the role of canonical signaling pathways implicated in regulation of pluripotency and differentiation particularly in mouse and human ESCs. We believe that understanding these distinct and at times-opposite mechanisms-is critical for the progress in the field of stem cell biology and regenerative medicine.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140785989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2023-12-22 DOI: 10.1089/cell.2024.29105.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/cell.2024.29105.ack","DOIUrl":"10.1089/cell.2024.29105.ack","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of Transient Morula-Like Cells in Mice Through STAT3 Activation. 通过 STAT3 激活诱导小鼠瞬时类木耳细胞
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2024-01-31 DOI: 10.1089/cell.2023.0116
Celia Fernandez-Rial, Miguel Fidalgo

Developing in vitro cell models that faithfully replicate the molecular and functional traits of cells from the earliest stages of mammalian development presents a significant challenge. The strategic induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, coupled with carefully defined culture conditions, facilitates the efficient reprogramming of mouse pluripotent cells into a transient morula-like cell (MLC) state. The resulting MLCs closely mirror their in vivo counterparts, exhibiting not only molecular resemblance but also the ability to differentiate into both embryonic and extraembryonic lineages. This reprogramming approach provides valuable insights into controlled cellular fate choice and opens new opportunities for studying early developmental processes in a dish.

开发体外细胞模型以忠实复制哺乳动物发育最早阶段细胞的分子和功能特征是一项重大挑战。策略性地诱导信号转导子和转录激活子3(STAT3)磷酸化,再加上精心定义的培养条件,有助于高效地将小鼠多能细胞重编程为瞬时的类髓鞘细胞(MLC)状态。由此产生的 MLC 与体内的 MLC 非常相似,不仅表现出分子相似性,还能分化成胚胎和胚外系。这种重编程方法为控制细胞命运选择提供了宝贵的见解,并为在培养皿中研究早期发育过程带来了新的机遇。
{"title":"Induction of Transient Morula-Like Cells in Mice Through STAT3 Activation.","authors":"Celia Fernandez-Rial, Miguel Fidalgo","doi":"10.1089/cell.2023.0116","DOIUrl":"10.1089/cell.2023.0116","url":null,"abstract":"<p><p>Developing <i>in vitro</i> cell models that faithfully replicate the molecular and functional traits of cells from the earliest stages of mammalian development presents a significant challenge. The strategic induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, coupled with carefully defined culture conditions, facilitates the efficient reprogramming of mouse pluripotent cells into a transient morula-like cell (MLC) state. The resulting MLCs closely mirror their <i>in vivo</i> counterparts, exhibiting not only molecular resemblance but also the ability to differentiate into both embryonic and extraembryonic lineages. This reprogramming approach provides valuable insights into controlled cellular fate choice and opens new opportunities for studying early developmental processes in a dish.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. 部分重编程作为老化生物体神经组织再生的一种方法
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 DOI: 10.1089/cell.2023.0123
Ali Saber Sichani, Somayeh Khoddam, Shayan Shakeri, Zahra Tavakkoli, Arad Ranji Jafroodi, Reza Dabbaghipour, Mohsen Sisakht, Jafar Fallahi

Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.

衰老会引发许多与年龄有关的疾病,导致人类死亡。然而,基于细胞表观遗传修饰的返老还童策略是对抗衰老过程中疾病进展的一种可行方法。对成年体细胞进行细胞重编程,使其具有多能性,这应该是治疗老年相关疾病的一种很有前景的工具。然而,研究人员无法控制这一过程,因为细胞会失去其命运,导致潜在的癌细胞或意想不到的细胞表型。近年来,直接重编程和部分重编程相继问世,并得到了不同的应用。虽然直接重编程会使细胞失去其特性,但它在再生医学中却有多种应用。在一些实验环境中,山中因子的临时和调节性体内过表达已被证明是可以实现的,并被用于小鼠模型的再生。这种再生可通过改变成体细胞的表观遗传学特征,使之成为年轻细胞的特征来实现。部分重编程的最大优势在于,这种方法不会让细胞在重置表观遗传时钟时失去自己的身份。这是一种在体内短期表达 Oct3/4、Sox2、Klf4 和 c-Myc 的方案,可防止完全重编程为多能状态,避免肿瘤发生和出现不需要的未分化细胞。我们知道,许多与神经系统有关的老年疾病,如阿尔茨海默病、中风、痴呆症和帕金森病,是人在生命最后几十年死亡的主要原因。因此,科学家们特别倾向于采用神经再生方法来延长人类的寿命。
{"title":"Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms.","authors":"Ali Saber Sichani, Somayeh Khoddam, Shayan Shakeri, Zahra Tavakkoli, Arad Ranji Jafroodi, Reza Dabbaghipour, Mohsen Sisakht, Jafar Fallahi","doi":"10.1089/cell.2023.0123","DOIUrl":"10.1089/cell.2023.0123","url":null,"abstract":"<p><p>Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated <i>in vivo</i> overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression <i>in vivo</i> that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Therapy-Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice. 基因疗法介导的部分重编程延长了老年小鼠的寿命并逆转了与年龄有关的变化。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 DOI: 10.1089/cell.2023.0072
Carolina Cano Macip, Rokib Hasan, Victoria Hoznek, Jihyun Kim, Yuancheng Ryan Lu, Louis E Metzger, Saumil Sethna, Noah Davidsohn

Aging is a complex progression of changes best characterized as the chronic dysregulation of cellular processes leading to deteriorated tissue and organ function. Although aging cannot currently be prevented, its impact on life- and healthspan in the elderly can potentially be minimized by interventions that aim to return these cellular processes to optimal function. Recent studies have demonstrated that partial reprogramming using the Yamanaka factors (or a subset; OCT4, SOX2, and KLF4; OSK) can reverse age-related changes in vitro and in vivo. However, it is still unknown whether the Yamanaka factors (or a subset) are capable of extending the lifespan of aged wild-type (WT) mice. In this study, we show that systemically delivered adeno-associated viruses, encoding an inducible OSK system, in 124-week-old male mice extend the median remaining lifespan by 109% over WT controls and enhance several health parameters. Importantly, we observed a significant improvement in frailty scores indicating that we were able to improve the healthspan along with increasing the lifespan. Furthermore, in human keratinocytes expressing exogenous OSK, we observed significant epigenetic markers of age reversal, suggesting a potential reregulation of genetic networks to a younger potentially healthier state. Together, these results may have important implications for the development of partial reprogramming interventions to reverse age-associated diseases in the elderly.

衰老是一个复杂的变化过程,其最大特点是细胞过程长期失调,导致组织和器官功能衰退。虽然衰老目前无法预防,但通过干预措施,使这些细胞过程恢复到最佳功能,就有可能最大限度地减少衰老对老年人生命和健康寿命的影响。最近的研究表明,利用山中因子(或其子集:OCT4、SOX2 和 KLF4;OSK)进行部分重编程,可以在体外和体内逆转与衰老有关的变化。然而,山中因子(或其子集)是否能延长野生型(WT)小鼠的寿命仍是一个未知数。在这项研究中,我们发现在124周大的雄性小鼠体内系统递送的腺相关病毒编码了一种可诱导的OSK系统,与WT对照组相比,中位剩余寿命延长了109%,并提高了多项健康指标。重要的是,我们观察到虚弱评分有了明显改善,这表明我们在延长寿命的同时也改善了健康状况。此外,在表达外源 OSK 的人类角质形成细胞中,我们观察到了显著的年龄逆转表观遗传标记,这表明基因网络有可能被重新调节到更年轻、更健康的状态。总之,这些结果可能对开发部分重编程干预措施以逆转老年人与年龄相关的疾病具有重要意义。
{"title":"Gene Therapy-Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice.","authors":"Carolina Cano Macip, Rokib Hasan, Victoria Hoznek, Jihyun Kim, Yuancheng Ryan Lu, Louis E Metzger, Saumil Sethna, Noah Davidsohn","doi":"10.1089/cell.2023.0072","DOIUrl":"10.1089/cell.2023.0072","url":null,"abstract":"<p><p>Aging is a complex progression of changes best characterized as the chronic dysregulation of cellular processes leading to deteriorated tissue and organ function. Although aging cannot currently be prevented, its impact on life- and healthspan in the elderly can potentially be minimized by interventions that aim to return these cellular processes to optimal function. Recent studies have demonstrated that partial reprogramming using the Yamanaka factors (or a subset; <i>OCT4</i>, <i>SOX2,</i> and <i>KLF4; OSK)</i> can reverse age-related changes <i>in vitro</i> and <i>in vivo</i>. However, it is still unknown whether the Yamanaka factors (or a subset) are capable of extending the lifespan of aged wild-type (WT) mice. In this study, we show that systemically delivered adeno-associated viruses, encoding an inducible OSK system, in 124-week-old male mice extend the median remaining lifespan by 109% over WT controls and enhance several health parameters. Importantly, we observed a significant improvement in frailty scores indicating that we were able to improve the healthspan along with increasing the lifespan. Furthermore, in human keratinocytes expressing exogenous OSK, we observed significant epigenetic markers of age reversal, suggesting a potential reregulation of genetic networks to a younger potentially healthier state. Together, these results may have important implications for the development of partial reprogramming interventions to reverse age-associated diseases in the elderly.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reprogramming Stars #14: Fast-Forwarding Cellular Reprogramming- An Interview with Dr. Mark Kotter. 重编程之星 #14:快速推进细胞重编程--马克-科特博士访谈。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 DOI: 10.1089/cell.2024.29111.mk
Mark R Kotter, Carlos-Filipe Pereira
{"title":"Reprogramming Stars #14: Fast-Forwarding Cellular Reprogramming- An Interview with Dr. Mark Kotter.","authors":"Mark R Kotter, Carlos-Filipe Pereira","doi":"10.1089/cell.2024.29111.mk","DOIUrl":"10.1089/cell.2024.29111.mk","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloned Foal Born from Postmortem-Obtained Ear Sample Refrigerated for 5 Days Before Fibroblast Isolation and Decontamination of the Infected Monolayer Culture. 在成纤维细胞分离和净化受感染的单层培养物之前,将从死后获得的耳部样本冷藏 5 天,克隆出小马。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2024-01-23 DOI: 10.1089/cell.2023.0076
Jenin V Cortez, Kylie Hardwicke, Christopher G Grupen, Muren Herrid, Zoltan Machaty, Gábor Vajta

A 6-year-old mare, a valuable polo horse, died of complications following postcolic surgery. To preserve its genetics, ear skin samples were collected immediately after death and stored in an equine embryo transfer medium at 4°C for 5 days. After trypsin digestion, monolayer fibroblast cultures were established, but signs of massive bacterial infection were found in all of them. As an ultimate attempt for rescue, rigorously and repeatedly washed cells were individually cultured in all wells of four 96-well dishes. New monolayers were established from the few wells without contamination and used for somatic cell nuclear transfer. Four of the six Day 7 blastocysts derived from 14 reconstructed zygotes were transferred in four naturally cycling mares on Day 5 after ovulation. The embryo transfers resulted in 2 pregnancies, one from a fresh and one from a vitrified blastocyst. The vitrified embryo transfer resulted in a healthy offspring, now 21 months old, genetically and phenotypically identical to the somatic cell donor animal.

一匹 6 岁的母马是一匹珍贵的马球马,在结肠手术后死于并发症。为了保存其基因,我们在其死后立即采集了耳部皮肤样本,并在 4°C 的马胚胎移植培养基中保存了 5 天。胰蛋白酶消化后,建立了单层成纤维细胞培养基,但在所有培养基中都发现了大量细菌感染的迹象。作为最终的拯救尝试,在四个 96 孔培养皿的所有孔中分别培养了经过严格和反复清洗的细胞。从少数未受污染的孔中培养出新的单层细胞,并用于体细胞核移植。在排卵后的第 5 天,将 14 个重建的合子所产生的 6 个第 7 天囊胚中的 4 个移植给 4 只自然周期母马。胚胎移植后,有两只母马怀孕,一只来自新鲜囊胚,一只来自玻璃化囊胚。玻璃化胚胎移植产生了一个健康的后代,现已 21 个月大,其基因和表型与体细胞供体动物完全相同。
{"title":"Cloned Foal Born from Postmortem-Obtained Ear Sample Refrigerated for 5 Days Before Fibroblast Isolation and Decontamination of the Infected Monolayer Culture.","authors":"Jenin V Cortez, Kylie Hardwicke, Christopher G Grupen, Muren Herrid, Zoltan Machaty, Gábor Vajta","doi":"10.1089/cell.2023.0076","DOIUrl":"10.1089/cell.2023.0076","url":null,"abstract":"<p><p>A 6-year-old mare, a valuable polo horse, died of complications following postcolic surgery. To preserve its genetics, ear skin samples were collected immediately after death and stored in an equine embryo transfer medium at 4°C for 5 days. After trypsin digestion, monolayer fibroblast cultures were established, but signs of massive bacterial infection were found in all of them. As an ultimate attempt for rescue, rigorously and repeatedly washed cells were individually cultured in all wells of four 96-well dishes. New monolayers were established from the few wells without contamination and used for somatic cell nuclear transfer. Four of the six Day 7 blastocysts derived from 14 reconstructed zygotes were transferred in four naturally cycling mares on Day 5 after ovulation. The embryo transfers resulted in 2 pregnancies, one from a fresh and one from a vitrified blastocyst. The vitrified embryo transfer resulted in a healthy offspring, now 21 months old, genetically and phenotypically identical to the somatic cell donor animal.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular reprogramming
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1