Pub Date : 2024-12-27DOI: 10.1007/s10561-024-10154-z
Mohamad Y Fares, Mohammad Daher, Peter Boufadel, Emil Haikal, Tarek Haj Shehade, Jonathan Koa, Adam Z Khan, Joseph A Abboud
Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023. Inclusion criteria consisted of clinical trials that involve autologous cartilage transplantation for the treatment of osteoarthritis. Clinical, imaging, arthroscopic, and histologic outcomes were assessed. A total of 15 clinical trials, involving 851 participants, were included in the study. All trials utilized ACT in the treatment of knee osteoarthritis through varying scaffolds: collagen-based (10 trials), polymer-based (2 trials), hyaluronic-acid based (2 trials), and spheroid technology (1 trial). Clinical improvement of patients undergoing ACT was noted in 14 trials; five showed superior clinical outcomes compared to the control group, while one showed inferiority compared to mesenchymal stem cells. Postoperative imaging was utilized to assess the degree of cartilage regeneration in 11 trials. Ten trials showed signs of cartilage recovery with ACT, four trials showed no difference, and two showed worse outcomes when compared to controls. Second-look-arthroscopy was performed in three trials, which reported varying degrees of improvement in cartilage regeneration. Histologic analysis was performed in four trials and generally showed promising results. While improved clinical outcomes were demonstrated, conflicting findings in postoperative outcome analysis raise questions about the unequivocal utility of ACT. Additional research with control groups, randomization, and appropriate blinding is required.
{"title":"The use of autologous chondrocyte transplantation for the treatment of osteoarthritis: a systematic review of clinical trials.","authors":"Mohamad Y Fares, Mohammad Daher, Peter Boufadel, Emil Haikal, Tarek Haj Shehade, Jonathan Koa, Adam Z Khan, Joseph A Abboud","doi":"10.1007/s10561-024-10154-z","DOIUrl":"10.1007/s10561-024-10154-z","url":null,"abstract":"<p><p>Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023. Inclusion criteria consisted of clinical trials that involve autologous cartilage transplantation for the treatment of osteoarthritis. Clinical, imaging, arthroscopic, and histologic outcomes were assessed. A total of 15 clinical trials, involving 851 participants, were included in the study. All trials utilized ACT in the treatment of knee osteoarthritis through varying scaffolds: collagen-based (10 trials), polymer-based (2 trials), hyaluronic-acid based (2 trials), and spheroid technology (1 trial). Clinical improvement of patients undergoing ACT was noted in 14 trials; five showed superior clinical outcomes compared to the control group, while one showed inferiority compared to mesenchymal stem cells. Postoperative imaging was utilized to assess the degree of cartilage regeneration in 11 trials. Ten trials showed signs of cartilage recovery with ACT, four trials showed no difference, and two showed worse outcomes when compared to controls. Second-look-arthroscopy was performed in three trials, which reported varying degrees of improvement in cartilage regeneration. Histologic analysis was performed in four trials and generally showed promising results. While improved clinical outcomes were demonstrated, conflicting findings in postoperative outcome analysis raise questions about the unequivocal utility of ACT. Additional research with control groups, randomization, and appropriate blinding is required.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":"26 1","pages":"5"},"PeriodicalIF":1.4,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1007/s10561-024-10152-1
Jennifer O'Connell, Komali Pentakota, Donny Villeareal, Jose Faz, Xiaoli Li, Anthony Trinh, Rachel Beddard, Scott Jones, Anand Srinivasan
Amniotic membrane is arguably one of the most popular biological wound dressings on the market today. Various growth factors and cytokines inherent to amniotic membrane tissue have been recognized as key mediators in wound healing and tissue regeneration, giving the tissue its clinical utility. Sterilization methodologies using irradiation are recognized as the gold standard in the field and routinely used to prepare tissue allografts, including amniotic membrane for transplantation. However, irradiation is not always compatible in preserving the physical structure or biochemical factors of biological materials and can potentially result in detrimental effects to the critical quality attributes of allograft tissues. Alternatively, a novel sterilization technique involving supercritical carbon dioxide (SCCO2) has been shown to have minimal effect on the inherent biophysical properties of sensitive biological tissues and tissue-derived products. At BioBridge Global, we have developed a process utilizing SCCO2 technology for the sterilization of an amniotic membrane tissue allograft product. This process, first and foremost, meets industry standards for sterilization while simultaneously maintaining the biochemical composition of the tissue. Our results show that upon SCCO2 sterilization, most of the growth factors tested were conserved, with many at quantities significantly greater than commercially available gamma and electron beam irradiated tissue. The SCCO2-sterilized amniotic membrane allograft is unique in that it is designed to overcome limitations associated with traditional tissue sterilization methodologies, namely, the conservation of key biological factors inherent to native amniotic membrane tissue. It is anticipated that by retaining these biological factors, clinical outcomes associated with the use of SCCO2-sterilized amniotic membrane will be improved.
{"title":"Development of a sterilization process for amniotic membrane allograft tissue using supercritical carbon dioxide and NovaKill.","authors":"Jennifer O'Connell, Komali Pentakota, Donny Villeareal, Jose Faz, Xiaoli Li, Anthony Trinh, Rachel Beddard, Scott Jones, Anand Srinivasan","doi":"10.1007/s10561-024-10152-1","DOIUrl":"10.1007/s10561-024-10152-1","url":null,"abstract":"<p><p>Amniotic membrane is arguably one of the most popular biological wound dressings on the market today. Various growth factors and cytokines inherent to amniotic membrane tissue have been recognized as key mediators in wound healing and tissue regeneration, giving the tissue its clinical utility. Sterilization methodologies using irradiation are recognized as the gold standard in the field and routinely used to prepare tissue allografts, including amniotic membrane for transplantation. However, irradiation is not always compatible in preserving the physical structure or biochemical factors of biological materials and can potentially result in detrimental effects to the critical quality attributes of allograft tissues. Alternatively, a novel sterilization technique involving supercritical carbon dioxide (SCCO<sub>2</sub>) has been shown to have minimal effect on the inherent biophysical properties of sensitive biological tissues and tissue-derived products. At BioBridge Global, we have developed a process utilizing SCCO<sub>2</sub> technology for the sterilization of an amniotic membrane tissue allograft product. This process, first and foremost, meets industry standards for sterilization while simultaneously maintaining the biochemical composition of the tissue. Our results show that upon SCCO<sub>2</sub> sterilization, most of the growth factors tested were conserved, with many at quantities significantly greater than commercially available gamma and electron beam irradiated tissue. The SCCO<sub>2</sub>-sterilized amniotic membrane allograft is unique in that it is designed to overcome limitations associated with traditional tissue sterilization methodologies, namely, the conservation of key biological factors inherent to native amniotic membrane tissue. It is anticipated that by retaining these biological factors, clinical outcomes associated with the use of SCCO<sub>2</sub>-sterilized amniotic membrane will be improved.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":"26 1","pages":"4"},"PeriodicalIF":1.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10DOI: 10.1007/s10561-024-10153-0
Irit Stern, Valentina Barrera, Michael Randles, Paul Rooney
Non-healing wounds cost the National Health Service over £5.6 billion annually in wound management. Skin allografts are used to treat non-healing wounds, ulcers and burns, offering the best protection against infection. In order to allow host cells to repopulate and to avoid immunogenicity, cell components are removed through decellularisation. Decellularisation of human dermis has so far been performed in NHS Blood and Transplant using a combination of two enzymes (RNase T1 and the recombinant human DNase Pulmozyme)®. This study aims at validating a new method to remove DNA from donated dermis via the use of a single enzyme, Benzonase, known for its effectiveness of DNA digestion. Skin samples were decellularised by removing the epidermis, lysing of dermal cells, removal of cellular fragments by a detergent wash and removal of nucleic acids by a nuclease incubation with either Benzonase or Pulmozyme + RNase T1. DNA quantification with PicoGreen, as well as histology on wax-embedded biopsies, stained with DAPI and haemotoxylin and eosin, were performed. In vitro toxicity test on human osteosarcoma immortalised cells and skin fibroblasts, and biomechanical (tensile) testing, were also performed. The effectiveness of DNA digestion with the new methodology was comparable to previous procedure. Mean DNA removal percentage following decellularisation with Pulmozyme + RNase was 99.9% (3.83 ng/mg). Mean DNA removal percentage with Benzonase was 99.8% (9.97 ng/mg). Histology staining showed complete decellularisation following either method. Benzonase was proven to be non-toxic to both cell lines used, and a one-way Anova test showed no significant difference in neither stress nor strain between acellular dermal matrix decellularised with either Benzonase or Pulmozyme + RNase T1. Benzonase was able to effectively decellularise dermis after prior removal of epidermis. It performed just as well as the combination of Pulmozyme + RNase T1, but represents significant advantages in terms of cost effectiveness, procurement and storage; Benzonase has been successfully used in the decellularisation of other tissues, thus would be better for Tissue Banking use. Switching to this combined DNase/RNase can have far-reaching consequences in the production of acellular human dermal matrix by NHSBT and in the treatment of patients requiring it.
{"title":"Advances in preparation of acellular human dermis for tissue banking and transplantation.","authors":"Irit Stern, Valentina Barrera, Michael Randles, Paul Rooney","doi":"10.1007/s10561-024-10153-0","DOIUrl":"10.1007/s10561-024-10153-0","url":null,"abstract":"<p><p>Non-healing wounds cost the National Health Service over £5.6 billion annually in wound management. Skin allografts are used to treat non-healing wounds, ulcers and burns, offering the best protection against infection. In order to allow host cells to repopulate and to avoid immunogenicity, cell components are removed through decellularisation. Decellularisation of human dermis has so far been performed in NHS Blood and Transplant using a combination of two enzymes (RNase T1 and the recombinant human DNase Pulmozyme)®. This study aims at validating a new method to remove DNA from donated dermis via the use of a single enzyme, Benzonase, known for its effectiveness of DNA digestion. Skin samples were decellularised by removing the epidermis, lysing of dermal cells, removal of cellular fragments by a detergent wash and removal of nucleic acids by a nuclease incubation with either Benzonase or Pulmozyme + RNase T1. DNA quantification with PicoGreen, as well as histology on wax-embedded biopsies, stained with DAPI and haemotoxylin and eosin, were performed. In vitro toxicity test on human osteosarcoma immortalised cells and skin fibroblasts, and biomechanical (tensile) testing, were also performed. The effectiveness of DNA digestion with the new methodology was comparable to previous procedure. Mean DNA removal percentage following decellularisation with Pulmozyme + RNase was 99.9% (3.83 ng/mg). Mean DNA removal percentage with Benzonase was 99.8% (9.97 ng/mg). Histology staining showed complete decellularisation following either method. Benzonase was proven to be non-toxic to both cell lines used, and a one-way Anova test showed no significant difference in neither stress nor strain between acellular dermal matrix decellularised with either Benzonase or Pulmozyme + RNase T1. Benzonase was able to effectively decellularise dermis after prior removal of epidermis. It performed just as well as the combination of Pulmozyme + RNase T1, but represents significant advantages in terms of cost effectiveness, procurement and storage; Benzonase has been successfully used in the decellularisation of other tissues, thus would be better for Tissue Banking use. Switching to this combined DNase/RNase can have far-reaching consequences in the production of acellular human dermal matrix by NHSBT and in the treatment of patients requiring it.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":"26 1","pages":"3"},"PeriodicalIF":1.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s10561-024-10150-3
Yonghu Ding, Mengsheng Song, Rong Huang, Weiting Chen
This study aimed to investigate whether extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ASCs) promote skin wound healing by delivering basic fibroblast growth factor (bFGF) to enhance vascular endothelial growth factor (VEGF) expression. ASCs were isolated and transfected with either a bFGF knockdown lentivirus (Lv-sh-bFGF) or a control lentivirus (Lv-sh-NC). EVs were extracted from ASCs cultures and characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting for surface markers. EVs were extracted from the conditioned mediums of ASCs and subjected to different treatments. These EVs or control treatments were injected at the wound edges. Wound healing was assessed using histological techniques, including H&E and Masson's trichrome staining to evaluate tissue regeneration, collagen organization, and immunohistochemistry for CD31 to quantify microvessel density. Protein expression of bFGF and VEGF was measured by Western blotting. ASC-derived EVs significantly promoted angiogenesis and improved skin wound healing. EVs encapsulating bFGF enhanced VEGF expression in the wound tissue, while knockdown of bFGF reduced both bFGF and VEGF expression, leading to delayed wound healing. Further knockdown of VEGF partially reversed the pro-angiogenic and wound-healing effects of bFGF-encapsulated EVs. This study demonstrates that ASC-derived EVs promoted skin wound repair by enhancing angiogenesis and accelerating tissue regeneration through the bFGF/VEGF axis. These findings highlight the therapeutic potential of ASCs-derived EVs in improving skin wound healing.
{"title":"Adipose-mesenchymal stem cell-derived extracellular vesicles enhance angiogenesis and skin wound healing via bFGF-mediated VEGF expression.","authors":"Yonghu Ding, Mengsheng Song, Rong Huang, Weiting Chen","doi":"10.1007/s10561-024-10150-3","DOIUrl":"10.1007/s10561-024-10150-3","url":null,"abstract":"<p><p>This study aimed to investigate whether extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ASCs) promote skin wound healing by delivering basic fibroblast growth factor (bFGF) to enhance vascular endothelial growth factor (VEGF) expression. ASCs were isolated and transfected with either a bFGF knockdown lentivirus (Lv-sh-bFGF) or a control lentivirus (Lv-sh-NC). EVs were extracted from ASCs cultures and characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting for surface markers. EVs were extracted from the conditioned mediums of ASCs and subjected to different treatments. These EVs or control treatments were injected at the wound edges. Wound healing was assessed using histological techniques, including H&E and Masson's trichrome staining to evaluate tissue regeneration, collagen organization, and immunohistochemistry for CD31 to quantify microvessel density. Protein expression of bFGF and VEGF was measured by Western blotting. ASC-derived EVs significantly promoted angiogenesis and improved skin wound healing. EVs encapsulating bFGF enhanced VEGF expression in the wound tissue, while knockdown of bFGF reduced both bFGF and VEGF expression, leading to delayed wound healing. Further knockdown of VEGF partially reversed the pro-angiogenic and wound-healing effects of bFGF-encapsulated EVs. This study demonstrates that ASC-derived EVs promoted skin wound repair by enhancing angiogenesis and accelerating tissue regeneration through the bFGF/VEGF axis. These findings highlight the therapeutic potential of ASCs-derived EVs in improving skin wound healing.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":"26 1","pages":"2"},"PeriodicalIF":1.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-30DOI: 10.1007/s10561-024-10148-x
Zuzana Sirolova, Martina Polachova, Alina-Dana Baxant, Pavel Studeny, Katarina Krivosheev, Magdalena Netukova
Bowman's layer is an acellular corneal structure, which is considered to be a specially modified anterior stroma. It is presumed, that it forms as a result of ongoing epithelial-stromal interactions and no clear physiological purpose has been proven. Despite this fact, Bowman's layer has found its place in corneal transplantation. It has been performed for over a decade, mainly in treatment of advanced keratoconus with multiple modifications. Transplantation of Bowman's layer can be expected to become a widely used surgical procedure in the treatment of many corneal pathologies involving fragmentation and destruction of Bowman's layer. This article aims to summarize information available on its structure, possible function, and transplantation. A thorough literature search was performed in the PubMed database and Google Scholar using keywords: Bowman's layer, structure, function, preparation and corneal transplantation. All the relevant sources were used, which represent 77 peer-reviewed articles with information corcerning the topic of this article.
{"title":"A review of Bowman's layer structure, function, and transplantation.","authors":"Zuzana Sirolova, Martina Polachova, Alina-Dana Baxant, Pavel Studeny, Katarina Krivosheev, Magdalena Netukova","doi":"10.1007/s10561-024-10148-x","DOIUrl":"10.1007/s10561-024-10148-x","url":null,"abstract":"<p><p>Bowman's layer is an acellular corneal structure, which is considered to be a specially modified anterior stroma. It is presumed, that it forms as a result of ongoing epithelial-stromal interactions and no clear physiological purpose has been proven. Despite this fact, Bowman's layer has found its place in corneal transplantation. It has been performed for over a decade, mainly in treatment of advanced keratoconus with multiple modifications. Transplantation of Bowman's layer can be expected to become a widely used surgical procedure in the treatment of many corneal pathologies involving fragmentation and destruction of Bowman's layer. This article aims to summarize information available on its structure, possible function, and transplantation. A thorough literature search was performed in the PubMed database and Google Scholar using keywords: Bowman's layer, structure, function, preparation and corneal transplantation. All the relevant sources were used, which represent 77 peer-reviewed articles with information corcerning the topic of this article.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":" ","pages":"897-908"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1007/s10561-024-10151-2
Helia Azkia, Lene H Harritshøj, Connie Nielsen, Niels Agerlin, Mette G Jensen, Jens G Hillingsø, Pia C Andersen, Michael R Krogsgaard
It is common practice that allograft tissues for knee multiligament reconstruction, meniscus transplantation, cartilage replacement and other advanced procedures are made available through commercial banks. The aim was to present the 10-year experience with a local, non-commercial tissue bank, established in 2014. The allograft bank was connected to an existing organ donor program. Following organ procurement, the musculoskeletal tissue is removed and stored immediately, fresh frozen to - 80 degrees Celsius (except hyaline cartilage, which is stored at 5 degrees Celsius). The donor is tested for contagious disease and the grafts for bacteria. When all results are negative, the grafts are released. When thawed before use a swap is cultured. Consecutive, prospectively collected data were analyzed. There were 31 donations, resulting in 1160 grafts. Only 40 grafts (3.4%) had a positive bacteria culture and were discarded. 552 recipients have been treated by use of these allografts. All grafts had negative bacterial cultures in swaps obtained before thawing, and there were no recorded transplantation related complications. The expenses for local grafts were 10-15% of the costs for grafts obtained from foreign banks. Through the local donation program, it was possible to establish a tissue bank with controlled quality grafts at minimal costs, minimizing the need for transportation of frozen grafts retrieved in other countries. Centers for specialized orthopedic surgery using allograft tissue can be self-providing and reduce costs by retrieving and handling allograft tissues locally.
{"title":"A local, non-commercial tissue bank connected to an organ donor program can produce musculoskeletal allografts of uniform quality at very low costs - ten years' experience.","authors":"Helia Azkia, Lene H Harritshøj, Connie Nielsen, Niels Agerlin, Mette G Jensen, Jens G Hillingsø, Pia C Andersen, Michael R Krogsgaard","doi":"10.1007/s10561-024-10151-2","DOIUrl":"10.1007/s10561-024-10151-2","url":null,"abstract":"<p><p>It is common practice that allograft tissues for knee multiligament reconstruction, meniscus transplantation, cartilage replacement and other advanced procedures are made available through commercial banks. The aim was to present the 10-year experience with a local, non-commercial tissue bank, established in 2014. The allograft bank was connected to an existing organ donor program. Following organ procurement, the musculoskeletal tissue is removed and stored immediately, fresh frozen to - 80 degrees Celsius (except hyaline cartilage, which is stored at 5 degrees Celsius). The donor is tested for contagious disease and the grafts for bacteria. When all results are negative, the grafts are released. When thawed before use a swap is cultured. Consecutive, prospectively collected data were analyzed. There were 31 donations, resulting in 1160 grafts. Only 40 grafts (3.4%) had a positive bacteria culture and were discarded. 552 recipients have been treated by use of these allografts. All grafts had negative bacterial cultures in swaps obtained before thawing, and there were no recorded transplantation related complications. The expenses for local grafts were 10-15% of the costs for grafts obtained from foreign banks. Through the local donation program, it was possible to establish a tissue bank with controlled quality grafts at minimal costs, minimizing the need for transportation of frozen grafts retrieved in other countries. Centers for specialized orthopedic surgery using allograft tissue can be self-providing and reduce costs by retrieving and handling allograft tissues locally.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":"26 1","pages":"1"},"PeriodicalIF":1.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Decellularization is regarded as a xenogenic antigen-reduction technique because it effectively eliminates all cellular and nuclear components while mitigating any negative impact on the composition, biological functionality, and structural integrity of the remaining extracellular matrix. This study aimed to histologically evaluate native, freeze dried and chemically decellularized bovine pericardium membrane. Also, this study focused on preservation of extracellular matrix after decellularization. Bovine pericardium membrane was decellularized by freeze thaw cycle followed by freeze drying and 1% sodium dodecyl sulphate. Unprocessed pericardium was used as control. The effectiveness of Decellularization was assessed based on the reduction of histologically visible nuclei. Decellularization by freeze thaw cycle followed by freeze drying resulted in 17.84% reduction in nuclei content and decellularization by sodium dodecyl sulphate results in 92% reduction in nuclei content compare to control group. Picrosirius red staining for freeze dried group displayed loosely organised, thin collagen bundles that exhibit reddish-yellow birefringence and sodium dodecyl sulfate group revealed dense collagen bundles that are parallelly organised and compact, exhibiting reddish-yellow birefringence and showed good structural integrity. These results suggested that the sodium do decyl sulfate showed optimal decellularization results with better extracellular matrix preservation. It may be a suitable protocol for producing a suitable scaffold for periodontal tissue regeneration.
{"title":"Histological evaluation of decellularization of freeze dried and chemically treated indigenously prepared bovine pericardium membrane.","authors":"Chander Gupt, Arundeep Kaur Lamba, Farrukh Faraz, Shruti Tandon, Jeyaseelan Augustine, Archita Datta, Sachin Dhingra","doi":"10.1007/s10561-024-10139-y","DOIUrl":"10.1007/s10561-024-10139-y","url":null,"abstract":"<p><p>Decellularization is regarded as a xenogenic antigen-reduction technique because it effectively eliminates all cellular and nuclear components while mitigating any negative impact on the composition, biological functionality, and structural integrity of the remaining extracellular matrix. This study aimed to histologically evaluate native, freeze dried and chemically decellularized bovine pericardium membrane. Also, this study focused on preservation of extracellular matrix after decellularization. Bovine pericardium membrane was decellularized by freeze thaw cycle followed by freeze drying and 1% sodium dodecyl sulphate. Unprocessed pericardium was used as control. The effectiveness of Decellularization was assessed based on the reduction of histologically visible nuclei. Decellularization by freeze thaw cycle followed by freeze drying resulted in 17.84% reduction in nuclei content and decellularization by sodium dodecyl sulphate results in 92% reduction in nuclei content compare to control group. Picrosirius red staining for freeze dried group displayed loosely organised, thin collagen bundles that exhibit reddish-yellow birefringence and sodium dodecyl sulfate group revealed dense collagen bundles that are parallelly organised and compact, exhibiting reddish-yellow birefringence and showed good structural integrity. These results suggested that the sodium do decyl sulfate showed optimal decellularization results with better extracellular matrix preservation. It may be a suitable protocol for producing a suitable scaffold for periodontal tissue regeneration.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":" ","pages":"773-784"},"PeriodicalIF":1.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-21DOI: 10.1007/s10561-024-10141-4
Maria Helena Costa Vieira, Laynna de Carvalho Schweich-Adami, Rodrigo Juliano Oliveira, Andréia Conceição Milan Brochado Antoniolli-Silva
The aim of this study was to evaluate the effect of adipose-derived stem cells (ADSCs) in the treatment of acute rupture of the Achilles tendon. It was a cross-sectional study involving 15 patients. Patients were randomly divided: group 1-rupture; group 2-suture; group 3-rupture + ADSCs. In the AOFAS score, the score was higher in group 3 with a significant difference. In the ATRS score, the score was higher in groups 2 and 3, also with a significant difference. As for the ultrasound score, there was a significant difference between the experimental groups in relation to this score, however, in the multiple comparisons test, comparing two groups at a time, it was possible to observe a significant difference of the experimental groups. It can be concluded that cell therapy in this condition may be a treatment option due to tissue regeneration and significant recovery of function.
{"title":"Effect of cell therapy with adipose-derived stem cells in the treatment of acute rupture of the Achilles tendon in humans.","authors":"Maria Helena Costa Vieira, Laynna de Carvalho Schweich-Adami, Rodrigo Juliano Oliveira, Andréia Conceição Milan Brochado Antoniolli-Silva","doi":"10.1007/s10561-024-10141-4","DOIUrl":"10.1007/s10561-024-10141-4","url":null,"abstract":"<p><p>The aim of this study was to evaluate the effect of adipose-derived stem cells (ADSCs) in the treatment of acute rupture of the Achilles tendon. It was a cross-sectional study involving 15 patients. Patients were randomly divided: group 1-rupture; group 2-suture; group 3-rupture + ADSCs. In the AOFAS score, the score was higher in group 3 with a significant difference. In the ATRS score, the score was higher in groups 2 and 3, also with a significant difference. As for the ultrasound score, there was a significant difference between the experimental groups in relation to this score, however, in the multiple comparisons test, comparing two groups at a time, it was possible to observe a significant difference of the experimental groups. It can be concluded that cell therapy in this condition may be a treatment option due to tissue regeneration and significant recovery of function.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":" ","pages":"831-838"},"PeriodicalIF":1.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-08DOI: 10.1007/s10561-024-10142-3
Xu Jiang, Tan Zhijian, Cao Min, Yu Rong, Tan Xinghui, Xin Gong
Cryopreservation is a method adopted for storage of autologous skulls. Herein, this current research sought to explore the effects of different cryoprotectants on the biological characteristics of rat calvarial osteoblasts after cryopreservation. Neonatal Sprague-Dawley rats were selected and their skull tissues were isolated. The skull tissues were allocated into the refrigerating-3M, refrigerating-6M, M199-3M, M199-6M, povidone iodine-3M, and povidone iodine-6M groups according to the usage of cryoprotectants and treatment time (month) and the fresh group. Osteoblasts were isolated from skull tissues in each group through digestion. The histomorphology of the skull was evaluated by H&E staining and cell morphology was observed by microscopy. The viability, proliferation, apoptosis, and osteogenic activity of osteoblasts were assessed by trypan blue staining, MTT, flow cytometry, and alkaline phosphatase (ALP) staining. The skull histomorphology and osteoblast morphology were similar between the fresh and refrigerating groups. Osteoblast viability was weakened after cryopreservation. The longer the refrigeration time, the lower the number of living cells and the higher the apoptosis rate. However, cryopreservation using different cryoprotectants did not evidently affect osteoblast proliferation and ALP activity. Different cryoprotectants show no apparent effect on the osteogenic activity of rat calvarial osteoblasts after cryopreservation.
低温保存是一种用于储存自体头骨的方法。本研究旨在探讨不同冷冻保护剂对大鼠颅骨骨细胞冷冻保存后生物学特性的影响。研究人员选择了新生的 Sprague-Dawley 大鼠,并分离了它们的头骨组织。根据冷冻保护剂的使用和处理时间(月),将头骨组织分为冷冻-3M、冷冻-6M、M199-3M、M199-6M、聚维酮碘-3M、聚维酮碘-6M 组和新鲜组。各组头骨组织经消化后分离出成骨细胞。头骨的组织形态由 H&E 染色法评估,细胞形态由显微镜观察。通过胰蓝染色、MTT、流式细胞术和碱性磷酸酶(ALP)染色评估成骨细胞的活力、增殖、凋亡和成骨活性。新鲜组和冷藏组的头骨组织形态和成骨细胞形态相似。冷冻保存后,成骨细胞的活力减弱。冷藏时间越长,活细胞数量越少,凋亡率越高。然而,使用不同的冷冻保护剂进行冷冻并没有明显影响成骨细胞的增殖和 ALP 活性。不同的冷冻保护剂对大鼠犊骨成骨细胞冷冻保存后的成骨活性无明显影响。
{"title":"Basic study on cryopreservation of rat calvarial osteoblasts with different cryoprotectants.","authors":"Xu Jiang, Tan Zhijian, Cao Min, Yu Rong, Tan Xinghui, Xin Gong","doi":"10.1007/s10561-024-10142-3","DOIUrl":"10.1007/s10561-024-10142-3","url":null,"abstract":"<p><p>Cryopreservation is a method adopted for storage of autologous skulls. Herein, this current research sought to explore the effects of different cryoprotectants on the biological characteristics of rat calvarial osteoblasts after cryopreservation. Neonatal Sprague-Dawley rats were selected and their skull tissues were isolated. The skull tissues were allocated into the refrigerating-3M, refrigerating-6M, M199-3M, M199-6M, povidone iodine-3M, and povidone iodine-6M groups according to the usage of cryoprotectants and treatment time (month) and the fresh group. Osteoblasts were isolated from skull tissues in each group through digestion. The histomorphology of the skull was evaluated by H&E staining and cell morphology was observed by microscopy. The viability, proliferation, apoptosis, and osteogenic activity of osteoblasts were assessed by trypan blue staining, MTT, flow cytometry, and alkaline phosphatase (ALP) staining. The skull histomorphology and osteoblast morphology were similar between the fresh and refrigerating groups. Osteoblast viability was weakened after cryopreservation. The longer the refrigeration time, the lower the number of living cells and the higher the apoptosis rate. However, cryopreservation using different cryoprotectants did not evidently affect osteoblast proliferation and ALP activity. Different cryoprotectants show no apparent effect on the osteogenic activity of rat calvarial osteoblasts after cryopreservation.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":" ","pages":"755-764"},"PeriodicalIF":1.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-15DOI: 10.1007/s10561-024-10135-2
Dylan B Crocker, Thomas M Hering, Ozan Akkus, Megan E Oest, Clare M Rimnac
Fatigue crack propagation resistance and high-cycle S-N fatigue life of cortical bone allograft tissue are both negatively impacted in a radiation dose-dependent manner from 0 to 25 kGy. The standard radiation sterilization dose of 25-35 kGy has been shown to induce cleavage of collagen molecules into smaller peptides and accumulation of stable crosslinks within the collagen matrix, suggesting that these mechanisms may influence radiation-induced losses in cyclic fracture resistance. The objective of this study was to determine the radiation dose-dependency of collagen chain fragmentation and crosslink accumulation within the dose range of 0-25 kGy. Previously, cortical bone compact tension specimens from two donor femoral pairs were divided into four treatment groups (0 kGy, 10 kGy, 17.5 kGy, and 25 kGy) and underwent cyclic loading fatigue crack propagation testing. Following fatigue testing, collagen was isolated from one compact tension specimen in each treatment group from both donors. Radiation-induced collagen chain fragmentation was assessed using SDS-PAGE (n = 5), and accumulation of pentosidine, pyridinoline, and non-specific advanced glycation end products were assessed using a fluorometric assay (n = 4). Collagen chain fragmentation increased progressively in a dose-dependent manner (p < 0.001). Crosslink accumulation at all radiation dose levels increased relative to the 0 kGy control but did not demonstrate dose-dependency (p < 0.001). Taken together with our previous findings on fatigue crack propagation behavior, these data suggest that while collagen crosslink accumulation may contribute to reduced notched fatigue behavior with irradiation, dose-dependent losses in fatigue crack propagation resistance are mainly influenced by radiation-induced chain fragmentation.
{"title":"Dose-dependent effects of gamma radiation sterilization on the collagen matrix of human cortical bone allograft and its influence on fatigue crack propagation resistance.","authors":"Dylan B Crocker, Thomas M Hering, Ozan Akkus, Megan E Oest, Clare M Rimnac","doi":"10.1007/s10561-024-10135-2","DOIUrl":"10.1007/s10561-024-10135-2","url":null,"abstract":"<p><p>Fatigue crack propagation resistance and high-cycle S-N fatigue life of cortical bone allograft tissue are both negatively impacted in a radiation dose-dependent manner from 0 to 25 kGy. The standard radiation sterilization dose of 25-35 kGy has been shown to induce cleavage of collagen molecules into smaller peptides and accumulation of stable crosslinks within the collagen matrix, suggesting that these mechanisms may influence radiation-induced losses in cyclic fracture resistance. The objective of this study was to determine the radiation dose-dependency of collagen chain fragmentation and crosslink accumulation within the dose range of 0-25 kGy. Previously, cortical bone compact tension specimens from two donor femoral pairs were divided into four treatment groups (0 kGy, 10 kGy, 17.5 kGy, and 25 kGy) and underwent cyclic loading fatigue crack propagation testing. Following fatigue testing, collagen was isolated from one compact tension specimen in each treatment group from both donors. Radiation-induced collagen chain fragmentation was assessed using SDS-PAGE (n = 5), and accumulation of pentosidine, pyridinoline, and non-specific advanced glycation end products were assessed using a fluorometric assay (n = 4). Collagen chain fragmentation increased progressively in a dose-dependent manner (p < 0.001). Crosslink accumulation at all radiation dose levels increased relative to the 0 kGy control but did not demonstrate dose-dependency (p < 0.001). Taken together with our previous findings on fatigue crack propagation behavior, these data suggest that while collagen crosslink accumulation may contribute to reduced notched fatigue behavior with irradiation, dose-dependent losses in fatigue crack propagation resistance are mainly influenced by radiation-induced chain fragmentation.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":" ","pages":"735-745"},"PeriodicalIF":1.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}