首页 > 最新文献

Cell metabolism最新文献

英文 中文
Microbiota-derived lysophosphatidylcholine alleviates Alzheimer’s disease pathology via suppressing ferroptosis 源于微生物群的溶血磷脂酰胆碱通过抑制铁蛋白沉积缓解阿尔茨海默病的病理变化
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-06 DOI: 10.1016/j.cmet.2024.10.006
Xu Zha, Xicheng Liu, Mengping Wei, Huanwei Huang, Jiaqi Cao, Shuo Liu, Xiaomei Bian, Yuting Zhang, Fenyan Xiao, Yuping Xie, Wei Wang, Chen Zhang
Alzheimer’s disease (AD) is a pervasive neurodegenerative disorder, and new approaches for its prevention and therapy are critically needed. Here, we elucidate a gut-microbiome-brain axis that offers actionable perspectives for achieving this objective. Using the 5xFAD mouse model, we identify increased Clostridium abundance and decreased Bacteroides abundance as key features associated with β-amyloid (Aβ) burden. Treatment with Bacteroides ovatus, or its associated metabolite lysophosphatidylcholine (LPC), significantly reduces Aβ load and ameliorates cognitive impairment. Mechanistically, LPC acts through the orphan receptor GPR119, inhibiting ACSL4 expression, thereby suppressing ferroptosis and ameliorating AD pathologies. Analysis of fecal and serum samples from individuals with AD also reveals diminished levels of Bacteroides and LPC. This study thus identifies a B.ovatus-triggered pathway regulating AD pathologies and indicates that the use of single gut microbiota, metabolite, or small molecule compound may complement current prevention and treatment approaches for AD.
阿尔茨海默病(AD)是一种普遍存在的神经退行性疾病,亟需新的预防和治疗方法。在这里,我们阐明了肠道-微生物-大脑轴,为实现这一目标提供了可行的视角。利用 5xFAD 小鼠模型,我们发现梭状芽孢杆菌丰度的增加和乳杆菌丰度的降低是与β淀粉样蛋白(Aβ)负担相关的关键特征。使用卵形乳杆菌或其相关代谢产物溶血磷脂酰胆碱(LPC)治疗可显著降低Aβ负荷并改善认知障碍。从机理上讲,LPC通过孤儿受体GPR119发挥作用,抑制ACSL4的表达,从而抑制铁变态反应,改善AD的病理变化。对注意力缺失症患者的粪便和血清样本进行分析后发现,乳酸杆菌和 LPC 的水平也有所降低。因此,这项研究确定了一种由巴氏乳杆菌触发的AD病理调节途径,并表明使用单一的肠道微生物群、代谢物或小分子化合物可能会对目前的AD预防和治疗方法起到补充作用。
{"title":"Microbiota-derived lysophosphatidylcholine alleviates Alzheimer’s disease pathology via suppressing ferroptosis","authors":"Xu Zha, Xicheng Liu, Mengping Wei, Huanwei Huang, Jiaqi Cao, Shuo Liu, Xiaomei Bian, Yuting Zhang, Fenyan Xiao, Yuping Xie, Wei Wang, Chen Zhang","doi":"10.1016/j.cmet.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.006","url":null,"abstract":"Alzheimer’s disease (AD) is a pervasive neurodegenerative disorder, and new approaches for its prevention and therapy are critically needed. Here, we elucidate a gut-microbiome-brain axis that offers actionable perspectives for achieving this objective. Using the 5xFAD mouse model, we identify increased <em>Clostridium</em> abundance and decreased <em>Bacteroides</em> abundance as key features associated with β-amyloid (Aβ) burden. Treatment with <em>Bacteroides ovatus</em>, or its associated metabolite lysophosphatidylcholine (LPC), significantly reduces Aβ load and ameliorates cognitive impairment. Mechanistically, LPC acts through the orphan receptor GPR119, inhibiting ACSL4 expression, thereby suppressing ferroptosis and ameliorating AD pathologies. Analysis of fecal and serum samples from individuals with AD also reveals diminished levels of <em>Bacteroides</em> and LPC. This study thus identifies a <em>B.</em><em>ovatus</em>-triggered pathway regulating AD pathologies and indicates that the use of single gut microbiota, metabolite, or small molecule compound may complement current prevention and treatment approaches for AD.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"13 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota regulates stress responsivity via the circadian system 肠道微生物群通过昼夜节律系统调节压力反应性
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.10.003
Gabriel S.S. Tofani, Sarah-Jane Leigh, Cassandra E. Gheorghe, Thomaz F.S. Bastiaanssen, Lars Wilmes, Paromita Sen, Gerard Clarke, John F. Cryan
Stress and circadian systems are interconnected through the hypothalamic-pituitary-adrenal (HPA) axis to maintain responses to external stimuli. Yet, the mechanisms of how such signals are orchestrated remain unknown. Here, we uncover the gut microbiota as a regulator of HPA-axis rhythmicity. Microbial depletion disturbs the brain transcriptome and metabolome in stress-responding pathways in the hippocampus and amygdala across the day. This is coupled with a dysregulation of the circadian pacemaker in the brain that results in perturbed glucocorticoid rhythmicity. The resulting hyper-activation of the HPA axis at the sleep/wake transition drives time-of-day-specific impairments of the stress response and stress-sensitive behaviors. Finally, microbiota transplantation confirmed that diurnal oscillations of gut microbes underlie altered glucocorticoid secretion and that L. reuteri is a candidate strain for such effects. Our data offer compelling evidence that the microbiota regulates stress responsiveness in a circadian manner and is necessary to respond adaptively to stressors throughout the day.
压力和昼夜节律系统通过下丘脑-垂体-肾上腺(HPA)轴相互联系,以维持对外部刺激的反应。然而,这些信号的协调机制仍不为人知。在这里,我们发现肠道微生物群是 HPA 轴节律性的调节器。微生物耗竭会扰乱大脑海马体和杏仁核应激反应通路的全天转录组和代谢组。再加上大脑昼夜节律起搏器失调,导致糖皮质激素节律紊乱。由此导致的睡眠/觉醒转换期 HPA 轴过度激活,推动了特定时间段的应激反应和应激敏感行为障碍。最后,微生物群移植证实,肠道微生物的昼夜振荡是改变糖皮质激素分泌的基础,而L. reuteri是产生这种效应的候选菌株。我们的数据提供了令人信服的证据,表明微生物群以昼夜节律的方式调节应激反应能力,并且是全天对应激源做出适应性反应的必要条件。
{"title":"Gut microbiota regulates stress responsivity via the circadian system","authors":"Gabriel S.S. Tofani, Sarah-Jane Leigh, Cassandra E. Gheorghe, Thomaz F.S. Bastiaanssen, Lars Wilmes, Paromita Sen, Gerard Clarke, John F. Cryan","doi":"10.1016/j.cmet.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.003","url":null,"abstract":"Stress and circadian systems are interconnected through the hypothalamic-pituitary-adrenal (HPA) axis to maintain responses to external stimuli. Yet, the mechanisms of how such signals are orchestrated remain unknown. Here, we uncover the gut microbiota as a regulator of HPA-axis rhythmicity. Microbial depletion disturbs the brain transcriptome and metabolome in stress-responding pathways in the hippocampus and amygdala across the day. This is coupled with a dysregulation of the circadian pacemaker in the brain that results in perturbed glucocorticoid rhythmicity. The resulting hyper-activation of the HPA axis at the sleep/wake transition drives time-of-day-specific impairments of the stress response and stress-sensitive behaviors. Finally, microbiota transplantation confirmed that diurnal oscillations of gut microbes underlie altered glucocorticoid secretion and that <em>L. reuteri</em> is a candidate strain for such effects. Our data offer compelling evidence that the microbiota regulates stress responsiveness in a circadian manner and is necessary to respond adaptively to stressors throughout the day.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"242 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GPR56: GPCR as a guardian against ferroptosis GPR56:GPCR 是防止铁变态反应的卫士
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.08.011
Yuelong Yan, Li Zhuang, Boyi Gan
Transmembrane receptor proteins are proficient in sensing external signals and initiating downstream pathways to control cell survival. Lin et al. demonstrated that GPR56, a G-protein-coupled receptor, can be activated by its agonist to suppress ferroptosis—a form of cell death—and effectively mitigate ferroptosis-associated liver damage.
跨膜受体蛋白善于感知外部信号并启动下游通路来控制细胞存活。Lin等人证实,GPR56是一种G蛋白偶联受体,可被其激动剂激活,抑制铁蛋白沉积(一种细胞死亡形式),并有效减轻铁蛋白沉积相关的肝损伤。
{"title":"GPR56: GPCR as a guardian against ferroptosis","authors":"Yuelong Yan, Li Zhuang, Boyi Gan","doi":"10.1016/j.cmet.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.011","url":null,"abstract":"Transmembrane receptor proteins are proficient in sensing external signals and initiating downstream pathways to control cell survival. Lin et al. demonstrated that GPR56, a G-protein-coupled receptor, can be activated by its agonist to suppress ferroptosis—a form of cell death—and effectively mitigate ferroptosis-associated liver damage.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"6 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sympathetic paradigm shift for the role of NPY in obesity NPY 在肥胖症中作用的同情范式转变
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.10.010
Olivier Lavoie, Alexandre Caron
Neuropeptide Y (NPY) is a powerful orexigenic factor in the brain. However, mice lacking NPY or NPY receptor Y1 (NPY1R) have minimal changes in basal food intake. In a study published in Nature, Zhu et al.1 demystify this paradox and show that central and peripheral NPY have antipodal roles in energy homeostasis.
神经肽 Y(NPY)是大脑中一种强大的促食欲因子。然而,缺乏 NPY 或 NPY 受体 Y1(NPY1R)的小鼠,其基础食物摄入量变化极小。在发表于《自然》(Nature)的一项研究中,Zhu 等人1揭开了这一悖论的神秘面纱,并表明中枢和外周 NPY 在能量平衡中具有相反的作用。
{"title":"A sympathetic paradigm shift for the role of NPY in obesity","authors":"Olivier Lavoie, Alexandre Caron","doi":"10.1016/j.cmet.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.010","url":null,"abstract":"Neuropeptide Y (NPY) is a powerful orexigenic factor in the brain. However, mice lacking NPY or NPY receptor Y1 (NPY1R) have minimal changes in basal food intake. In a study published in <em>Nature</em>, Zhu et al.<span><span><sup>1</sup></span></span> demystify this paradox and show that central and peripheral NPY have antipodal roles in energy homeostasis.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"28 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive lipid panel of MASLD fibrosis transition underscores the role of lipoprotein sulfatides in hepatic immunomodulation MASLD纤维化转变的非侵入性脂质面板强调了脂蛋白硫化物在肝脏免疫调节中的作用
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-04 DOI: 10.1016/j.cmet.2024.09.009
Sin Man Lam, Zehua Wang, Jin-Wen Song, Yue Shi, Wen-Yue Liu, Lin-Yu Wan, Kaibo Duan, Gek Huey Chua, Yingjuan Zhou, Guibin Wang, Xiahe Huang, Yingchun Wang, Fu-Sheng Wang, Ming-Hua Zheng, Guanghou Shui
There exists a pressing need for a non-invasive panel that differentiates mild fibrosis from non-fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). In this work, we applied quantitative lipidomics and sterolomics on sera from the PERSONS cohort with biopsy-based histological assessment of liver pathology. We trained a lasso regression model using quantitative omics data and clinical variables, deriving a combinatorial panel of lipids and clinical indices that differentiates mild fibrosis (>F1, n = 324) from non-fibrosis (F0, n = 195), with an area under receiver operating characteristic curve (AUROC) at 0.775 (95% confidence interval [CI]: 0.735–0.816). Circulating sulfatides (SLs) emerged as central lipids distinctly associated with fibrosis pathogenesis in MASLD. Lipidomics analysis of lipoprotein fractions revealed a redistribution of circulating SLs from high-density lipoproteins (HDLs) onto low-density lipoproteins (LDLs) in MASLD fibrosis. We further verified that patient LDLs with reduced SL content triggered a smaller activation of type II natural killer T lymphocytes, compared with control LDLs. Our results suggest that hepatic crosstalk with systemic immunity mediated by lipoprotein metabolism underlies fibrosis progression at early-stage MASLD.
目前迫切需要一种非侵入性的检测方法来区分代谢功能障碍相关性脂肪性肝病(MASLD)中的轻度纤维化和非纤维化。在这项工作中,我们将定量脂质组学和固醇组学应用于 PERSONS 队列的血清,并通过活检对肝脏病理组织学进行评估。我们利用定量 omics 数据和临床变量训练了一个 lasso 回归模型,得出了一个能区分轻度纤维化(F1,n = 324)和非纤维化(F0,n = 195)的脂质和临床指数组合面板,接收者操作特征曲线下面积 (AUROC) 为 0.775(95% 置信区间 [CI]:0.735-0.816)。循环硫化物(SLs)是与 MASLD 纤维化发病机制明显相关的中心脂质。脂蛋白组分的脂质组学分析显示,在MASLD纤维化过程中,循环中的SLs从高密度脂蛋白(HDLs)重新分布到低密度脂蛋白(LDLs)上。我们进一步证实,与对照组低密度脂蛋白相比,SL 含量降低的患者低密度脂蛋白引发的 II 型自然杀伤 T 淋巴细胞活化较小。我们的研究结果表明,由脂蛋白代谢介导的肝脏与全身免疫之间的串扰是早期 MASLD 纤维化进展的基础。
{"title":"Non-invasive lipid panel of MASLD fibrosis transition underscores the role of lipoprotein sulfatides in hepatic immunomodulation","authors":"Sin Man Lam, Zehua Wang, Jin-Wen Song, Yue Shi, Wen-Yue Liu, Lin-Yu Wan, Kaibo Duan, Gek Huey Chua, Yingjuan Zhou, Guibin Wang, Xiahe Huang, Yingchun Wang, Fu-Sheng Wang, Ming-Hua Zheng, Guanghou Shui","doi":"10.1016/j.cmet.2024.09.009","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.09.009","url":null,"abstract":"There exists a pressing need for a non-invasive panel that differentiates mild fibrosis from non-fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). In this work, we applied quantitative lipidomics and sterolomics on sera from the PERSONS cohort with biopsy-based histological assessment of liver pathology. We trained a lasso regression model using quantitative omics data and clinical variables, deriving a combinatorial panel of lipids and clinical indices that differentiates mild fibrosis (<u>&gt;</u>F1, <em>n</em> = 324) from non-fibrosis (F0, <em>n</em> = 195), with an area under receiver operating characteristic curve (AUROC) at 0.775 (95% confidence interval [CI]: 0.735–0.816). Circulating sulfatides (SLs) emerged as central lipids distinctly associated with fibrosis pathogenesis in MASLD. Lipidomics analysis of lipoprotein fractions revealed a redistribution of circulating SLs from high-density lipoproteins (HDLs) onto low-density lipoproteins (LDLs) in MASLD fibrosis. We further verified that patient LDLs with reduced SL content triggered a smaller activation of type II natural killer T lymphocytes, compared with control LDLs. Our results suggest that hepatic crosstalk with systemic immunity mediated by lipoprotein metabolism underlies fibrosis progression at early-stage MASLD.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"18 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis 用于无创诊断代谢功能障碍相关性脂肪性肝炎的血液生物标记物面板
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-04 DOI: 10.1016/j.cmet.2024.10.008
Xiang Zhang, Ming-Hua Zheng, Dehua Liu, Yufeng Lin, Sherlot Juan Song, Eagle Siu-Hong Chu, Dabin Liu, Seema Singh, Michael Berman, Harry Cheuk-Hay Lau, Hongyan Gou, Grace Lai-Hung Wong, Ni Zhang, Hai-Yang Yuan, Rohit Loomba, Vincent Wai-Sun Wong, Jun Yu
The current diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe form, metabolic dysfunction-associated steatohepatitis (MASH), is suboptimal. Here, we recruited 700 individuals, including 184 from Hong Kong as a discovery cohort and 516 from San Diego, Wenzhou, and Hong Kong as three validation cohorts. A panel of 3 parameters (C-X-C motif chemokine ligand 10 [CXCL10], cytokeratin 18 fragments M30 [CK-18], and adjusted body mass index [BMI]) was formulated (termed N3-MASH), which discriminated patients with MASLD from healthy controls with an area under the receiver operating characteristic (AUROC) of 0.954. Among patients with MASLD, N3-MASH could identify patients with MASH with an AUROC of 0.823, achieving 90.0% specificity, 62.9% sensitivity, and 88.6% positive predictive value. The diagnostic performance of N3-MASH was confirmed in three validation cohorts with AUROC of 0.802, 0.805, and 0.823, respectively. Additionally, N3-MASH identifies patients with MASH improvement with an AUROC of 0.857. In summary, we developed a robust blood-based panel for the non-invasive diagnosis of MASH, which might help clinicians reduce unnecessary liver biopsies.
目前对代谢功能障碍相关性脂肪性肝病(MASLD)及其严重形式代谢功能障碍相关性脂肪性肝炎(MASH)的诊断并不理想。在这里,我们招募了 700 人,其中 184 人来自香港作为发现队列,516 人来自圣地亚哥、温州和香港作为三个验证队列。我们制定了一个由 3 个参数(C-X-C 矩阵趋化因子配体 10 [CXCL10]、细胞角蛋白 18 片段 M30 [CK-18]和调整后的体重指数 [BMI])组成的面板(称为 N3-MASH),该面板可将 MASLD 患者与健康对照组区分开来,接收者操作特征下面积 (AUROC) 为 0.954。在 MASLD 患者中,N3-MASH 可以识别 MASH 患者,其接收器操作特征下面积为 0.823,特异性为 90.0%,灵敏度为 62.9%,阳性预测值为 88.6%。N3-MASH 的诊断性能在三个验证队列中得到了证实,AUROC 分别为 0.802、0.805 和 0.823。此外,N3-MASH 还能识别 MASH 改善的患者,AUROC 为 0.857。总之,我们开发出了一种用于无创诊断 MASH 的稳健的血液面板,它可以帮助临床医生减少不必要的肝活检。
{"title":"A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis","authors":"Xiang Zhang, Ming-Hua Zheng, Dehua Liu, Yufeng Lin, Sherlot Juan Song, Eagle Siu-Hong Chu, Dabin Liu, Seema Singh, Michael Berman, Harry Cheuk-Hay Lau, Hongyan Gou, Grace Lai-Hung Wong, Ni Zhang, Hai-Yang Yuan, Rohit Loomba, Vincent Wai-Sun Wong, Jun Yu","doi":"10.1016/j.cmet.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.008","url":null,"abstract":"The current diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe form, metabolic dysfunction-associated steatohepatitis (MASH), is suboptimal. Here, we recruited 700 individuals, including 184 from Hong Kong as a discovery cohort and 516 from San Diego, Wenzhou, and Hong Kong as three validation cohorts. A panel of 3 parameters (C-X-C motif chemokine ligand 10 [CXCL10], cytokeratin 18 fragments M30 [CK-18], and adjusted body mass index [BMI]) was formulated (termed N3-MASH), which discriminated patients with MASLD from healthy controls with an area under the receiver operating characteristic (AUROC) of 0.954. Among patients with MASLD, N3-MASH could identify patients with MASH with an AUROC of 0.823, achieving 90.0% specificity, 62.9% sensitivity, and 88.6% positive predictive value. The diagnostic performance of N3-MASH was confirmed in three validation cohorts with AUROC of 0.802, 0.805, and 0.823, respectively. Additionally, N3-MASH identifies patients with MASH improvement with an AUROC of 0.857. In summary, we developed a robust blood-based panel for the non-invasive diagnosis of MASH, which might help clinicians reduce unnecessary liver biopsies.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"27 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes 高血糖引发的脂质过氧化会破坏 STAT4 的稳定性并损害 2 型糖尿病患者的 Th1 抗病毒反应
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1016/j.cmet.2024.10.004
Victor Gray, Weixin Chen, Rachael Julia Yuenyinn Tan, Jia Ming Nickolas Teo, Zhihao Huang, Carol Ho-Yi Fong, Tommy Wing Hang Law, Zi-Wei Ye, Shuofeng Yuan, Xiucong Bao, Ivan Fan-Ngai Hung, Kathryn Choon-Beng Tan, Chi-Ho Lee, Guang Sheng Ling
Patients with type 2 diabetes (T2D) are more susceptible to severe respiratory viral infections, but the underlying mechanisms remain elusive. Here, we show that patients with T2D and coronavirus disease 2019 (COVID-19) infections, and influenza-infected T2D mice, exhibit defective T helper 1 (Th1) responses, which are an essential component of anti-viral immunity. This defect stems from intrinsic metabolic perturbations in CD4+ T cells driven by hyperglycemia. Mechanistically, hyperglycemia triggers mitochondrial dysfunction and excessive fatty acid synthesis, leading to elevated oxidative stress and aberrant lipid accumulation within CD4+ T cells. These abnormalities promote lipid peroxidation (LPO), which drives carbonylation of signal transducer and activator of transcription 4 (STAT4), a crucial Th1-lineage-determining factor. Carbonylated STAT4 undergoes rapid degradation, causing reduced T-bet induction and diminished Th1 differentiation. LPO scavenger ameliorates Th1 defects in patients with T2D who have poor glycemic control and restores viral control in T2D mice. Thus, this hyperglycemia-LPO-STAT4 axis underpins reduced Th1 activity in T2D hosts, with important implications for managing T2D-related viral complications.
2型糖尿病(T2D)患者更容易受到严重的呼吸道病毒感染,但其潜在机制仍然难以捉摸。在这里,我们发现 T2D 患者和冠状病毒病 2019(COVID-19)感染者以及感染流感的 T2D 小鼠表现出 T 辅助细胞 1(Th1)反应缺陷,而 T 辅助细胞 1 是抗病毒免疫的重要组成部分。这种缺陷源于高血糖导致的 CD4+ T 细胞内在代谢紊乱。从机理上讲,高血糖会引发线粒体功能障碍和脂肪酸合成过多,导致氧化应激升高和 CD4+ T 细胞内脂质异常积累。这些异常会促进脂质过氧化(LPO),从而促使信号转导和激活转录 4(STAT4)发生羰基化,STAT4 是决定 Th1 线型的关键因子。羰基化的 STAT4 会迅速降解,导致 T-bet 诱导减少和 Th1 分化减弱。LPO 清除剂能改善血糖控制不佳的 T2D 患者的 Th1 缺陷,并能恢复 T2D 小鼠的病毒控制。因此,高血糖-LPO-STAT4轴是T2D宿主Th1活性降低的基础,对控制T2D相关病毒并发症具有重要意义。
{"title":"Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes","authors":"Victor Gray, Weixin Chen, Rachael Julia Yuenyinn Tan, Jia Ming Nickolas Teo, Zhihao Huang, Carol Ho-Yi Fong, Tommy Wing Hang Law, Zi-Wei Ye, Shuofeng Yuan, Xiucong Bao, Ivan Fan-Ngai Hung, Kathryn Choon-Beng Tan, Chi-Ho Lee, Guang Sheng Ling","doi":"10.1016/j.cmet.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.004","url":null,"abstract":"Patients with type 2 diabetes (T2D) are more susceptible to severe respiratory viral infections, but the underlying mechanisms remain elusive. Here, we show that patients with T2D and coronavirus disease 2019 (COVID-19) infections, and influenza-infected T2D mice, exhibit defective T helper 1 (Th1) responses, which are an essential component of anti-viral immunity. This defect stems from intrinsic metabolic perturbations in CD4<sup>+</sup> T cells driven by hyperglycemia. Mechanistically, hyperglycemia triggers mitochondrial dysfunction and excessive fatty acid synthesis, leading to elevated oxidative stress and aberrant lipid accumulation within CD4<sup>+</sup> T cells. These abnormalities promote lipid peroxidation (LPO), which drives carbonylation of signal transducer and activator of transcription 4 (STAT4), a crucial Th1-lineage-determining factor. Carbonylated STAT4 undergoes rapid degradation, causing reduced T-bet induction and diminished Th1 differentiation. LPO scavenger ameliorates Th1 defects in patients with T2D who have poor glycemic control and restores viral control in T2D mice. Thus, this hyperglycemia-LPO-STAT4 axis underpins reduced Th1 activity in T2D hosts, with important implications for managing T2D-related viral complications.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"192 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems 基于血浆蛋白的器官特异性衰老和死亡模型揭示了疾病是机体系统加速衰老的表现
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1016/j.cmet.2024.10.005
Ludger J.E. Goeminne, Anastasiya Vladimirova, Alec Eames, Alexander Tyshkovskiy, M. Austin Argentieri, Kejun Ying, Mahdi Moqri, Vadim N. Gladyshev
Aging is a complex process manifesting at molecular, cellular, organ, and organismal levels. It leads to functional decline, disease, and ultimately death, but the relationship between these fundamental biomedical features remains elusive. By applying elastic net regularization to plasma proteome data of over 50,000 human subjects in the UK Biobank and other cohorts, we report interpretable organ-specific and conventional aging models trained on chronological age, mortality, and longitudinal proteome data. These models predict organ/system-specific disease and indicate that men age faster than women in most organs. Accelerated organ aging leads to diseases in these organs, and specific diets, lifestyles, professions, and medications influence organ aging rates. We then identify proteins driving these associations with organ-specific aging. Our analyses reveal that age-related chronic diseases epitomize accelerated organ- and system-specific aging, modifiable through environmental factors, advocating for both universal whole-organism and personalized organ/system-specific anti-aging interventions.
衰老是一个复杂的过程,表现在分子、细胞、器官和机体层面。它导致功能衰退、疾病和最终死亡,但这些基本生物医学特征之间的关系仍然难以捉摸。通过对英国生物库和其他队列中超过 50,000 名人类受试者的血浆蛋白质组数据应用弹性网正则化,我们报告了根据年代年龄、死亡率和纵向蛋白质组数据训练的可解释器官特异性和常规衰老模型。这些模型可预测器官/系统特异性疾病,并表明在大多数器官中,男性比女性衰老得更快。器官衰老的加速会导致这些器官的疾病,而特定的饮食、生活方式、职业和药物会影响器官衰老的速度。然后,我们确定了这些与器官特异性衰老相关的蛋白质。我们的分析表明,与年龄相关的慢性疾病是器官和系统特异性衰老加速的缩影,可通过环境因素改变,这就需要采取普遍的全器官和个性化的器官/系统特异性抗衰老干预措施。
{"title":"Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems","authors":"Ludger J.E. Goeminne, Anastasiya Vladimirova, Alec Eames, Alexander Tyshkovskiy, M. Austin Argentieri, Kejun Ying, Mahdi Moqri, Vadim N. Gladyshev","doi":"10.1016/j.cmet.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.005","url":null,"abstract":"Aging is a complex process manifesting at molecular, cellular, organ, and organismal levels. It leads to functional decline, disease, and ultimately death, but the relationship between these fundamental biomedical features remains elusive. By applying elastic net regularization to plasma proteome data of over 50,000 human subjects in the UK Biobank and other cohorts, we report interpretable organ-specific and conventional aging models trained on chronological age, mortality, and longitudinal proteome data. These models predict organ/system-specific disease and indicate that men age faster than women in most organs. Accelerated organ aging leads to diseases in these organs, and specific diets, lifestyles, professions, and medications influence organ aging rates. We then identify proteins driving these associations with organ-specific aging. Our analyses reveal that age-related chronic diseases epitomize accelerated organ- and system-specific aging, modifiable through environmental factors, advocating for both universal whole-organism and personalized organ/system-specific anti-aging interventions.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"126 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-seizure effects of norepinephrine-induced free fatty acid release 去甲肾上腺素诱导游离脂肪酸释放的抗癫痫作用
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-31 DOI: 10.1016/j.cmet.2024.10.011
Baoman Li, Qian Sun, Fengfei Ding, Qiwu Xu, Ning Kang, Yang Xue, Antonio Ladron-de-Guevara, Hajime Hirase, Pia Weikop, Sheng Gong, Smith Nathan, Maiken Nedergaard
The brain’s ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na+, K+, ATPase. Direct application of FFA to the occipital cortex in awake, behaving mice dampened visual-evoked potential (VEP). Conversely, blocking FFA production via local application of a lipase inhibitor heightened VEP and triggered seizure-like activity. These results suggest that FFA release is a crucial step in NE signaling that safeguards against hyperexcitability. Targeting lipid-signaling pathways may offer a novel therapeutic approach for seizure prevention.
大脑在睡眠、安静的清醒状态和高度警觉状态之间快速转换的能力是非凡的。大脑去甲肾上腺素(NE)在促进觉醒中起着关键作用,但大脑如何避免神经元在觉醒时过度兴奋呢?在这里,我们发现暴露于 NE 会导致星形胶质细胞和神经元的质膜内产生游离脂肪酸(FFA)。反过来,游离脂肪酸通过不同程度地调节星形胶质细胞和神经元的 Na+、K+、ATP 酶的活性来抑制兴奋性。在清醒的行为小鼠枕叶皮层直接施用反式脂肪酸可抑制视觉诱发电位(VEP)。相反,通过在局部应用脂肪酶抑制剂来阻断反式脂肪酸的产生,则会增强视觉诱发电位并引发癫痫样活动。这些结果表明,FFA 释放是 NE 信号传导的关键步骤,可防止过度兴奋。以脂质信号通路为靶点可能为预防癫痫发作提供一种新的治疗方法。
{"title":"Anti-seizure effects of norepinephrine-induced free fatty acid release","authors":"Baoman Li, Qian Sun, Fengfei Ding, Qiwu Xu, Ning Kang, Yang Xue, Antonio Ladron-de-Guevara, Hajime Hirase, Pia Weikop, Sheng Gong, Smith Nathan, Maiken Nedergaard","doi":"10.1016/j.cmet.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.011","url":null,"abstract":"The brain’s ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na<sup>+</sup>, K<sup>+</sup>, ATPase. Direct application of FFA to the occipital cortex in awake, behaving mice dampened visual-evoked potential (VEP). Conversely, blocking FFA production via local application of a lipase inhibitor heightened VEP and triggered seizure-like activity. These results suggest that FFA release is a crucial step in NE signaling that safeguards against hyperexcitability. Targeting lipid-signaling pathways may offer a novel therapeutic approach for seizure prevention.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"125 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase 双鱼藤酸抑制饮食诱导的肝脂肪变性,与 ATP 柠檬酸裂解酶无关
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.cmet.2024.10.014
Joyce Y. Liu, Ramya S. Kuna, Laura V. Pinheiro, Phuong T.T. Nguyen, Jaclyn E. Welles, Jack M. Drummond, Nivitha Murali, Prateek Sharma, Julianna G. Supplee, Mia Shiue, Steven Zhao, Aimee T. Farria, Avi Kumar, Mauren L. Ruchhoeft, Christina Demetriadou, Daniel S. Kantner, Adam Chatoff, Emily Megill, Paul M. Titchenell, Nathaniel W. Snyder, Kathryn E. Wellen
ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.
ATP 柠檬酸裂解酶(ACLY)合成乙酰-CoA,用于新生脂肪生成(DNL),在代谢功能障碍相关性脂肪肝中,DNL 会升高。降低低密度脂蛋白胆固醇的药物贝门冬氨酸(BPA)可抑制肝脏乙酰胆碱转化酶(ACLY),这也会改善小鼠的脂肪变性。虽然 BPA 能有效抑制肝脏 DNL 并增加脂肪分解,但尚不清楚 ACLY 是否是其降低肝脏甘油三酯的主要分子靶点。我们的研究表明,在西式饮食中,肝脏 ACLY 单独或与乙酰-CoA 合成酶 ACSS2 一起缺失会意外加剧脂肪变性,这与 PPARα 靶基因表达和脂肪酸氧化减少有关。重要的是,在 WT 小鼠和肝脏 ACLY 基因敲除小鼠中,双酚 A 处理可改善西方饮食介导的三酰甘油积累,这表明双酚 A 对肝脏脂肪变性的主要影响与 ACLY 无关。这些数据共同表明,肝脏 ACLY 在抑制饮食依赖性脂质积累方面发挥了意想不到的作用,而且双酚 A 对肝脏脂质代谢产生的实质性影响与 ACLY 无关。
{"title":"Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase","authors":"Joyce Y. Liu, Ramya S. Kuna, Laura V. Pinheiro, Phuong T.T. Nguyen, Jaclyn E. Welles, Jack M. Drummond, Nivitha Murali, Prateek Sharma, Julianna G. Supplee, Mia Shiue, Steven Zhao, Aimee T. Farria, Avi Kumar, Mauren L. Ruchhoeft, Christina Demetriadou, Daniel S. Kantner, Adam Chatoff, Emily Megill, Paul M. Titchenell, Nathaniel W. Snyder, Kathryn E. Wellen","doi":"10.1016/j.cmet.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.014","url":null,"abstract":"ATP citrate lyase (ACLY) synthesizes acetyl-CoA for <em>de novo</em> lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"15 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1