首页 > 最新文献

Cell metabolism最新文献

英文 中文
Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients 早期肿瘤糖酵解下调预测三阴性乳腺癌患者对模拟禁食饮食的反应
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-17 DOI: 10.1016/j.cmet.2024.11.004
Francesca Ligorio, Andrea Vingiani, Tommaso Torelli, Caterina Sposetti, Lorenzo Drufuca, Fabio Iannelli, Lucrezia Zanenga, Catherine Depretto, Secondo Folli, Gianfranco Scaperrotta, Giuseppe Capri, Giulia V. Bianchi, Cristina Ferraris, Gabriele Martelli, Ilaria Maugeri, Leonardo Provenzano, Federico Nichetti, Luca Agnelli, Riccardo Lobefaro, Giovanni Fucà, Claudio Vernieri
In preclinical experiments, cyclic fasting-mimicking diets (FMDs) showed broad anticancer effects in combination with chemotherapy. Among different tumor types, triple-negative breast cancer (TNBC) is exquisitely sensitive to FMD. However, the antitumor activity and efficacy of cyclic FMD in TNBC patients remain unclear. Here, we show that a severely calorie-restricted, triweekly, 5-day FMD regimen results in excellent pathologic complete response (pCR) rates (primary endpoint) and long-term clinical outcomes (secondary endpoints) when combined with preoperative chemotherapy in 30 patients with early-stage TNBC enrolled in the phase 2 trial BREAKFAST. Bulk and single-cell RNA sequencing analysis revealed that highly glycolytic cancer cells, myeloid cells, and pericytes from tumors achieving pCR undergo a significant, early downmodulation of pathways related to glycolysis and pyruvate metabolism. Our findings pave the wave for conducting larger clinical trials to investigate the efficacy of cyclic FMD in early-stage TNBC patients and to validate early changes of intratumor glycolysis as a predictor of clinical benefit from nutrient restriction. This study was registered at Clinicaltrials.gov (NCT04248998).
在临床前实验中,周期性禁食模拟饮食(FMDs)与化疗相结合显示出广泛的抗癌效果。在不同的肿瘤类型中,三阴性乳腺癌(TNBC)对 FMD 非常敏感。然而,循环 FMD 对 TNBC 患者的抗肿瘤活性和疗效仍不清楚。在此,我们展示了一种严重限制热量、每三周一次、为期 5 天的 FMD 方案,该方案与术前化疗相结合,可为 30 例参加 BREAKFAST 2 期试验的早期 TNBC 患者带来极佳的病理完全反应率(主要终点)和长期临床疗效(次要终点)。大量和单细胞RNA测序分析表明,获得pCR的肿瘤中的高糖酵解癌细胞、髓系细胞和周细胞在早期经历了与糖酵解和丙酮酸代谢相关的通路的显著下调。我们的研究结果为开展更大规模的临床试验铺平了道路,这些试验旨在研究周期性 FMD 对早期 TNBC 患者的疗效,并验证肿瘤内糖酵解的早期变化可作为营养限制临床获益的预测指标。该研究已在Clinicaltrials.gov(NCT04248998)上注册。
{"title":"Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients","authors":"Francesca Ligorio, Andrea Vingiani, Tommaso Torelli, Caterina Sposetti, Lorenzo Drufuca, Fabio Iannelli, Lucrezia Zanenga, Catherine Depretto, Secondo Folli, Gianfranco Scaperrotta, Giuseppe Capri, Giulia V. Bianchi, Cristina Ferraris, Gabriele Martelli, Ilaria Maugeri, Leonardo Provenzano, Federico Nichetti, Luca Agnelli, Riccardo Lobefaro, Giovanni Fucà, Claudio Vernieri","doi":"10.1016/j.cmet.2024.11.004","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.004","url":null,"abstract":"In preclinical experiments, cyclic fasting-mimicking diets (FMDs) showed broad anticancer effects in combination with chemotherapy. Among different tumor types, triple-negative breast cancer (TNBC) is exquisitely sensitive to FMD. However, the antitumor activity and efficacy of cyclic FMD in TNBC patients remain unclear. Here, we show that a severely calorie-restricted, triweekly, 5-day FMD regimen results in excellent pathologic complete response (pCR) rates (primary endpoint) and long-term clinical outcomes (secondary endpoints) when combined with preoperative chemotherapy in 30 patients with early-stage TNBC enrolled in the phase 2 trial BREAKFAST. Bulk and single-cell RNA sequencing analysis revealed that highly glycolytic cancer cells, myeloid cells, and pericytes from tumors achieving pCR undergo a significant, early downmodulation of pathways related to glycolysis and pyruvate metabolism. Our findings pave the wave for conducting larger clinical trials to investigate the efficacy of cyclic FMD in early-stage TNBC patients and to validate early changes of intratumor glycolysis as a predictor of clinical benefit from nutrient restriction. This study was registered at <span><span>Clinicaltrials.gov</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> (NCT04248998).","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"49 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling adipose populations linked to metabolic health in obesity 揭示与肥胖症代谢健康有关的脂肪群
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-17 DOI: 10.1016/j.cmet.2024.11.006
Isabel Reinisch, Adhideb Ghosh, Falko Noé, Wenfei Sun, Hua Dong, Peter Leary, Arne Dietrich, Anne Hoffmann, Matthias Blüher, Christian Wolfrum
Precision medicine is still not considered as a standard of care in obesity treatment, despite a large heterogeneity in the metabolic phenotype of individuals with obesity. One of the strongest factors influencing the variability in metabolic disease risk is adipose tissue (AT) dysfunction; however, there is little understanding of the link between distinct cell populations, cell-type-specific transcriptional programs, and disease severity. Here, we generated a comprehensive cellular map of subcutaneous and visceral AT of individuals with metabolically healthy and unhealthy obesity. By combining single-nucleus RNA-sequencing data with bulk transcriptomics and clinical parameters, we identified that mesothelial cells, adipocytes, and adipocyte-progenitor cells exhibit the strongest correlation with metabolic disease. Furthermore, we uncovered cell-specific transcriptional programs, such as the transitioning of mesothelial cells to a mesenchymal phenotype, that are involved in uncoupling obesity from metabolic disease. Together, these findings provide valuable insights by revealing biological drivers of clinical endpoints.
尽管肥胖症患者的代谢表型存在很大的异质性,但精准医疗仍未被视为肥胖症治疗的标准。脂肪组织(AT)功能障碍是影响代谢性疾病风险变化的最主要因素之一;然而,人们对不同细胞群、细胞类型特异性转录程序和疾病严重程度之间的联系却知之甚少。在这里,我们生成了代谢健康和不健康肥胖者皮下和内脏脂肪组织的综合细胞图谱。通过将单核 RNA 序列数据与大容量转录组学和临床参数相结合,我们发现间皮细胞、脂肪细胞和脂肪细胞祖细胞与代谢性疾病的相关性最强。此外,我们还发现了细胞特异性转录程序,如间皮细胞向间充质表型的转变,这些程序参与了肥胖与代谢性疾病的解耦。这些发现揭示了临床终点的生物学驱动因素,从而提供了宝贵的见解。
{"title":"Unveiling adipose populations linked to metabolic health in obesity","authors":"Isabel Reinisch, Adhideb Ghosh, Falko Noé, Wenfei Sun, Hua Dong, Peter Leary, Arne Dietrich, Anne Hoffmann, Matthias Blüher, Christian Wolfrum","doi":"10.1016/j.cmet.2024.11.006","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.006","url":null,"abstract":"Precision medicine is still not considered as a standard of care in obesity treatment, despite a large heterogeneity in the metabolic phenotype of individuals with obesity. One of the strongest factors influencing the variability in metabolic disease risk is adipose tissue (AT) dysfunction; however, there is little understanding of the link between distinct cell populations, cell-type-specific transcriptional programs, and disease severity. Here, we generated a comprehensive cellular map of subcutaneous and visceral AT of individuals with metabolically healthy and unhealthy obesity. By combining single-nucleus RNA-sequencing data with bulk transcriptomics and clinical parameters, we identified that mesothelial cells, adipocytes, and adipocyte-progenitor cells exhibit the strongest correlation with metabolic disease. Furthermore, we uncovered cell-specific transcriptional programs, such as the transitioning of mesothelial cells to a mesenchymal phenotype, that are involved in uncoupling obesity from metabolic disease. Together, these findings provide valuable insights by revealing biological drivers of clinical endpoints.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"87 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FcRn-dependent IgG accumulation in adipose tissue unmasks obesity pathophysiology 脂肪组织中依赖fcrn的IgG积累揭示了肥胖的病理生理
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-13 DOI: 10.1016/j.cmet.2024.11.001
Lexiang Yu, Yong Xiao Yang, Zhen Gong, Qianfen Wan, Yifei Du, Qiuzhong Zhou, Yang Xiao, Tarik Zahr, Zhaobin Wang, Zhewei Yu, Kangkang Yang, Jinyang Geng, Susan K. Fried, Jing Li, Rebecca A. Haeusler, Kam W. Leong, Lin Bai, Yingjie Wu, Lei Sun, Pan Wang, Li Qiang
Immunoglobulin G (IgG) is traditionally recognized as a plasma protein that neutralizes antigens for immune defense. However, our research demonstrates that IgG predominantly accumulates in adipose tissue during obesity development, triggering insulin resistance and macrophage infiltration. This accumulation is governed by neonatal Fc receptor (FcRn)-dependent recycling, orchestrated in adipose progenitor cells and macrophages during the early and late stages of diet-induced obesity (DIO), respectively. Targeting FcRn abolished IgG accumulation and rectified insulin resistance and metabolic degeneration in DIO. By integrating artificial intelligence (AI) modeling with in vivo and in vitro experimental models, we unexpectedly uncovered an interaction between IgG’s Fc-CH3 domain and the insulin receptor's ectodomain. This interaction hinders insulin binding, consequently obstructing insulin signaling and adipocyte functions. These findings unveil adipose IgG accumulation as a driving force in obesity pathophysiology, providing a novel therapeutic strategy to tackle metabolic dysfunctions.
免疫球蛋白G (IgG)传统上被认为是一种血浆蛋白,可以中和抗原进行免疫防御。然而,我们的研究表明,在肥胖的发展过程中,IgG主要积聚在脂肪组织中,引发胰岛素抵抗和巨噬细胞浸润。这种积累是由新生儿Fc受体(FcRn)依赖的再循环控制的,分别在饮食诱导肥胖(DIO)的早期和晚期在脂肪祖细胞和巨噬细胞中进行。靶向FcRn可消除IgG积累,纠正DIO的胰岛素抵抗和代谢变性。通过将人工智能(AI)建模与体内和体外实验模型相结合,我们意外地发现了IgG的Fc-CH3结构域与胰岛素受体外结构域之间的相互作用。这种相互作用阻碍胰岛素结合,从而阻碍胰岛素信号传导和脂肪细胞功能。这些发现揭示了脂肪IgG积累在肥胖病理生理中的驱动作用,为解决代谢功能障碍提供了一种新的治疗策略。
{"title":"FcRn-dependent IgG accumulation in adipose tissue unmasks obesity pathophysiology","authors":"Lexiang Yu, Yong Xiao Yang, Zhen Gong, Qianfen Wan, Yifei Du, Qiuzhong Zhou, Yang Xiao, Tarik Zahr, Zhaobin Wang, Zhewei Yu, Kangkang Yang, Jinyang Geng, Susan K. Fried, Jing Li, Rebecca A. Haeusler, Kam W. Leong, Lin Bai, Yingjie Wu, Lei Sun, Pan Wang, Li Qiang","doi":"10.1016/j.cmet.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.001","url":null,"abstract":"Immunoglobulin G (IgG) is traditionally recognized as a plasma protein that neutralizes antigens for immune defense. However, our research demonstrates that IgG predominantly accumulates in adipose tissue during obesity development, triggering insulin resistance and macrophage infiltration. This accumulation is governed by neonatal Fc receptor (FcRn)-dependent recycling, orchestrated in adipose progenitor cells and macrophages during the early and late stages of diet-induced obesity (DIO), respectively. Targeting FcRn abolished IgG accumulation and rectified insulin resistance and metabolic degeneration in DIO. By integrating artificial intelligence (AI) modeling with <em>in vivo</em> and <em>in vitro</em> experimental models, we unexpectedly uncovered an interaction between IgG’s Fc-CH3 domain and the insulin receptor's ectodomain. This interaction hinders insulin binding, consequently obstructing insulin signaling and adipocyte functions. These findings unveil adipose IgG accumulation as a driving force in obesity pathophysiology, providing a novel therapeutic strategy to tackle metabolic dysfunctions.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"21 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding aging clocks: New insights from metabolomics 解码衰老时钟:来自代谢组学的新见解
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-09 DOI: 10.1016/j.cmet.2024.11.007
Honghao Huang, Yifan Chen, Wei Xu, Linlin Cao, Kun Qian, Evelyne Bischof, Brian K. Kennedy, Jun Pu
Chronological age is a crucial risk factor for diseases and disabilities among older adults. However, individuals of the same chronological age often exhibit divergent biological aging states, resulting in distinct individual risk profiles. Chronological age estimators based on omics data and machine learning techniques, known as aging clocks, provide a valuable framework for interpreting molecular-level biological aging. Metabolomics is an intriguing and rapidly growing field of study, involving the comprehensive profiling of small molecules within the body and providing the ultimate genome-environment interaction readout. Consequently, leveraging metabolomics to characterize biological aging holds immense potential. The aim of this review was to provide an overview of metabolomics approaches, highlighting the establishment and interpretation of metabolomic aging clocks while emphasizing their strengths, limitations, and applications, and to discuss their underlying biological significance, which has the potential to drive innovation in longevity research and development.
实足年龄是老年人患病和残疾的一个关键风险因素。然而,相同实足年龄的个体往往表现出不同的生物衰老状态,导致不同的个体风险概况。基于组学数据和机器学习技术的实足年龄估计器,即衰老时钟,为解释分子水平的生物衰老提供了一个有价值的框架。代谢组学是一个有趣且快速发展的研究领域,涉及体内小分子的全面分析,并提供最终的基因组与环境相互作用的读数。因此,利用代谢组学来表征生物衰老具有巨大的潜力。本文综述了代谢组学方法的发展,重点介绍了代谢组学衰老时钟的建立和解释,同时强调了它们的优势、局限性和应用,并讨论了它们潜在的生物学意义,这有可能推动长寿研究和开发的创新。
{"title":"Decoding aging clocks: New insights from metabolomics","authors":"Honghao Huang, Yifan Chen, Wei Xu, Linlin Cao, Kun Qian, Evelyne Bischof, Brian K. Kennedy, Jun Pu","doi":"10.1016/j.cmet.2024.11.007","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.007","url":null,"abstract":"Chronological age is a crucial risk factor for diseases and disabilities among older adults. However, individuals of the same chronological age often exhibit divergent biological aging states, resulting in distinct individual risk profiles. Chronological age estimators based on omics data and machine learning techniques, known as aging clocks, provide a valuable framework for interpreting molecular-level biological aging. Metabolomics is an intriguing and rapidly growing field of study, involving the comprehensive profiling of small molecules within the body and providing the ultimate genome-environment interaction readout. Consequently, leveraging metabolomics to characterize biological aging holds immense potential. The aim of this review was to provide an overview of metabolomics approaches, highlighting the establishment and interpretation of metabolomic aging clocks while emphasizing their strengths, limitations, and applications, and to discuss their underlying biological significance, which has the potential to drive innovation in longevity research and development.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"93 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging debates and resolutions in brown adipose tissue research 棕色脂肪组织研究中出现的争论和解决方案
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-06 DOI: 10.1016/j.cmet.2024.11.002
Aaron M. Cypess, Barbara Cannon, Jan Nedergaard, Lawrence Kazak, Douglas C. Chang, Jonathan Krakoff, Yu-Hua Tseng, Camilla Schéele, Jeremie Boucher, Natasa Petrovic, Denis P. Blondin, André C. Carpentier, Kirsi A. Virtanen, Sander Kooijman, Patrick C.N. Rensen, Cheryl Cero, Shingo Kajimura
Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs. The field has made major advances by using new model systems, ranging from subcellular studies to clinical trials, which have also led to debates. In this perspective, we identify six fundamental issues that are currently controversial and comprise dichotomous models. Each side presents supporting evidence and, critically, the necessary methods and falsifiable experiments that would resolve the dispute. With this collaborative approach, the field will continue to productively advance the understanding of BAT physiology, appreciate the importance of thermogenic adipocytes as a central area of ongoing research, and realize the therapeutic potential.
直到二十年前,棕色脂肪组织(BAT)主要作为小型啮齿动物的产热器官在冷适应的背景下进行研究。功能性人类BAT的发现为了解其在能量平衡中的生理作用和代谢紊乱的治疗应用提供了新的机会。值得注意的是,BAT的作用远远超出了产热作用,包括葡萄糖和脂质稳态,通过释放与其他细胞和器官交流的介质。该领域通过使用新的模型系统取得了重大进展,从亚细胞研究到临床试验,这也引发了争论。从这个角度来看,我们确定了目前有争议的六个基本问题,并包括二分模型。每一方都提出了支持性的证据,关键的是,提出了解决争议的必要方法和可证伪的实验。通过这种合作方式,该领域将继续有效地推进对BAT生理学的理解,认识到产热脂肪细胞作为正在进行的研究的中心领域的重要性,并实现其治疗潜力。
{"title":"Emerging debates and resolutions in brown adipose tissue research","authors":"Aaron M. Cypess, Barbara Cannon, Jan Nedergaard, Lawrence Kazak, Douglas C. Chang, Jonathan Krakoff, Yu-Hua Tseng, Camilla Schéele, Jeremie Boucher, Natasa Petrovic, Denis P. Blondin, André C. Carpentier, Kirsi A. Virtanen, Sander Kooijman, Patrick C.N. Rensen, Cheryl Cero, Shingo Kajimura","doi":"10.1016/j.cmet.2024.11.002","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.002","url":null,"abstract":"Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs. The field has made major advances by using new model systems, ranging from subcellular studies to clinical trials, which have also led to debates. In this perspective, we identify six fundamental issues that are currently controversial and comprise dichotomous models. Each side presents supporting evidence and, critically, the necessary methods and falsifiable experiments that would resolve the dispute. With this collaborative approach, the field will continue to productively advance the understanding of BAT physiology, appreciate the importance of thermogenic adipocytes as a central area of ongoing research, and realize the therapeutic potential.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"27 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice GIP受体激活白色脂肪组织中无用的钙循环,以增加能量消耗并推动小鼠体重减轻
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-05 DOI: 10.1016/j.cmet.2024.11.003
Xinxin Yu, Shiuhwei Chen, Jan-Bernd Funcke, Leon G. Straub, Valentina Pirro, Margo P. Emont, Brian A. Droz, Kyla AI. Collins, Chanmin Joung, Mackenzie J. Pearson, Corey M. James, Gopal J. Babu, Vissarion Efthymiou, Ashley Vernon, Mary Elizabeth Patti, Yu A. An, Evan D. Rosen, Matthew P. Coghlan, Ricardo J. Samms, Philipp E. Scherer, Christine M. Kusminski
Obesity is a chronic disease that contributes to the development of insulin resistance, type 2 diabetes (T2D), and cardiovascular risk. Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) co-agonism provide an improved therapeutic profile in individuals with T2D and obesity when compared with selective GLP-1R agonism. Although the metabolic benefits of GLP-1R agonism are established, whether GIPR activation impacts weight loss through peripheral mechanisms is yet to be fully defined. Here, we generated a mouse model of GIPR induction exclusively in the adipocyte. We show that GIPR induction in the fat cell protects mice from diet-induced obesity and triggers profound weight loss (∼35%) in an obese setting. Adipose GIPR further increases lipid oxidation, thermogenesis, and energy expenditure. Mechanistically, we demonstrate that GIPR induction activates SERCA-mediated futile calcium cycling in the adipocyte. GIPR activation further triggers a metabolic memory effect, which maintains weight loss after the transgene has been switched off, highlighting a unique aspect in adipocyte biology. Collectively, we present a mechanism of peripheral GIPR action in adipose tissue, which exerts beneficial metabolic effects on body weight and energy balance.
肥胖是一种慢性疾病,会导致胰岛素抵抗、2型糖尿病(T2D)和心血管风险。与选择性GLP-1R激动作用相比,葡萄糖依赖性胰岛素性多肽(GIP)受体(GIPR)和胰高血糖素样肽-1 (GLP-1)受体(GLP-1R)共同激动作用可改善t2dm和肥胖患者的治疗效果。虽然GLP-1R激动作用的代谢益处已经确定,但GIPR激活是否通过外周机制影响体重减轻还没有完全确定。在这里,我们建立了一个仅在脂肪细胞中诱导GIPR的小鼠模型。我们发现,脂肪细胞中的GIPR诱导可以保护小鼠免受饮食诱导的肥胖,并在肥胖环境中引发体重减轻(约35%)。脂肪GIPR进一步增加脂质氧化、产热和能量消耗。在机制上,我们证明了GIPR诱导激活了脂肪细胞中serca介导的无效钙循环。GIPR激活进一步触发代谢记忆效应,在转基因关闭后保持体重减轻,突出了脂肪细胞生物学的一个独特方面。总之,我们提出了外周GIPR在脂肪组织中的作用机制,它对体重和能量平衡有有益的代谢作用。
{"title":"The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice","authors":"Xinxin Yu, Shiuhwei Chen, Jan-Bernd Funcke, Leon G. Straub, Valentina Pirro, Margo P. Emont, Brian A. Droz, Kyla AI. Collins, Chanmin Joung, Mackenzie J. Pearson, Corey M. James, Gopal J. Babu, Vissarion Efthymiou, Ashley Vernon, Mary Elizabeth Patti, Yu A. An, Evan D. Rosen, Matthew P. Coghlan, Ricardo J. Samms, Philipp E. Scherer, Christine M. Kusminski","doi":"10.1016/j.cmet.2024.11.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.003","url":null,"abstract":"Obesity is a chronic disease that contributes to the development of insulin resistance, type 2 diabetes (T2D), and cardiovascular risk. Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) co-agonism provide an improved therapeutic profile in individuals with T2D and obesity when compared with selective GLP-1R agonism. Although the metabolic benefits of GLP-1R agonism are established, whether GIPR activation impacts weight loss through peripheral mechanisms is yet to be fully defined. Here, we generated a mouse model of GIPR induction exclusively in the adipocyte. We show that GIPR induction in the fat cell protects mice from diet-induced obesity and triggers profound weight loss (∼35%) in an obese setting. Adipose GIPR further increases lipid oxidation, thermogenesis, and energy expenditure. Mechanistically, we demonstrate that GIPR induction activates SERCA-mediated futile calcium cycling in the adipocyte. GIPR activation further triggers a metabolic memory effect, which maintains weight loss after the transgene has been switched off, highlighting a unique aspect in adipocyte biology. Collectively, we present a mechanism of peripheral GIPR action in adipose tissue, which exerts beneficial metabolic effects on body weight and energy balance.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"1 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis 核GTPSCS作为乙酰辅酶a合成酶,促进组蛋白乳酸化和胶质瘤形成
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-05 DOI: 10.1016/j.cmet.2024.11.005
Ruilong Liu, Xuelian Ren, Yae Eun Park, Huixu Feng, Xinlei Sheng, Xiaohan Song, Roya AminiTabrizi, Hardik Shah, Lingting Li, Yu Zhang, Kalil G. Abdullah, Sarah Dubois-Coyne, Hening Lin, Philip A. Cole, Ralph J. DeBerardinis, Samuel K. McBrayer, He Huang, Yingming Zhao
Histone lysine lactylation is a physiologically and pathologically relevant epigenetic pathway that can be stimulated by the Warburg effect-associated L-lactate. Nevertheless, the mechanism by which cells use L-lactate to generate lactyl-coenzyme A (CoA) and how this process is regulated remains unknown. Here, we report the identification of guanosine triphosphate (GTP)-specific SCS (GTPSCS) as a lactyl-CoA synthetase in the nucleus. The mechanism was elucidated through the crystallographic structure of GTPSCS in complex with L-lactate, followed by mutagenesis experiments. GTPSCS translocates into the nucleus and interacts with p300 to elevate histone lactylation but not succinylation. This process depends on a nuclear localization signal in the GTPSCS G1 subunit and acetylation at G2 subunit residue K73, which mediates the interaction with p300. GTPSCS/p300 collaboration synergistically regulates histone H3K18la and GDF15 expression, promoting glioma proliferation and radioresistance. GTPSCS represents the inaugural enzyme to catalyze lactyl-CoA synthesis for epigenetic histone lactylation and regulate oncogenic gene expression in glioma.
组蛋白赖氨酸乳酸化是一种生理和病理相关的表观遗传途径,可以被Warburg效应相关的l -乳酸刺激。然而,细胞利用l-乳酸生成乳酸辅酶A (CoA)的机制以及这一过程是如何被调节的仍不清楚。在这里,我们报道了在细胞核中鉴定出鸟苷三磷酸(GTP)特异性SCS (GTPSCS)为乳酸辅酶a合成酶。通过GTPSCS与l -乳酸盐复合物的晶体结构来阐明其作用机制,并进行诱变实验。GTPSCS易位进入细胞核并与p300相互作用以提高组蛋白乳酸化而不是琥珀酰化。这一过程依赖于GTPSCS G1亚基的核定位信号和G2亚基残基K73的乙酰化,介导与p300的相互作用。GTPSCS/p300协同调节组蛋白H3K18la和GDF15的表达,促进胶质瘤增殖和放射耐药。GTPSCS是首个在胶质瘤中催化乙酰辅酶a合成表观遗传组蛋白乳酸化和调节致癌基因表达的酶。
{"title":"Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis","authors":"Ruilong Liu, Xuelian Ren, Yae Eun Park, Huixu Feng, Xinlei Sheng, Xiaohan Song, Roya AminiTabrizi, Hardik Shah, Lingting Li, Yu Zhang, Kalil G. Abdullah, Sarah Dubois-Coyne, Hening Lin, Philip A. Cole, Ralph J. DeBerardinis, Samuel K. McBrayer, He Huang, Yingming Zhao","doi":"10.1016/j.cmet.2024.11.005","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.005","url":null,"abstract":"Histone lysine lactylation is a physiologically and pathologically relevant epigenetic pathway that can be stimulated by the Warburg effect-associated L-lactate. Nevertheless, the mechanism by which cells use L-lactate to generate lactyl-coenzyme A (CoA) and how this process is regulated remains unknown. Here, we report the identification of guanosine triphosphate (GTP)-specific SCS (GTPSCS) as a lactyl-CoA synthetase in the nucleus. The mechanism was elucidated through the crystallographic structure of GTPSCS in complex with L-lactate, followed by mutagenesis experiments. GTPSCS translocates into the nucleus and interacts with p300 to elevate histone lactylation but not succinylation. This process depends on a nuclear localization signal in the GTPSCS G1 subunit and acetylation at G2 subunit residue K73, which mediates the interaction with p300. GTPSCS/p300 collaboration synergistically regulates histone H3K18la and GDF15 expression, promoting glioma proliferation and radioresistance. GTPSCS represents the inaugural enzyme to catalyze lactyl-CoA synthesis for epigenetic histone lactylation and regulate oncogenic gene expression in glioma.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"109 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial respiratory supercomplexes gear up for heat generation in brown adipose tissue 线粒体呼吸超复合体在棕色脂肪组织中为产热作好准备
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-12-03 DOI: 10.1016/j.cmet.2024.10.022
Andreas Carlström, Martin Ott
Mitochondrial energy conversion supplies cellular energy but can also provide heat in brown adipose tissue (BAT). In a recent study, Shin and Latorre-Muro et al.1 show that respiratory supercomplexes in BAT are remodeled during cold to provide a tighter coupling, revealing a novel, physiologically important role for these supramolecular assemblies.
线粒体能量转换提供细胞能量,但也可以在棕色脂肪组织(BAT)中提供热量。在最近的一项研究中,Shin和Latorre-Muro等人1表明,BAT中的呼吸超复合体在寒冷期间进行了重塑,以提供更紧密的耦合,揭示了这些超分子组装的一种新的、生理上重要的作用。
{"title":"Mitochondrial respiratory supercomplexes gear up for heat generation in brown adipose tissue","authors":"Andreas Carlström, Martin Ott","doi":"10.1016/j.cmet.2024.10.022","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.022","url":null,"abstract":"Mitochondrial energy conversion supplies cellular energy but can also provide heat in brown adipose tissue (BAT). In a recent study, Shin and Latorre-Muro et al.<span><span><sup>1</sup></span></span> show that respiratory supercomplexes in BAT are remodeled during cold to provide a tighter coupling, revealing a novel, physiologically important role for these supramolecular assemblies.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"41 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial calcium uptake declines during aging and is directly activated by oleuropein to boost energy metabolism and skeletal muscle performance 线粒体对钙的吸收在衰老过程中会减少,而油菜素能直接激活线粒体对钙的吸收,从而促进能量代谢,提高骨骼肌的性能。
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-26 DOI: 10.1016/j.cmet.2024.10.021
Gaia Gherardi, Anna Weiser, Flavien Bermont, Eugenia Migliavacca, Benjamin Brinon, Guillaume E. Jacot, Aurélie Hermant, Mattia Sturlese, Leonardo Nogara, Filippo Vascon, Agnese De Mario, Andrea Mattarei, Emma Garratt, Mark Burton, Karen Lillycrop, Keith M. Godfrey, Laura Cendron, Denis Barron, Stefano Moro, Bert Blaauw, Umberto De Marchi
Mitochondrial calcium (mtCa2+) uptake via the mitochondrial calcium uniporter (MCU) couples calcium homeostasis and energy metabolism. mtCa2+ uptake via MCU is rate-limiting for mitochondrial activation during muscle contraction, but its pathophysiological role and therapeutic application remain largely uncharacterized. By profiling human muscle biopsies, patient-derived myotubes, and preclinical models, we discovered a conserved downregulation of mitochondrial calcium uniporter regulator 1 (MCUR1) during skeletal muscle aging that associates with human sarcopenia and impairs mtCa2+ uptake and mitochondrial respiration. Through a screen of 5,000 bioactive molecules, we identify the natural polyphenol oleuropein as a specific MCU activator that stimulates mitochondrial respiration via mitochondrial calcium uptake 1 (MICU1) binding. Oleuropein activates mtCa2+ uptake and energy metabolism to enhance endurance and reduce fatigue in young and aged mice but not in muscle-specific MCU knockout (KO) mice. Our work demonstrates that impaired mtCa2+ uptake contributes to mitochondrial dysfunction during aging and establishes oleuropein as a novel food-derived molecule that specifically targets MCU to stimulate mitochondrial bioenergetics and muscle performance.
线粒体钙(mtCa2+)通过线粒体钙离子通道(MCU)吸收,将钙平衡和能量代谢联系在一起。通过 MCU 吸收的 mtCa2+ 是肌肉收缩过程中线粒体激活的限速因素,但其病理生理学作用和治疗应用在很大程度上仍未得到表征。通过分析人类肌肉活检组织、患者衍生的肌管和临床前模型,我们发现在骨骼肌衰老过程中,线粒体钙离子单向传输调节器 1 (MCUR1) 存在保守的下调,这与人类肌肉疏松症有关,并会损害 mtCa2+ 摄取和线粒体呼吸。通过对 5000 种生物活性分子的筛选,我们发现天然多酚油菜素是一种特异性 MCU 激活剂,它能通过线粒体钙摄取 1 (MICU1) 结合刺激线粒体呼吸。油菜素能激活线粒体钙离子摄取和能量代谢,从而增强年轻小鼠和老龄小鼠的耐力并减轻疲劳,但不能激活肌肉特异性 MCU 基因敲除(KO)小鼠的耐力和疲劳。我们的研究表明,mtCa2+摄取受损是导致衰老过程中线粒体功能障碍的原因之一,并确定油菜素是一种新型的食物提取分子,可专门针对MCU刺激线粒体生物能和肌肉性能。
{"title":"Mitochondrial calcium uptake declines during aging and is directly activated by oleuropein to boost energy metabolism and skeletal muscle performance","authors":"Gaia Gherardi, Anna Weiser, Flavien Bermont, Eugenia Migliavacca, Benjamin Brinon, Guillaume E. Jacot, Aurélie Hermant, Mattia Sturlese, Leonardo Nogara, Filippo Vascon, Agnese De Mario, Andrea Mattarei, Emma Garratt, Mark Burton, Karen Lillycrop, Keith M. Godfrey, Laura Cendron, Denis Barron, Stefano Moro, Bert Blaauw, Umberto De Marchi","doi":"10.1016/j.cmet.2024.10.021","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.021","url":null,"abstract":"Mitochondrial calcium (mtCa<sup>2+</sup>) uptake via the mitochondrial calcium uniporter (MCU) couples calcium homeostasis and energy metabolism. mtCa<sup>2+</sup> uptake via MCU is rate-limiting for mitochondrial activation during muscle contraction, but its pathophysiological role and therapeutic application remain largely uncharacterized. By profiling human muscle biopsies, patient-derived myotubes, and preclinical models, we discovered a conserved downregulation of mitochondrial calcium uniporter regulator 1 (MCUR1) during skeletal muscle aging that associates with human sarcopenia and impairs mtCa<sup>2+</sup> uptake and mitochondrial respiration. Through a screen of 5,000 bioactive molecules, we identify the natural polyphenol oleuropein as a specific MCU activator that stimulates mitochondrial respiration via mitochondrial calcium uptake 1 (MICU1) binding. Oleuropein activates mtCa<sup>2+</sup> uptake and energy metabolism to enhance endurance and reduce fatigue in young and aged mice but not in muscle-specific MCU knockout (KO) mice. Our work demonstrates that impaired mtCa<sup>2+</sup> uptake contributes to mitochondrial dysfunction during aging and establishes oleuropein as a novel food-derived molecule that specifically targets MCU to stimulate mitochondrial bioenergetics and muscle performance.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"26 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation 无丝氨酸/甘氨酸饮食在增强抗肿瘤免疫力和通过 PD-L1 乳化促进规避方面的双重影响
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-21 DOI: 10.1016/j.cmet.2024.10.019
Huan Tong, Zedong Jiang, Linlin Song, Keqin Tan, Xiaomeng Yin, Chengyuan He, Juan Huang, Xiaoyue Li, Xiaofan Jing, Hong Yun, Guangqi Li, Yunuo Zhao, Qianlong Kang, Yuhao Wei, Renwei Li, Zhiwen Long, Jun Yin, Qiang Luo, Xiao Liang, Yanzhi Wan, Xuelei Ma
The effect of the serine/glycine-free diet (−SG diet) on colorectal cancer (CRC) remains unclear; meanwhile, programmed death-1 (PD-1) inhibitors are less effective for most CRC patients. Here, we demonstrate that the −SG diet inhibits CRC growth and promotes the accumulation of cytotoxic T cells to enhance antitumor immunity. Additionally, we also identified the lactylation of programmed death-ligand 1 (PD-L1) in tumor cells as a mechanism of immune evasion during cytotoxic T cell-mediated antitumor responses, and blocking the PD-1/PD-L1 signaling pathway is able to rejuvenate the function of CD8+ T cells recruited by the −SG diet, indicating the potential of combining the −SG diet with immunotherapy. We conducted a single-arm, phase I study (ChiCTR2300067929). The primary outcome suggests that the −SG diet is feasible and safe for regulating systemic immunity. Secondary outcomes include patient tolerability and potential antitumor effects. Collectively, our findings highlight the promising therapeutic potential of the −SG diet for treating solid tumors.
无丝氨酸/甘氨酸饮食(-SG 饮食)对结直肠癌(CRC)的影响仍不清楚;同时,程序性死亡-1(PD-1)抑制剂对大多数 CRC 患者的疗效较差。在这里,我们证明了 -SG 饮食能抑制 CRC 的生长,并促进细胞毒性 T 细胞的积累,从而增强抗肿瘤免疫力。此外,我们还发现肿瘤细胞中程序性死亡配体1(PD-L1)的乳化是细胞毒性T细胞介导的抗肿瘤反应中的免疫逃避机制,而阻断PD-1/PD-L1信号通路能够恢复-SG饮食所招募的CD8+ T细胞的功能,这表明-SG饮食与免疫疗法的结合具有潜力。我们进行了一项单臂 I 期研究(ChiCTR2300067929)。主要结果表明,-SG 饮食在调节全身免疫力方面是可行且安全的。次要结果包括患者的耐受性和潜在的抗肿瘤效果。总之,我们的研究结果凸显了 -SG 饮食治疗实体瘤的巨大潜力。
{"title":"Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation","authors":"Huan Tong, Zedong Jiang, Linlin Song, Keqin Tan, Xiaomeng Yin, Chengyuan He, Juan Huang, Xiaoyue Li, Xiaofan Jing, Hong Yun, Guangqi Li, Yunuo Zhao, Qianlong Kang, Yuhao Wei, Renwei Li, Zhiwen Long, Jun Yin, Qiang Luo, Xiao Liang, Yanzhi Wan, Xuelei Ma","doi":"10.1016/j.cmet.2024.10.019","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.019","url":null,"abstract":"The effect of the serine/glycine-free diet (−SG diet) on colorectal cancer (CRC) remains unclear; meanwhile, programmed death-1 (PD-1) inhibitors are less effective for most CRC patients. Here, we demonstrate that the −SG diet inhibits CRC growth and promotes the accumulation of cytotoxic T cells to enhance antitumor immunity. Additionally, we also identified the lactylation of programmed death-ligand 1 (PD-L1) in tumor cells as a mechanism of immune evasion during cytotoxic T cell-mediated antitumor responses, and blocking the PD-1/PD-L1 signaling pathway is able to rejuvenate the function of CD8+ T cells recruited by the −SG diet, indicating the potential of combining the −SG diet with immunotherapy. We conducted a single-arm, phase I study (ChiCTR2300067929). The primary outcome suggests that the −SG diet is feasible and safe for regulating systemic immunity. Secondary outcomes include patient tolerability and potential antitumor effects. Collectively, our findings highlight the promising therapeutic potential of the −SG diet for treating solid tumors.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"18 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1