Pub Date : 2025-08-30DOI: 10.1016/j.chphi.2025.100935
Dung Van Nguyen , Thuan Thi Nguyen , Thoai Anh Tran , Khang Dinh Vo , Hung Minh Nguyen , Vi Le Tuong Tran , Tuyet-Mai Tran-Thuy , Long Quang Nguyen
The current research suggests an innovative approach to synthesize zero-valent iron nanoparticles (nZVI) embedded within nitrogen-doped mesoporous carbon (NMC) by pyrolyzing a mixture containing F127 as a soft template, Fe(NO3)3 as an iron precursor, resol as a carbon source, and dicyandiamide as a nitrogen source. The resulting material (nZVI/NMC) exhibited a well-defined mesostructure with a large mesopore size of 7.6 nm, a high specific surface area of 361 m2/g, and a large total pore volume of 0.41 cm3/g. In addition, nZVI with an average diameter of 17 ± 3 nm was evenly distributed within the NMC framework. With 16.3 wt% Fe loading, nZVI/NMC possessed a strong saturation magnetization of 25.4 emu/g, enabling rapid magnetic separation. Subsequently, nZVI/NMC was investigated as a catalyst for acid red 18 (AR18) treatment by H2O2. At pH 3.0 and 200 mg/L H2O2, 1.00 g/L nZVI/NMC completely removed 50 mg/L AR18 within 30 min. Moreover, the catalyst maintained excellent reusability with negligible iron leaching over four successive runs. With its high catalytic activity, stability, and facile magnetic recoverability, nZVI/NMC demonstrates significant promise as a rapid and reusable catalyst for treatment of organic pollutants in wastewater.
{"title":"Well-dispersed zero-valent iron nanoparticles within nitrogen-doped mesoporous carbon: One-pot synthesis, characterization, and catalytic activity for acid red 18 treatment","authors":"Dung Van Nguyen , Thuan Thi Nguyen , Thoai Anh Tran , Khang Dinh Vo , Hung Minh Nguyen , Vi Le Tuong Tran , Tuyet-Mai Tran-Thuy , Long Quang Nguyen","doi":"10.1016/j.chphi.2025.100935","DOIUrl":"10.1016/j.chphi.2025.100935","url":null,"abstract":"<div><div>The current research suggests an innovative approach to synthesize zero-valent iron nanoparticles (nZVI) embedded within nitrogen-doped mesoporous carbon (NMC) by pyrolyzing a mixture containing F127 as a soft template, Fe(NO<sub>3</sub>)<sub>3</sub> as an iron precursor, resol as a carbon source, and dicyandiamide as a nitrogen source. The resulting material (nZVI/NMC) exhibited a well-defined mesostructure with a large mesopore size of 7.6 nm, a high specific surface area of 361 m<sup>2</sup>/g, and a large total pore volume of 0.41 cm<sup>3</sup>/g. In addition, nZVI with an average diameter of 17 ± 3 nm was evenly distributed within the NMC framework. With 16.3 wt% Fe loading, nZVI/NMC possessed a strong saturation magnetization of 25.4 emu/g, enabling rapid magnetic separation. Subsequently, nZVI/NMC was investigated as a catalyst for acid red 18 (AR18) treatment by H<sub>2</sub>O<sub>2</sub>. At pH 3.0 and 200 mg/L H<sub>2</sub>O<sub>2</sub>, 1.00 g/L nZVI/NMC completely removed 50 mg/L AR18 within 30 min. Moreover, the catalyst maintained excellent reusability with negligible iron leaching over four successive runs. With its high catalytic activity, stability, and facile magnetic recoverability, nZVI/NMC demonstrates significant promise as a rapid and reusable catalyst for treatment of organic pollutants in wastewater.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100935"},"PeriodicalIF":4.3,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145018837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-28DOI: 10.1016/j.chphi.2025.100934
Masoomeh Chaharkam , Maryam Tahmasebpoor , Muge Sari Yilmaz
In this study, activated carbon (AC) derived from oleaster seeds was modified with iron nanoparticles (Fe-AC) and granulated using sodium alginate (NaAlg) via the wet gelation method to develop efficient granular adsorbents. The effects of various parameters, such as mixture pH, type and concentration of the cross-linking solution, initial mass ratio of NaAlg to Fe-AC, drying method, and final granule size were investigated in terms of both the physical appearance of the granules and their performance in removing crystal violet (CV) and methylene blue (MB) dyes. The selected granules were prepared under optimal conditions: a pH of 7, an iron (III) chloride cross-linking solution with a concentration of 2 % w/v, an initial alginate to Fe-AC ratio of 1:4, air-drying, and an initial granule size of 1 mm. Analytical techniques including FTIR, SEM-EDX, and BET confirmed the successful incorporation of iron nanoparticles within the adsorbent framework and revealed a well-developed porous structure with a specific surface area of 47.306 m²/g. Under these optimal conditions, the highest removal efficiencies achieved were 96.29 % for CV and 94.26 % for MB, with maximum adsorption capacities of 14.2857 mg/g for CV (single system) and 9.7370 mg/g for the binary CV/MB system, according to the Langmuir isotherm. These results demonstrate that the synthesized Fe-AC/NaAlg granules combine high adsorption efficiency with ease of separation, mechanical stability, and reusability, making them a promising and scalable adsorbent for industrial wastewater treatment, particularly in textile and dyeing applications where removal of cationic dyes is critical.
{"title":"Systematic optimization of alginate gelation parameters in the synthesis of oleaster-based magnetic granules for enhanced binary cationic dye removal","authors":"Masoomeh Chaharkam , Maryam Tahmasebpoor , Muge Sari Yilmaz","doi":"10.1016/j.chphi.2025.100934","DOIUrl":"10.1016/j.chphi.2025.100934","url":null,"abstract":"<div><div>In this study, activated carbon (AC) derived from oleaster seeds was modified with iron nanoparticles (Fe-AC) and granulated using sodium alginate (NaAlg) via the wet gelation method to develop efficient granular adsorbents. The effects of various parameters, such as mixture pH, type and concentration of the cross-linking solution, initial mass ratio of NaAlg to Fe-AC, drying method, and final granule size were investigated in terms of both the physical appearance of the granules and their performance in removing crystal violet (CV) and methylene blue (MB) dyes. The selected granules were prepared under optimal conditions: a pH of 7, an iron (III) chloride cross-linking solution with a concentration of 2 % w/v, an initial alginate to Fe-AC ratio of 1:4, air-drying, and an initial granule size of 1 mm. Analytical techniques including FTIR, SEM-EDX, and BET confirmed the successful incorporation of iron nanoparticles within the adsorbent framework and revealed a well-developed porous structure with a specific surface area of 47.306 m²/g. Under these optimal conditions, the highest removal efficiencies achieved were 96.29 % for CV and 94.26 % for MB, with maximum adsorption capacities of 14.2857 mg/g for CV (single system) and 9.7370 mg/g for the binary CV/MB system, according to the Langmuir isotherm. These results demonstrate that the synthesized Fe-AC/NaAlg granules combine high adsorption efficiency with ease of separation, mechanical stability, and reusability, making them a promising and scalable adsorbent for industrial wastewater treatment, particularly in textile and dyeing applications where removal of cationic dyes is critical.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100934"},"PeriodicalIF":4.3,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144922967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-24DOI: 10.1016/j.chphi.2025.100933
Muhammad Yar Khan , Muhammad Awais Jehangir , It Ee Lee , Qamar Wali , Tariq Usman , Li Xiaojie , Abdullah Al Souwaileh
We conducted DFT calculations using FP-LAPW method to explore the electrical, optical, and elastic properties of XSrBr₃ (X = Li, K, Ag) perovskites. For structural optimization, Birch-Murnaghan equation of state is used, which confirmed that these compounds crystallize in a cubic structure. Structural stability was validated through tolerance and octahedral factors, as well as formation energies, while phonon dispersion and Gibbs free energy confirmed their dynamic stability. TB-mBJ-GGA approximation are used to precisely determine the band structures of these compounds and it reveals that all three i.e., (LiSrBr3, 6.31 eV), (KSrBr3, 6.59 eV), and (AgSrBr3, 4.17 eV) are indirect band gaps at the M-Γ high-symmetry points, respectively. IRelast package in WIEN2K are used to assess the elastic responses and it was found all three compounds demonstrated mechanical stability and elastic anisotropy. However, LiSrBr3 and KSrBr3 exhibited brittle behavior, while AgSrBr3 is ductile. In the optical domain, we examined the absorption coefficient, refractive index (n(ω)), reflectivity, and optical conductivity across an energy range of 0 to 12 eV, shedding light on how these materials interacted with different photon energies. Based on the findings, the halide perovskites XSrBr₃ (X = Li, K, Ag) exhibited excellent optical properties, making them strong candidates for solar-blind applications such as UV photodetectors, deep UV-LEDs, and high-frequency systems.
{"title":"First-principles study of XSrBr3 (X = Li, K, Ag) halide perovskites for solar-blind photodetector applications","authors":"Muhammad Yar Khan , Muhammad Awais Jehangir , It Ee Lee , Qamar Wali , Tariq Usman , Li Xiaojie , Abdullah Al Souwaileh","doi":"10.1016/j.chphi.2025.100933","DOIUrl":"10.1016/j.chphi.2025.100933","url":null,"abstract":"<div><div>We conducted DFT calculations using FP-LAPW method to explore the electrical, optical, and elastic properties of XSrBr₃ (<em>X</em> = Li, K, Ag) perovskites. For structural optimization, Birch-Murnaghan equation of state is used, which confirmed that these compounds crystallize in a cubic structure. Structural stability was validated through tolerance and octahedral factors, as well as formation energies, while phonon dispersion and Gibbs free energy confirmed their dynamic stability. TB-mBJ-GGA approximation are used to precisely determine the band structures of these compounds and it reveals that all three i.e., (LiSrBr<sub>3</sub>, 6.31 eV), (KSrBr<sub>3</sub>, 6.59 eV), and (AgSrBr<sub>3</sub>, 4.17 eV) are indirect band gaps at the M-Γ high-symmetry points, respectively. IRelast package in WIEN2K are used to assess the elastic responses and it was found all three compounds demonstrated mechanical stability and elastic anisotropy. However, LiSrBr<sub>3</sub> and KSrBr<sub>3</sub> exhibited brittle behavior, while AgSrBr<sub>3</sub> is ductile. In the optical domain, we examined the absorption coefficient, refractive index (n(ω)), reflectivity, and optical conductivity across an energy range of 0 to 12 eV, shedding light on how these materials interacted with different photon energies. Based on the findings, the halide perovskites XSrBr₃ (<em>X</em> = Li, K, Ag) exhibited excellent optical properties, making them strong candidates for solar-blind applications such as UV photodetectors, deep UV-LEDs, and high-frequency systems.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100933"},"PeriodicalIF":4.3,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144907130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-23DOI: 10.1016/j.chphi.2025.100932
Divya L. Chauhan , Shikhil S. Wanjari , Manish M Katiya
Nanoparticles have indeed gained significant attention across various fields due to their unique properties at the nanoscale. One area where nanoparticles shine is in catalyzing condensation reactions, which are essential processes in organic chemistry. The review paper mentioned delves into this topic, offering an in-depth prime on of how nanoparticles are applied in organic condensation reactions. These reactions involve the combining of two or more molecules to form a larger molecule while releasing a smaller molecule as a byproduct, like water. Nanoparticles exhibit exceptional catalytic properties in these reactions. They are exceptionally efficient, cost-effective, and speed up the reaction process significantly. In comparison to other catalysts, nanoparticles demonstrate remarkable effectiveness, leading to high yields of the desired products and considerably shorter reaction times.
An important aspect of using nanoparticles as catalysts is their positive impact on the environment. The application of nano-catalysts aligns well with environmental concerns. Their use often reduces waste, energy consumption, and the need for harmful chemicals. This makes the entire synthetic process more sustainable and environmentally friendly.
In summary, the review paper provides a comprehensive overview of how nanoparticles are harnessed to catalyze organic condensation reactions. The advantages include their superior catalytic performance, leading to high yields and quick reactions. Additionally, the environmentally conscious aspects of using nanoparticle catalysts make the synthetic protocols not only effective but also environmentally appealing. This represents a promising advancement in the field of catalysis and organic synthesis.
{"title":"Nanoparticles in organic condensation reactions: A review","authors":"Divya L. Chauhan , Shikhil S. Wanjari , Manish M Katiya","doi":"10.1016/j.chphi.2025.100932","DOIUrl":"10.1016/j.chphi.2025.100932","url":null,"abstract":"<div><div>Nanoparticles have indeed gained significant attention across various fields due to their unique properties at the nanoscale. One area where nanoparticles shine is in catalyzing condensation reactions, which are essential processes in organic chemistry. The review paper mentioned delves into this topic, offering an in-depth prime on of how nanoparticles are applied in organic condensation reactions. These reactions involve the combining of two or more molecules to form a larger molecule while releasing a smaller molecule as a byproduct, like water. Nanoparticles exhibit exceptional catalytic properties in these reactions. They are exceptionally efficient, cost-effective, and speed up the reaction process significantly. In comparison to other catalysts, nanoparticles demonstrate remarkable effectiveness, leading to high yields of the desired products and considerably shorter reaction times.</div><div>An important aspect of using nanoparticles as catalysts is their positive impact on the environment. The application of nano-catalysts aligns well with environmental concerns. Their use often reduces waste, energy consumption, and the need for harmful chemicals. This makes the entire synthetic process more sustainable and environmentally friendly.</div><div>In summary, the review paper provides a comprehensive overview of how nanoparticles are harnessed to catalyze organic condensation reactions. The advantages include their superior catalytic performance, leading to high yields and quick reactions. Additionally, the environmentally conscious aspects of using nanoparticle catalysts make the synthetic protocols not only effective but also environmentally appealing. This represents a promising advancement in the field of catalysis and organic synthesis.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100932"},"PeriodicalIF":4.3,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144916289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-14DOI: 10.1016/j.chphi.2025.100922
Panagiotis Mougkogiannis, Andrew Adamatzky
This study investigates the effects of heavy water (DO) on action potential-like electrical activity in proteinoid microspheres. We demonstrate that DO completely suppresses spontaneous electrical spiking, contrasting with the robust spiking patterns observed in deionized water (mean amplitude 5.39–9.81 mV, period 2489–2826 s). Electrochemical impedance spectroscopy shows that charge transport differs between the two environments: deionized water has charge transfer behavior ( k), while D2O exhibits diffusion-dominated responses ( k). Cyclic voltammetry measurements show different behaviors for D2O and H2O. D2O has stable current responses up to 900 mV/s. Then, at 1000 mV/s, there is a sharp rise (Ia = , Ic = ). H2O, on the other hand, shows gradual current increases as the scan rate rises. Statistical analysis shows significant differences () in membrane potential dynamics between the two conditions, with DO showing reduced variability ( mV vs mV). Using an R(CW)RO topology for equivalent circuit modeling shows enhanced diffusion limits in DO. This suggests changes in charge transport mechanisms. The model has a of 0.0736. These findings show how cellular bioelectricity works. They highlight the important role of proton dynamics in creating the basic membrane potential.
{"title":"Blockage of action potential-like spiking in D2O-suspended proteinoid microspheres","authors":"Panagiotis Mougkogiannis, Andrew Adamatzky","doi":"10.1016/j.chphi.2025.100922","DOIUrl":"10.1016/j.chphi.2025.100922","url":null,"abstract":"<div><div>This study investigates the effects of heavy water (D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O) on action potential-like electrical activity in proteinoid microspheres. We demonstrate that D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O completely suppresses spontaneous electrical spiking, contrasting with the robust spiking patterns observed in deionized water (mean amplitude 5.39–9.81 mV, period 2489–2826 s). Electrochemical impedance spectroscopy shows that charge transport differs between the two environments: deionized water has charge transfer behavior (<span><math><mrow><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>≈</mo><mn>8</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span>), while D<sub>2</sub>O exhibits diffusion-dominated responses (<span><math><mrow><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>≈</mo><mn>120</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span>). Cyclic voltammetry measurements show different behaviors for D<sub>2</sub>O and H<sub>2</sub>O. D<sub>2</sub>O has stable current responses up to 900 mV/s. Then, at 1000 mV/s, there is a sharp rise (I<sub>a</sub> = <span><math><mrow><mn>22</mn><mo>.</mo><mn>71</mn><mspace></mspace><mi>μ</mi><mi>A</mi></mrow></math></span>, I<sub>c</sub> = <span><math><mrow><mo>−</mo><mn>22</mn><mo>.</mo><mn>19</mn><mspace></mspace><mi>μ</mi><mi>A</mi></mrow></math></span>). H<sub>2</sub>O, on the other hand, shows gradual current increases as the scan rate rises. Statistical analysis shows significant differences (<span><math><mrow><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>0001</mn></mrow></math></span>) in membrane potential dynamics between the two conditions, with D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O showing reduced variability (<span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>70</mn><mo>−</mo><mn>15</mn><mo>.</mo><mn>08</mn></mrow></math></span> mV vs <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>D</mi><mi>I</mi></mrow></msub><mo>=</mo><mn>12</mn><mo>.</mo><mn>01</mn><mo>−</mo><mn>22</mn><mo>.</mo><mn>40</mn></mrow></math></span> mV). Using an R(CW)RO topology for equivalent circuit modeling shows enhanced diffusion limits in D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O. This suggests changes in charge transport mechanisms. The model has a <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.0736. These findings show how cellular bioelectricity works. They highlight the important role of proton dynamics in creating the basic membrane potential.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100922"},"PeriodicalIF":4.3,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144853029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pancreatic inflammation plays a critical role in the development and progression of type 1 diabetes (T1D). In this study, a series of novel 1,2,3-triazole-linked isatin-thiazol-4(5H)-one hybrids were rationally designed and synthesized via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, affording the target compounds in good to excellent yields. The compounds were structurally characterized using 1D and 2D NMR spectroscopy. Their anti-inflammatory potential was evaluated both in vitro and in vivo by assessing their inhibitory effects on key enzymes involved in pancreatic inflammation, namely phospholipase A2 (PLA2), myeloperoxidase (MPO), and elastase (ELA). Triazoles 8h and 8i showed the most potent activities. Compound 8h exhibited IC₅₀ values of 19.3, 7.9, and 18.2 µg/mL, respectively, against PLA2, MPO, and ELA, outperforming the reference drug indomethacin. In alloxan-induced diabetic rats, oral administration of 8i (25 mg/kg) reduced pancreatic PLA2, MPO, and ELA activities by 54 %, 62 %, and 56 %, respectively. Analog 8h also significantly decreased oxidative stress markers (H₂O₂ and TBARS) by 62 % and 58 % and improved glycemic control, lowering fasting blood glucose and HbA1c by 54 % and 25 %. Histological analysis confirmed protection of pancreatic tissue, with reduced lymphocyte infiltration and preserved β-cell architecture. Molecular docking studies revealed strong binding affinities of 8h and 8i to PLA2, MPO, and porcine pancreatic elastase, with better binding energies than indomethacin. In silico ADME-Tox predictions supported their drug-likeness and oral bioavailability. These findings highlight 8h and 8i as promising candidates for managing pancreatic inflammation and oxidative stress associated with T1D.
{"title":"Design, synthesis and in Silico evaluation of novel thiazol-4(5H)-one-appended isatin–triazole hybrids with protective effects against inflammation, oxidative stress, and lymphocyte infiltration in a type 1 diabetic rat model","authors":"Walaa I. El-Sofany , Amani Toumi , Salman Latif , Ismail Daoud , Mourad Jridi , Asmaa F. Kassem , Kaseb D. Alanazi , Munirah S.O. Alhar , Abdalla Abdelwahab , Violeta Jevtovic , Sarra Boudriga","doi":"10.1016/j.chphi.2025.100930","DOIUrl":"10.1016/j.chphi.2025.100930","url":null,"abstract":"<div><div>Pancreatic inflammation plays a critical role in the development and progression of type 1 diabetes (T1D). In this study, a series of novel 1,2,3-triazole-linked isatin-thiazol-<em>4(5H)-</em>one hybrids were rationally designed and synthesized <em>via</em> a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, affording the target compounds in good to excellent yields. The compounds were structurally characterized using 1D and 2D NMR spectroscopy. Their anti-inflammatory potential was evaluated both <em>in vitro</em> and <em>in vivo</em> by assessing their inhibitory effects on key enzymes involved in pancreatic inflammation, namely phospholipase A2 (PLA2), myeloperoxidase (MPO), and elastase (ELA). Triazoles <strong>8h</strong> and <strong>8i</strong> showed the most potent activities. Compound <strong>8h</strong> exhibited IC₅₀ values of 19.3, 7.9, and 18.2 µg/mL, respectively, against PLA2, MPO, and ELA, outperforming the reference drug indomethacin. In alloxan-induced diabetic rats, oral administration of <strong>8i</strong> (25 mg/kg) reduced pancreatic PLA2, MPO, and ELA activities by 54 %, 62 %, and 56 %, respectively. Analog <strong>8h</strong> also significantly decreased oxidative stress markers (H₂O₂ and TBARS) by 62 % and 58 % and improved glycemic control, lowering fasting blood glucose and HbA1c by 54 % and 25 %. Histological analysis confirmed protection of pancreatic tissue, with reduced lymphocyte infiltration and preserved β-cell architecture. Molecular docking studies revealed strong binding affinities of <strong>8h</strong> and <strong>8i</strong> to PLA2, MPO, and porcine pancreatic elastase, with better binding energies than indomethacin. In silico ADME-Tox predictions supported their drug-likeness and oral bioavailability. These findings highlight <strong>8h</strong> and <strong>8i</strong> as promising candidates for managing pancreatic inflammation and oxidative stress associated with T1D.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100930"},"PeriodicalIF":4.3,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144864707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug delivery is a process that involves effective therapeutic delivery of drugs that we usually use in medical treatments like Photodynamic therapy (PDT) as adopted for cancer treatment. Polyphenyl curcumin (CUR) is one of the major ingredients of rhizome of turmeric. CUR is a photosensitizer molecule whose photosensitizing properties can be enhanced by associating it with pharmaceutical excipients like Polyvinyl pyrrolidone (PVP) and Polyethylene glycol (PEG). Nanoparticles have been widely used in various fields of research due to their unique properties. Silver nanoparticles (AgNPs) are found to have anti-proliferative properties that may increase the ease of drug delivery at the site of physiological action when associated with the drug molecule. The association of CUR with AgNP can be probable photosensitizer system, which can be used in PDT and PDD. In the current work, the fluorescence property of CUR was used to evaluate the AgNP-embedded CUR. The effect of PVP and PEG on AgNP–CUR was analyzed through photophysical studies. The results showed that there is an effective the solubilization and bioavailability of CUR is improvised by using PVP and PEG as well as in mixed polymer system. The observed fluorescence quenching in the presence of AgNPs indicates a strong interaction between CUR consequently reduces the CUR fluorescence. Dynamic light scattering (DLS) analysis revealed that the Z-average of AgNPs was 39.12 nm, which increased to 49.50 nm upon CUR addition. Zeta potential measurements showed a reduction from -32.38 mV (AgNPs) to -23.10 mV (CUR-AgNPs), indicating strong CUR–AgNP interaction.
{"title":"Curcumin loaded biocompatible polymer embedded silver nanoparticles: A photophysical study on new photosensitizer composite","authors":"Lakshmi Thambi , Saranya Cheriyathennatt , Susithra Selvam , Elango Kandasamy","doi":"10.1016/j.chphi.2025.100929","DOIUrl":"10.1016/j.chphi.2025.100929","url":null,"abstract":"<div><div>Drug delivery is a process that involves effective therapeutic delivery of drugs that we usually use in medical treatments like Photodynamic therapy (PDT) as adopted for cancer treatment. Polyphenyl curcumin (CUR) is one of the major ingredients of rhizome of turmeric. CUR is a photosensitizer molecule whose photosensitizing properties can be enhanced by associating it with pharmaceutical excipients like Polyvinyl pyrrolidone (PVP) and Polyethylene glycol (PEG). Nanoparticles have been widely used in various fields of research due to their unique properties. Silver nanoparticles (AgNPs) are found to have anti-proliferative properties that may increase the ease of drug delivery at the site of physiological action when associated with the drug molecule. The association of CUR with AgNP can be probable photosensitizer system, which can be used in PDT and PDD. In the current work, the fluorescence property of CUR was used to evaluate the AgNP-embedded CUR. The effect of PVP and PEG on AgNP–CUR was analyzed through photophysical studies. The results showed that there is an effective the solubilization and bioavailability of CUR is improvised by using PVP and PEG as well as in mixed polymer system. The observed fluorescence quenching in the presence of AgNPs indicates a strong interaction between CUR consequently reduces the CUR fluorescence. Dynamic light scattering (DLS) analysis revealed that the Z-average of AgNPs was 39.12 nm, which increased to 49.50 nm upon CUR addition. Zeta potential measurements showed a reduction from -32.38 mV (AgNPs) to -23.10 mV (CUR-AgNPs), indicating strong CUR–AgNP interaction.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100929"},"PeriodicalIF":4.3,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144829011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-07DOI: 10.1016/j.chphi.2025.100928
Saravanabava J , Neelima S , Pradeep Kumar M , Lavanya Mandapati , Jayaraman Kamalakkannan , Shanmugam Vippamakula , Vignesh. R , Geetha Birudala , Vinod Kumar Nelson , Punna Rao Suryadevara , Selvankumar Thangaswamy
A ZnO/CuTiO2/PVDF nanocomposite was synthesized via green synthesis using plant extract Solanum nigrum and co-precipitation. This novel material overcomes the inherent hydrophobicity of PVDF (polyvinylidene fluoride) by incorporating ZnO/CuTiO2 nanoparticles as resistive transduction layers, thereby facilitating its optical and photocatalytic activity. The ZnOCuTiO2/PVDF nanocomposite were characterized by SEM, TEM, EDX, PL and UV-DRS. According to the TEM and EDAX results spherical morphology and elemental composition of the ZnO/CuTiO2/PVDF nanocomposite were confirmed. The band gap of the ZnOCuTiO2/PVDF nanocomposite was determined to be 2.3 eV, which was comparatively lower than pure ZnO (3.2 eV) band gap. The photocatalytic activity of the samples is analyzed using degradation of Trypan Blue (TB) under sun light irradiation. Among the samples, ZnO/CuTiO2/PVDF nanocomposite exhibited 95 % degradation efficiency with 45 min over 61 % degradation efficiency of ZnO. Owing to low bandgap and lower charge-carrier recombination of composite the degradation efficiency was higher than ZnO. Additionally, the reused for up to multiple cycle after a negligible reduction in activity making it an important resource for industrial applications. Finally, the antibacterial activity of the samples is studied by disc diffusion method against E.Coli and S. aureus bacteria. Thus, ZnO/CuTiO2/PVDF nanocomposite with improved photocatalytic and antibacterial activity.
{"title":"Green synthesis of ZnO/CuTiO2/PVDF nanocomposite using Solanum nigrum extract: photocatalytic and biological applications","authors":"Saravanabava J , Neelima S , Pradeep Kumar M , Lavanya Mandapati , Jayaraman Kamalakkannan , Shanmugam Vippamakula , Vignesh. R , Geetha Birudala , Vinod Kumar Nelson , Punna Rao Suryadevara , Selvankumar Thangaswamy","doi":"10.1016/j.chphi.2025.100928","DOIUrl":"10.1016/j.chphi.2025.100928","url":null,"abstract":"<div><div>A <strong>ZnO/CuTiO<sub>2</sub>/PVDF nanocomposite</strong> was synthesized via green synthesis using plant extract <em>Solanum nigrum</em> and co-precipitation. This novel material overcomes the inherent hydrophobicity of PVDF (polyvinylidene fluoride) by incorporating <strong>ZnO/CuTiO<sub>2</sub> nanoparticles</strong> as resistive transduction layers, thereby facilitating its optical and photocatalytic activity. The ZnO<img>CuTiO<sub>2</sub>/PVDF nanocomposite were characterized by SEM, TEM, EDX, PL and UV-DRS. According to the TEM and EDAX results spherical morphology and elemental composition of the <strong>ZnO/CuTiO<sub>2</sub>/PVDF nanocomposite were confirmed. The band gap of the</strong> ZnO<img>CuTiO<sub>2</sub>/PVDF nanocomposite was determined to be 2.3 eV, which was comparatively lower than pure ZnO (3.2 eV) band gap. The photocatalytic activity of the samples is analyzed using degradation of Trypan Blue (TB) under sun light irradiation. Among the samples, <strong>ZnO/CuTiO<sub>2</sub>/PVDF nanocomposite</strong> exhibited 95 % degradation efficiency with 45 min over 61 % degradation efficiency of ZnO. Owing to low bandgap and lower charge-carrier recombination of composite the degradation efficiency was higher than ZnO. Additionally, the reused for up to multiple cycle after a negligible reduction in activity making it an important resource for industrial applications. Finally, the antibacterial activity of the samples is studied by disc diffusion method against <em>E.Coli</em> and <em>S. aureus</em> bacteria. Thus, ZnO/CuTiO<sub>2</sub>/PVDF nanocomposite with improved photocatalytic and antibacterial activity.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100928"},"PeriodicalIF":4.3,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144840947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-05DOI: 10.1016/j.chphi.2025.100920
Muhammad Yar Khan , Muhammad Awais Jehangir , It Ee Lee , Qamar Wali , Tariq Usman , Li Xiaojie , Abdullah Al Souwaileh
Double perovskites as promising substitutes to address energy deficiencies, potentially serving as sustainable materials for energy production. The ongoing investigations into these compounds are essential for the advancement of optoelectronic devices. In this work, we conducted an inclusive examination of the properties of X2ScInI6 (A = K, Rb) double perovskite halides utilizing DFT calculations with the all-electron FP-LAPW+lo technique, particularly focusing on replenish able energy sensors. Our findings demonstrate that the energy of formation and Goldsmith's tolerance factor calculations suggest that these halides retain structural and thermodynamic stability in the cubic phase. The stability was further validated by Phonon Dispersion Spectra through the linear response method using the Material Studio code. An evaluation of the elastic properties indicated that the Pugh’s (B/G) and Poisson ratios suggest a ductile nature. We also computed band-gaps in cooperation with TB-mBJ, along with and without spin-orbit coupling (SOC). The bandgap metrics for K2ScInI6 (Eg = 1.965 eV and 1.911 eV) and Rb2ScInI6 (Eg = 1.993 eV and 1.940 eV) were derived using Trans and Blaha modified Becke-Johnson (TB-mBJ & TB-mBJ+SOC) potentials. Additionally, we investigated the optical properties of these halides, focusing on their complex dielectric functions. Our results suggest that these X2ScInI6 (X = K, Rb) halides DPs can be effectively utilized in optoelectronic equipment due to their capacity to absorb light in the UV spectrum. We anticipate that our findings will aid future experimental studies on X2ScInI6 (X = K, Rb) for energy-efficient applications.
{"title":"First principles investigation of bandgap modulation and light matter interaction in cubic X₂ScInI₆ halide double perovskites for emerging energy applications","authors":"Muhammad Yar Khan , Muhammad Awais Jehangir , It Ee Lee , Qamar Wali , Tariq Usman , Li Xiaojie , Abdullah Al Souwaileh","doi":"10.1016/j.chphi.2025.100920","DOIUrl":"10.1016/j.chphi.2025.100920","url":null,"abstract":"<div><div>Double perovskites as promising substitutes to address energy deficiencies, potentially serving as sustainable materials for energy production. The ongoing investigations into these compounds are essential for the advancement of optoelectronic devices. In this work, we conducted an inclusive examination of the properties of X<sub>2</sub>ScInI<sub>6</sub> (A = K, Rb) double perovskite halides utilizing DFT calculations with the all-electron FP-LAPW+lo technique, particularly focusing on replenish able energy sensors. Our findings demonstrate that the energy of formation and Goldsmith's tolerance factor calculations suggest that these halides retain structural and thermodynamic stability in the cubic phase. The stability was further validated by Phonon Dispersion Spectra through the linear response method using the Material Studio code. An evaluation of the elastic properties indicated that the Pugh’s (B/G) and Poisson ratios suggest a ductile nature. We also computed band-gaps in cooperation with TB-mBJ, along with and without spin-orbit coupling (SOC). The bandgap metrics for K<sub>2</sub>ScInI<sub>6</sub> (E<sub>g</sub> = 1.965 eV and 1.911 eV) and Rb<sub>2</sub>ScInI<sub>6</sub> (E<sub>g</sub> = 1.993 eV and 1.940 eV) were derived using Trans and Blaha modified Becke-Johnson (TB-mBJ & TB-mBJ+SOC) potentials. Additionally, we investigated the optical properties of these halides, focusing on their complex dielectric functions. Our results suggest that these X<sub>2</sub>ScInI<sub>6</sub> (X = K, Rb) halides DPs can be effectively utilized in optoelectronic equipment due to their capacity to absorb light in the UV spectrum. We anticipate that our findings will aid future experimental studies on X<sub>2</sub>ScInI<sub>6</sub> (X = K, Rb) for energy-efficient applications.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100920"},"PeriodicalIF":4.3,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144830653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-05DOI: 10.1016/j.chphi.2025.100923
Milap G. Nayak , Reena D. Gamit
Microalgae Chlorella vulgaris is one of the potential feedstocks for fuel generation due to its high lipid content, rapid growth, easier cultivation and adaptability to the environment. In this work, Chlorella vulgaris microalgae were selected as the feedstock for the extraction of oil using supercritical CO2. The effects of temperature, pressure, and extraction time on oil yield were investigated in parametric research. Extracted oil yield over time was further analyzed by the full Sovová mass transfer model, describing both the constant extraction rate (CER) and falling extraction rate (FER) periods effectively. Sovová model with high R2 and low residual error showed a close agreement between predicted and observed values of oil extraction yield. Process parameters were fine-tuned using Central Composite Design (CCD) and Response Surface Methodology (RSM). High R2 and R2adj values confirmed the effectiveness of a quadratic model in describing the effects of both single and interaction variables. Analysis of variance (ANOVA) study revealed that temperature, the interactive effect between temperature and time, and pressure and time have a significant effect on extraction yield due to their lower p-value. ANOVA validated the accuracy of the model due to its lower coefficient of variation. A close agreement in predicted yield of 42.85 wt% and an actual yield of 41.94 wt% was observed at optimized conditions of 32.6 °C, 25.4 MPa, and 130.2 min. Other fatty acids, including 23.73 % linoleic acid and 55.8 % oleic acid, were detected by HPLC analysis. The oil is found to be suitable for the production of biodiesel due to its high iodine and saponification values, along with low acid values. Chlorella vulgaris has the potential to be a feasible and scalable feedstock for renewable energy applications. Also, extraction involving SCCO2 and its optimisation involving the RSM method showed an effective and statistically sound method for algal oil extraction.
{"title":"Parametric study and optimisation of supercritical extraction of Chlorella Vulgaris microalgae using Response surface methodology","authors":"Milap G. Nayak , Reena D. Gamit","doi":"10.1016/j.chphi.2025.100923","DOIUrl":"10.1016/j.chphi.2025.100923","url":null,"abstract":"<div><div>Microalgae <em>Chlorella vulgaris</em> is one of the potential feedstocks for fuel generation due to its high lipid content, rapid growth, easier cultivation and adaptability to the environment. In this work, <em>Chlorella vulgaris</em> microalgae were selected as the feedstock for the extraction of oil using supercritical CO<sub>2.</sub> The effects of temperature, pressure, and extraction time on oil yield were investigated in parametric research. Extracted oil yield over time was further analyzed by the full Sovová mass transfer model, describing both the constant extraction rate (CER) and falling extraction rate (FER) periods effectively. Sovová model with high R<sup>2</sup> and low residual error showed a close agreement between predicted and observed values of oil extraction yield. Process parameters were fine-tuned using Central Composite Design (CCD) and Response Surface Methodology (RSM). High R<sup>2</sup> and R<sup>2</sup><sub>adj</sub> values confirmed the effectiveness of a quadratic model in describing the effects of both single and interaction variables. Analysis of variance (ANOVA) study revealed that temperature, the interactive effect between temperature and time, and pressure and time have a significant effect on extraction yield due to their lower p-value. ANOVA validated the accuracy of the model due to its lower coefficient of variation. A close agreement in predicted yield of 42.85 wt% and an actual yield of 41.94 wt% was observed at optimized conditions of 32.6 °C, 25.4 MPa, and 130.2 min. Other fatty acids, including 23.73 % linoleic acid and 55.8 % oleic acid, were detected by HPLC analysis. The oil is found to be suitable for the production of biodiesel due to its high iodine and saponification values, along with low acid values. <em>Chlorella vulgaris</em> has the potential to be a feasible and scalable feedstock for renewable energy applications. Also, extraction involving SC<img>CO<sub>2</sub> and its optimisation involving the RSM method showed an effective and statistically sound method for algal oil extraction.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100923"},"PeriodicalIF":4.3,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144810036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}