首页 > 最新文献

Cellular reprogramming最新文献

英文 中文
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-22 DOI: 10.1089/cell.2024.29105.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/cell.2024.29105.ack","DOIUrl":"https://doi.org/10.1089/cell.2024.29105.ack","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustained Vision Recovery by OSK Gene Therapy in a Mouse Model of Glaucoma 在青光眼小鼠模型中通过 OSK 基因疗法持续恢复视力
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-07 DOI: 10.1089/cell.2023.0074
M. Karg, Y. Lu, Nasrin Refaian, James Cameron, Emma Hoffmann, Cindy Hoppe, Shintaro Shirahama, Madhura Shah, Drenushe Krasniqi, A. Krishnan, Maleeka Shrestha, Yinjie Guo, Jennifer M. Cermak, Michel Walthier, Kasia Broniowska, Sharon Rosenzweig-Lipson, M. Gregory-Ksander, David A. Sinclair, Bruce R. Ksander
{"title":"Sustained Vision Recovery by OSK Gene Therapy in a Mouse Model of Glaucoma","authors":"M. Karg, Y. Lu, Nasrin Refaian, James Cameron, Emma Hoffmann, Cindy Hoppe, Shintaro Shirahama, Madhura Shah, Drenushe Krasniqi, A. Krishnan, Maleeka Shrestha, Yinjie Guo, Jennifer M. Cermak, Michel Walthier, Kasia Broniowska, Sharon Rosenzweig-Lipson, M. Gregory-Ksander, David A. Sinclair, Bruce R. Ksander","doi":"10.1089/cell.2023.0074","DOIUrl":"https://doi.org/10.1089/cell.2023.0074","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138592215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIRT6 Knockdown in Buffalo Fetal Fibroblasts Exacerbates Premature Senescence Caused by DNA and Telomere Damage. 水牛胎儿成纤维细胞SIRT6基因敲除加剧DNA和端粒损伤引起的早衰。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 Epub Date: 2023-09-19 DOI: 10.1089/cell.2023.0048
Jingyuan Liang, Jiayu Cui, Juanru Cheng, Yu Pan, Ruimen Zhang, Sufang Yang, Lingxiu Zou

As a gene with antiaging functions, sirtuin6 (SIRT6) belonging to the sirtuin family plays a vital role in DNA repair, telomerase function, and cellular senescence, as well as maintains epigenomic stability and promotes longevity. However, its role in cell senescence in large animals, such as buffaloes, remains unknown. Fibroblasts are commonly used for somatic reprogramming, and their physiological characteristics affect the efficiency of this process. We aimed to elucidate the role of SIRT6 in cellular senescence and proliferation and analyze its effect on the biological function of buffalo fibroblasts to help improve the efficiency of buffalo somatic cell reprogramming. The expression of SIRT6 and related DNA damage was measured in buffalo fibroblasts obtained at different developmental stages (in the fetus and at 3 and 10 years of age), and the effect of SIRT6 knockdown on the senescence of buffalo fetal fibroblast was investigated. An inverse relationship was observed between SIRT6 expression and senescence in buffalo fibroblasts obtained from animals of various ages. This was accompanied by decreased cell growth, viability, and increased DNA damage. Short hairpin RNA-mediated SIRT6 knockdown accelerated the senescence of buffalo fetal fibroblasts. It blocked the cell cycle during in vitro cell culture, which further enhanced DNA damage, particularly with respect to the telomeres. Collectively, our findings suggest that SIRT6 expression was closely associated with buffalo senescence in fibroblasts. These findings serve as a foundation to better understand the cellular functions of SIRT6 and also aid in selecting donor cells for buffalo somatic cell reprogramming.

作为一种具有抗衰老功能的基因,属于sirtuin家族的sirtuin6(SIRT6)在DNA修复、端粒酶功能和细胞衰老中发挥着至关重要的作用,并保持表观基因组的稳定性和促进寿命。然而,它在大型动物(如水牛)细胞衰老中的作用尚不清楚。成纤维细胞通常用于体细胞重编程,其生理特性影响这一过程的效率。我们旨在阐明SIRT6在细胞衰老和增殖中的作用,并分析其对水牛成纤维细胞生物学功能的影响,以帮助提高水牛体细胞重编程的效率。测定了在不同发育阶段(胎儿、3岁和10岁)获得的水牛成纤维细胞中SIRT6的表达和相关的DNA损伤,并研究了SIRT6敲低对水牛胎儿成纤维细胞衰老的影响。在从不同年龄的动物获得的水牛成纤维细胞中观察到SIRT6表达与衰老之间的反比关系。这伴随着细胞生长、活力的下降和DNA损伤的增加。短发夹RNA介导的SIRT6敲除加速了水牛胎儿成纤维细胞的衰老。它在体外细胞培养过程中阻断了细胞周期,从而进一步增强了DNA损伤,尤其是端粒损伤。总之,我们的研究结果表明,SIRT6的表达与水牛成纤维细胞的衰老密切相关。这些发现为更好地了解SIRT6的细胞功能奠定了基础,也有助于选择水牛体细胞重编程的供体细胞。
{"title":"SIRT6 Knockdown in Buffalo Fetal Fibroblasts Exacerbates Premature Senescence Caused by DNA and Telomere Damage.","authors":"Jingyuan Liang, Jiayu Cui, Juanru Cheng, Yu Pan, Ruimen Zhang, Sufang Yang, Lingxiu Zou","doi":"10.1089/cell.2023.0048","DOIUrl":"10.1089/cell.2023.0048","url":null,"abstract":"<p><p>As a gene with antiaging functions, sirtuin6 (<i>SIRT6</i>) belonging to the sirtuin family plays a vital role in DNA repair, telomerase function, and cellular senescence, as well as maintains epigenomic stability and promotes longevity. However, its role in cell senescence in large animals, such as buffaloes, remains unknown. Fibroblasts are commonly used for somatic reprogramming, and their physiological characteristics affect the efficiency of this process. We aimed to elucidate the role of <i>SIRT6</i> in cellular senescence and proliferation and analyze its effect on the biological function of buffalo fibroblasts to help improve the efficiency of buffalo somatic cell reprogramming. The expression of SIRT6 and related DNA damage was measured in buffalo fibroblasts obtained at different developmental stages (in the fetus and at 3 and 10 years of age), and the effect of SIRT6 knockdown on the senescence of buffalo fetal fibroblast was investigated. An inverse relationship was observed between SIRT6 expression and senescence in buffalo fibroblasts obtained from animals of various ages. This was accompanied by decreased cell growth, viability, and increased DNA damage. Short hairpin RNA-mediated SIRT6 knockdown accelerated the senescence of buffalo fetal fibroblasts. It blocked the cell cycle during <i>in vitro</i> cell culture, which further enhanced DNA damage, particularly with respect to the telomeres. Collectively, our findings suggest that SIRT6 expression was closely associated with buffalo senescence in fibroblasts. These findings serve as a foundation to better understand the cellular functions of <i>SIRT6</i> and also aid in selecting donor cells for buffalo somatic cell reprogramming.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41112255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allogeneic Mesenchymal Stem Cells After In Vivo Transplantation: A Review. 同种异体间充质干细胞体内移植研究进展
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 Epub Date: 2023-11-16 DOI: 10.1089/cell.2023.0084
Derek B Asserson

Autologous mesenchymal stem cells (MSCs) are ideal for tissue regeneration because of their ability to circumvent host rejection, but their procurement and processing present logistical and time-sensitive challenges. Allogeneic MSCs provide an alternative cell-based therapy capable of positively affecting all human organ systems, and can be readily available. Extensive research has been conducted in the treatment of autoimmune, degenerative, and inflammatory diseases with such stem cells, and has demonstrated predominantly safe outcomes with minimal complications. Nevertheless, continued clinical trials are necessary to ascertain optimal harvest and transplant techniques.

自体间充质干细胞(MSCs)是组织再生的理想选择,因为它们具有规避宿主排斥反应的能力,但它们的获取和处理存在物流和时间敏感的挑战。同种异体间充质干细胞提供了一种替代性的基于细胞的治疗方法,能够对所有人体器官系统产生积极的影响,并且可以很容易地获得。在用这种干细胞治疗自身免疫性疾病、退行性疾病和炎症性疾病方面进行了广泛的研究,并证明了主要安全的结果和最小的并发症。然而,继续的临床试验是必要的,以确定最佳的收获和移植技术。
{"title":"Allogeneic Mesenchymal Stem Cells After <i>In Vivo</i> Transplantation: A Review.","authors":"Derek B Asserson","doi":"10.1089/cell.2023.0084","DOIUrl":"10.1089/cell.2023.0084","url":null,"abstract":"<p><p>Autologous mesenchymal stem cells (MSCs) are ideal for tissue regeneration because of their ability to circumvent host rejection, but their procurement and processing present logistical and time-sensitive challenges. Allogeneic MSCs provide an alternative cell-based therapy capable of positively affecting all human organ systems, and can be readily available. Extensive research has been conducted in the treatment of autoimmune, degenerative, and inflammatory diseases with such stem cells, and has demonstrated predominantly safe outcomes with minimal complications. Nevertheless, continued clinical trials are necessary to ascertain optimal harvest and transplant techniques.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136396570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Intensity Nanosecond Pulsed Electric Field Accelerates Osteogenic Transformation of Human Dermal Fibroblasts by Enhancing Cell Pluripotency. 低强度纳秒脉冲电场通过增强细胞多能性促进人真皮成纤维细胞成骨转化。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 Epub Date: 2023-11-27 DOI: 10.1089/cell.2023.0059
Jingtian Lai, Zewei Wang, Haiying Zhou, Pengfei Li, Hui Lu, Tian Tu

Autologous human fibroblasts have the potential to differentiate into the osteogenic lineage under specific conditions and can be utilized for bone regeneration. However, their efficiency is currently unsatisfactory. Recently, low-intensity nanosecond pulsed electric field (nsPEF) stimulation has been demonstrated to enhance cell pluripotency by activating epigenetic regulatory pathways. In this study, human dermal fibroblasts were exposed to different intensities of nsPEF to assess whether these exposures resulted in changes in proliferation rate, calcium salt deposition, and expression of differentiation-related markers in different experimental groups. The results showed a significant increase in cell proliferation, pluripotency, bone marker expression, and osteogenic differentiation efficiency when stimulating cells with 5 kV/cm of nsPEF. However, cell proliferation and differentiation significantly decreased at 25 kV/cm. Additionally, the proliferation and efficiency of osteogenic differentiation were reduced when the nsPEF intensity was increased to 50 kV/cm. Treatment with a 5 kV/cm of nsPEF led to increased and concentrated expression of Yes-Associated Protein (YAP) in the nucleus. These observations suggest that human dermal fibroblasts possess a heightened potential to differentiate into osteogenic cells when activated with nsPEF at 5 kV/cm. Consequently, the nsPEF strengthening strategy shows promise for fibroblast-based tissue-engineered bone repair research.

自体人成纤维细胞在特定条件下具有向成骨谱系分化的潜力,可用于骨再生。然而,目前它们的效率并不令人满意。最近,低强度纳秒脉冲电场(nsPEF)刺激已被证明通过激活表观遗传调控通路来增强细胞的多能性。在本研究中,我们将人真皮成纤维细胞暴露于不同强度的nsPEF中,以评估这些暴露是否会导致不同实验组中增殖率、钙盐沉积和分化相关标志物表达的变化。结果显示,以5kv /cm的nsPEF刺激细胞时,细胞增殖、多能性、骨标志物表达和成骨分化效率显著增加。但在25 kV/cm时,细胞增殖和分化明显降低。此外,当nsPEF强度增加到50 kV/cm时,细胞增殖和成骨分化效率降低。5kv /cm的nsPEF处理导致细胞核中yes相关蛋白(YAP)的表达增加和集中。这些观察结果表明,当用5kv /cm的nsPEF激活时,人类真皮成纤维细胞具有更高的分化成成骨细胞的潜力。因此,nsPEF增强策略显示了基于成纤维细胞的组织工程骨修复研究的前景。
{"title":"Low-Intensity Nanosecond Pulsed Electric Field Accelerates Osteogenic Transformation of Human Dermal Fibroblasts by Enhancing Cell Pluripotency.","authors":"Jingtian Lai, Zewei Wang, Haiying Zhou, Pengfei Li, Hui Lu, Tian Tu","doi":"10.1089/cell.2023.0059","DOIUrl":"10.1089/cell.2023.0059","url":null,"abstract":"<p><p>Autologous human fibroblasts have the potential to differentiate into the osteogenic lineage under specific conditions and can be utilized for bone regeneration. However, their efficiency is currently unsatisfactory. Recently, low-intensity nanosecond pulsed electric field (nsPEF) stimulation has been demonstrated to enhance cell pluripotency by activating epigenetic regulatory pathways. In this study, human dermal fibroblasts were exposed to different intensities of nsPEF to assess whether these exposures resulted in changes in proliferation rate, calcium salt deposition, and expression of differentiation-related markers in different experimental groups. The results showed a significant increase in cell proliferation, pluripotency, bone marker expression, and osteogenic differentiation efficiency when stimulating cells with 5 kV/cm of nsPEF. However, cell proliferation and differentiation significantly decreased at 25 kV/cm. Additionally, the proliferation and efficiency of osteogenic differentiation were reduced when the nsPEF intensity was increased to 50 kV/cm. Treatment with a 5 kV/cm of nsPEF led to increased and concentrated expression of Yes-Associated Protein (YAP) in the nucleus. These observations suggest that human dermal fibroblasts possess a heightened potential to differentiate into osteogenic cells when activated with nsPEF at 5 kV/cm. Consequently, the nsPEF strengthening strategy shows promise for fibroblast-based tissue-engineered bone repair research.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Regulatory Networks: Improving Inferences with Transfer Learning. 基因调控网络:利用迁移学习改进推断。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 DOI: 10.1089/cell.2023.0095
Marcelo Tigre Moura

Deep transfer learning improves the inference of gene regulatory networks in human cells, reveals disease-associated genes, and identifies network-based druggable targets in human heart disease.

深度迁移学习改进了人类细胞中基因调控网络的推断,揭示了疾病相关基因,并确定了人类心脏病中基于网络的药物靶点。
{"title":"Gene Regulatory Networks: Improving Inferences with Transfer Learning.","authors":"Marcelo Tigre Moura","doi":"10.1089/cell.2023.0095","DOIUrl":"10.1089/cell.2023.0095","url":null,"abstract":"<p><p>Deep transfer learning improves the inference of gene regulatory networks in human cells, reveals disease-associated genes, and identifies network-based druggable targets in human heart disease.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneer of Cloning and Inspirational Figure for Cellular Reprogramming Scientists Sir Ian Wilmut (July 7, 1944-September 10, 2023). Ian Wilmut爵士(1944年7月7日至2023年9月10日)是细胞重新编程科学家克隆和启发性图形的先驱。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-10-01 DOI: 10.1089/cell.2023.29102.mem
Carlos-Filipe Pereira
{"title":"Pioneer of Cloning and Inspirational Figure for Cellular Reprogramming Scientists Sir Ian Wilmut (July 7, 1944-September 10, 2023).","authors":"Carlos-Filipe Pereira","doi":"10.1089/cell.2023.29102.mem","DOIUrl":"10.1089/cell.2023.29102.mem","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatitis B Virus x Protein Increases Cellular OCT3/4 and MYC and Facilitates Cellular Reprogramming. 乙型肝炎病毒x蛋白增加细胞OCT3/4和MYC,促进细胞重新编程。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-10-01 Epub Date: 2023-09-26 DOI: 10.1089/cell.2023.0055
Madhusudana Girija Sanal, Sarita Gupta, Rahul Saha, Nisha Vats, Shiv Kumar Sarin
Hepatitis B virus x (HBx) is a multifunctional protein coded by the Hepatitis B virus that is involved in various cellular processes such as proliferation, cell survival/apoptosis, and histone methylation. HBx was reported to be associated with liver "cancer stem cells." The stemness inducing properties of HBx could also facilitate the generation of pluripotent stem cells from somatic cells. It is well established that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using a cocktail of transcription factors called Yamanaka's factors (YFs) (OCT4, SOX2, KLF4, and MYC). The reprogramming process proceeds step-by-step with reprogramming factor chromatin interactions, transcription, and chromatin states changing during transitions. HBx is a "broad spectrum trans-activator" and therefore could facilitate these transitions. We electroporated low passage and high passage (difficult to reprogram) fibroblasts using YFs with and without HBx and evaluated the reprogramming efficiency. We also investigated the tri-lineage and terminal differentiation potential of iPSC derived using HBx. We found that the addition of HBx to YF improves iPSC derivation, and it increases the efficiency of iPSC generation from "difficult or hard-to-reprogram samples" such as high passage/senescent fibroblasts. Further, we show that HBx can substitute the key transcription factor MYC in the YF cocktail to generate iPSC. The cellular levels of OCT3/4 and MYC were increased in HBx expressing cells. Our results have practical value in improving the efficiency of pluripotent stem cell derivation from "difficult to reprogram" somatic cells, in addition to providing some insights into the mechanisms of liver carcinogenesis in chronic hepatitis B. To conclude, HBx improves the reprogramming efficiency of YFs. HBx increases the cellular levels of OCT3/4 and MYC.
乙型肝炎病毒x(HBx)是一种由乙型肝炎病毒编码的多功能蛋白,参与各种细胞过程,如增殖、细胞存活/凋亡和组蛋白甲基化。据报道,HBx与肝脏“癌症干细胞”有关。HBx的干诱导特性也可以促进体细胞产生多能干细胞。众所周知,可以使用称为Yamanaka因子(YFs)的转录因子混合物(OCT4、SOX2、KLF4和MYC)将体细胞重新编程为诱导多能干细胞(iPSC)。重编程过程逐步进行,重编程因子-染色质相互作用、转录和染色质状态在转换过程中发生变化。HBx是一种“广谱反式激活剂”,因此可以促进这些转变。我们使用含有和不含有HBx的YFs对低传代和高传代(难以重新编程)成纤维细胞进行电穿孔,并评估了重新编程的效率。我们还研究了使用HBx衍生的iPSC的三谱系和末端分化潜力。我们发现,在YF中添加HBx可以改善iPSC的衍生,并提高“难以或难以重新编程的样品”(如高传代/衰老成纤维细胞)产生iPSC的效率。此外,我们发现HBx可以取代YF混合物中的关键转录因子MYC来产生iPSC。在表达HBx的细胞中,OCT3/4和MYC的细胞水平增加。除了为慢性乙型肝炎的肝癌发生机制提供一些见解外,我们的研究结果在提高从“难以重新编程”体细胞衍生的多能干细胞的效率方面具有实际价值。总之,HBx提高了YFs的重新编程效率。HBx增加OCT3/4和MYC的细胞水平。
{"title":"Hepatitis B Virus x Protein Increases Cellular OCT3/4 and MYC and Facilitates Cellular Reprogramming.","authors":"Madhusudana Girija Sanal, Sarita Gupta, Rahul Saha, Nisha Vats, Shiv Kumar Sarin","doi":"10.1089/cell.2023.0055","DOIUrl":"10.1089/cell.2023.0055","url":null,"abstract":"Hepatitis B virus x (HBx) is a multifunctional protein coded by the Hepatitis B virus that is involved in various cellular processes such as proliferation, cell survival/apoptosis, and histone methylation. HBx was reported to be associated with liver \"cancer stem cells.\" The stemness inducing properties of HBx could also facilitate the generation of pluripotent stem cells from somatic cells. It is well established that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using a cocktail of transcription factors called Yamanaka's factors (YFs) (OCT4, SOX2, KLF4, and MYC). The reprogramming process proceeds step-by-step with reprogramming factor chromatin interactions, transcription, and chromatin states changing during transitions. HBx is a \"broad spectrum trans-activator\" and therefore could facilitate these transitions. We electroporated low passage and high passage (difficult to reprogram) fibroblasts using YFs with and without HBx and evaluated the reprogramming efficiency. We also investigated the tri-lineage and terminal differentiation potential of iPSC derived using HBx. We found that the addition of HBx to YF improves iPSC derivation, and it increases the efficiency of iPSC generation from \"difficult or hard-to-reprogram samples\" such as high passage/senescent fibroblasts. Further, we show that HBx can substitute the key transcription factor MYC in the YF cocktail to generate iPSC. The cellular levels of OCT3/4 and MYC were increased in HBx expressing cells. Our results have practical value in improving the efficiency of pluripotent stem cell derivation from \"difficult to reprogram\" somatic cells, in addition to providing some insights into the mechanisms of liver carcinogenesis in chronic hepatitis B. To conclude, HBx improves the reprogramming efficiency of YFs. HBx increases the cellular levels of OCT3/4 and MYC.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41119728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced Pluripotent Stem Cell-Derived Chimeric Antigen Receptor T Cells: The Intersection of Stem Cells and Immunotherapy. 诱导的多能干细胞衍生的嵌合抗原受体T细胞:干细胞与免疫治疗的交叉。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-10-01 Epub Date: 2023-09-29 DOI: 10.1089/cell.2023.0041
Mohammad Reza Lahimchi, Faezeh Maroufi, Amirhosein Maali

Chimeric antigen receptor (CAR) T cell therapy is a promising cell-based immunotherapy applicable to various cancers. High cost of production, immune rejection, heterogeneity of cell product, limited cell source, limited expandability, and relatively long production time have created the need to achieve a universal allogeneic CAR-T cell product for "off-the-shelf" application. Since the innovation of induced pluripotent stem cells (iPSCs) by Yamanaka et al., extensive efforts have been made to prepare an unlimited cell source for regenerative medicine, that is, immunotherapy. In the autologous grafting approach, iPSCs prepare the desired cell source for generating autologous CAR-T cells through more accessible and available sources. In addition, generating iPSC-derived CAR-T cells is a promising approach to achieving a suitable source for producing an allogeneic CAR-T cell product. In brief, the first step is reprogramming somatic cells (accessible from peripheral blood, skin, etc.) to iPSCs. In the next step, CAR expression and T cell lineage differentiation should be applied in different arrangements. In addition, in an allogeneic manner, human leukocyte antigen/T cell receptor (TCR) deficiency should be applied in iPSC colonies. The allogeneic iPSC-derived CAR-T cell experiments showed that simultaneous performance of HLA/TCR deficiency, CAR expression, and T cell lineage differentiation could bring the production to the highest efficacy in generating allogeneic iPSC-derived CAR-T cells.

嵌合抗原受体(CAR)T细胞疗法是一种很有前途的细胞免疫疗法,适用于各种癌症。高生产成本、免疫排斥反应、细胞产物的异质性、有限的细胞来源、有限的可扩展性和相对较长的生产时间,都产生了实现通用异基因CAR-T细胞产品“现成”应用的需求。自从Yamanaka等人创新诱导多能干细胞(iPSC)以来,人们已经做出了广泛的努力来制备用于再生医学的无限细胞源,即免疫疗法。在自体移植方法中,iPSC通过更容易获得和可用的来源制备所需的细胞源,用于产生自体CAR-T细胞。此外,产生iPSC衍生的CAR-T细胞是获得生产异基因CAR-T细胞产物的合适来源的一种有前途的方法。简而言之,第一步是将体细胞(可从外周血、皮肤等获得)重新编程为iPSC。下一步,CAR表达和T细胞谱系分化应以不同的方式应用。此外,以同种异体的方式,人类白细胞抗原/T细胞受体(TCR)缺乏症应应用于iPSC集落。异基因iPSC衍生的CAR-T细胞实验表明,HLA/TCR缺乏、CAR表达和T细胞谱系分化的同时表现可以使该产物在产生异基因iPSC-衍生的CART细胞方面达到最高功效。
{"title":"Induced Pluripotent Stem Cell-Derived Chimeric Antigen Receptor T Cells: The Intersection of Stem Cells and Immunotherapy.","authors":"Mohammad Reza Lahimchi, Faezeh Maroufi, Amirhosein Maali","doi":"10.1089/cell.2023.0041","DOIUrl":"10.1089/cell.2023.0041","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cell therapy is a promising cell-based immunotherapy applicable to various cancers. High cost of production, immune rejection, heterogeneity of cell product, limited cell source, limited expandability, and relatively long production time have created the need to achieve a universal allogeneic CAR-T cell product for \"off-the-shelf\" application. Since the innovation of induced pluripotent stem cells (iPSCs) by Yamanaka et al., extensive efforts have been made to prepare an unlimited cell source for regenerative medicine, that is, immunotherapy. In the autologous grafting approach, iPSCs prepare the desired cell source for generating autologous CAR-T cells through more accessible and available sources. In addition, generating iPSC-derived CAR-T cells is a promising approach to achieving a suitable source for producing an allogeneic CAR-T cell product. In brief, the first step is reprogramming somatic cells (accessible from peripheral blood, skin, etc.) to iPSCs. In the next step, CAR expression and T cell lineage differentiation should be applied in different arrangements. In addition, in an allogeneic manner, human leukocyte antigen/T cell receptor (TCR) deficiency should be applied in iPSC colonies. The allogeneic iPSC-derived CAR-T cell experiments showed that simultaneous performance of HLA/TCR deficiency, CAR expression, and T cell lineage differentiation could bring the production to the highest efficacy in generating allogeneic iPSC-derived CAR-T cells.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41129009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient A·T-to-C·G Base Editing via Adenine Transversion Editors. 通过Adenine Transversion Editors进行高效的A·T到C·G基础编辑。
IF 1.6 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-10-01 Epub Date: 2023-09-19 DOI: 10.1089/cell.2023.0094
Muhammad Arslan Mahmood

Generating A-to-C transversions to correct defective alleles or introduce novel alleles has posed significant challenges. However, two recent studies focusing on adenine transversions have achieved successful A-to-C transversions in mouse embryos and plant cell. These remarkable accomplishments notably broaden the range of base editing and their applications both in fundamental research and in therapeutics.

产生A-to-C颠换以纠正缺陷等位基因或引入新的等位基因带来了重大挑战。然而,最近两项专注于腺嘌呤转换的研究已经在小鼠胚胎和植物细胞中成功地实现了A-to-C转换。这些显著的成就显著拓宽了基础编辑的范围及其在基础研究和治疗学中的应用。
{"title":"Efficient A·T-to-C·G Base Editing via Adenine Transversion Editors.","authors":"Muhammad Arslan Mahmood","doi":"10.1089/cell.2023.0094","DOIUrl":"10.1089/cell.2023.0094","url":null,"abstract":"<p><p>Generating A-to-C transversions to correct defective alleles or introduce novel alleles has posed significant challenges. However, two recent studies focusing on adenine transversions have achieved successful A-to-C transversions in mouse embryos and plant cell. These remarkable accomplishments notably broaden the range of base editing and their applications both in fundamental research and in therapeutics.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41115440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular reprogramming
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1