Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
{"title":"Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring","authors":"Na Yao, Kenichiro Kinouchi, Manami Katoh, Kousha Changizi Ashtiani, Sherif Abdelkarim, Hiroyuki Morimoto, Takuto Torimitsu, Takahide Kozuma, Akihide Iwahara, Shotaro Kosugi, Jin Komuro, Kyosuke Kato, Shun Tonomura, Toshifumi Nakamura, Arata Itoh, Shintaro Yamaguchi, Jun Yoshino, Junichiro Irie, Hisayuki Hashimoto, Shinsuke Yuasa, Hiroshi Itoh","doi":"10.1016/j.cmet.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.12.002","url":null,"abstract":"Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. <em>In utero</em> circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"30 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1016/j.cmet.2024.11.012
Yizeng Fan, Weichao Dan, Yuzhao Wang, Zhiqiang Ma, Yanlin Jian, Tianjie Liu, Mengxing Li, Zixi Wang, Yi Wei, Bo Liu, Peng Ding, Yuzeshi Lei, Chendong Guo, Jin Zeng, Xiaolong Yan, Wenyi Wei, Lei Li
Itaconate is a metabolite catalyzed by cis-aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear. Here, we identified solute carrier family 13 member 3 (SLC13A3) as a key protein transporting extracellular itaconate into cells, where it elevates programmed cell death ligand 1 (PD-L1) protein levels and decreases the expression of immunostimulatory molecules, thereby promoting tumor immune evasion. Mechanistically, itaconate alkylates the cysteine 272 residue on PD-L1, antagonizing PD-L1 ubiquitination and degradation. Consequently, SLC13A3 inhibition enhances the efficacy of anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) immunotherapy and improves the overall survival rate in syngeneic mouse tumor models. Collectively, our findings identified SLC13A3 as a key transporter of itaconate and revealed its immunomodulatory role, providing combinatorial strategies to overcome immunotherapy resistance in tumors.
{"title":"Itaconate transporter SLC13A3 confers immunotherapy resistance via alkylation-mediated stabilization of PD-L1","authors":"Yizeng Fan, Weichao Dan, Yuzhao Wang, Zhiqiang Ma, Yanlin Jian, Tianjie Liu, Mengxing Li, Zixi Wang, Yi Wei, Bo Liu, Peng Ding, Yuzeshi Lei, Chendong Guo, Jin Zeng, Xiaolong Yan, Wenyi Wei, Lei Li","doi":"10.1016/j.cmet.2024.11.012","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.012","url":null,"abstract":"Itaconate is a metabolite catalyzed by <em>cis-</em>aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear. Here, we identified solute carrier family 13 member 3 (SLC13A3) as a key protein transporting extracellular itaconate into cells, where it elevates programmed cell death ligand 1 (PD-L1) protein levels and decreases the expression of immunostimulatory molecules, thereby promoting tumor immune evasion. Mechanistically, itaconate alkylates the cysteine 272 residue on PD-L1, antagonizing PD-L1 ubiquitination and degradation. Consequently, SLC13A3 inhibition enhances the efficacy of anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) immunotherapy and improves the overall survival rate in syngeneic mouse tumor models. Collectively, our findings identified SLC13A3 as a key transporter of itaconate and revealed its immunomodulatory role, providing combinatorial strategies to overcome immunotherapy resistance in tumors.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"9 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08DOI: 10.1016/j.cmet.2024.11.011
Chao Liang, Abhilash Padavannil, Shan Zhang, Sheryl Beh, David R.L. Robinson, Jana Meisterknecht, Alfredo Cabrera-Orefice, Timothy R. Koves, Chika Watanabe, Miyuki Watanabe, María Illescas, Radiance Lim, Jordan M. Johnson, Shuxun Ren, Ya-Jun Wu, Dennis Kappei, Anna Maria Ghelli, Katsuhiko Funai, Hitoshi Osaka, Deborah Muoio, Lena Ho
Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I2+III2, resolved at 3.7 Å by cryoelectron microscopy (cryo-EM). SC-XL formation increases mitochondrial cristae density, reduces CIII reactive oxygen species (ROS), and sustains normal respiration despite a 70% reduction in CIII activity, effectively rescuing CIII deficiency. Consequently, inhibiting SC-XL formation in CIII mutants using the Uqcrc1DEL:E258-D260 contact site mutation leads to respiratory decompensation. Lastly, SC-XL formation promotes fatty acid oxidation (FAO) and protects against ischemic heart failure in mice. Our study uncovers an unexpected plasticity in the mammalian ETC, where structural adaptations mitigate intrinsic perturbations, and suggests that manipulating SC-XL formation is a potential therapeutic strategy for mitochondrial dysfunction.
{"title":"Formation of I2+III2 supercomplex rescues respiratory chain defects","authors":"Chao Liang, Abhilash Padavannil, Shan Zhang, Sheryl Beh, David R.L. Robinson, Jana Meisterknecht, Alfredo Cabrera-Orefice, Timothy R. Koves, Chika Watanabe, Miyuki Watanabe, María Illescas, Radiance Lim, Jordan M. Johnson, Shuxun Ren, Ya-Jun Wu, Dennis Kappei, Anna Maria Ghelli, Katsuhiko Funai, Hitoshi Osaka, Deborah Muoio, Lena Ho","doi":"10.1016/j.cmet.2024.11.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.011","url":null,"abstract":"Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I<sub>2</sub>+III<sub>2</sub>, resolved at 3.7 Å by cryoelectron microscopy (cryo-EM). SC-XL formation increases mitochondrial cristae density, reduces CIII reactive oxygen species (ROS), and sustains normal respiration despite a 70% reduction in CIII activity, effectively rescuing CIII deficiency. Consequently, inhibiting SC-XL formation in CIII mutants using the Uqcrc1<sup>DEL:E258-D260</sup> contact site mutation leads to respiratory decompensation. Lastly, SC-XL formation promotes fatty acid oxidation (FAO) and protects against ischemic heart failure in mice. Our study uncovers an unexpected plasticity in the mammalian ETC, where structural adaptations mitigate intrinsic perturbations, and suggests that manipulating SC-XL formation is a potential therapeutic strategy for mitochondrial dysfunction.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"31 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.cmet.2024.12.003
Susana C.B.R. Nakandakari, Andin E. Fosam, Rachel J. Perry
Incretin receptor agonists have been effective in combatting obesity and diabetes. While the body of knowledge regarding the signaling mechanisms of glucagon-like peptide 1 (GLP-1) receptor agonists is ever-growing, glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists are less understood. The previewed papers offer insight into the impact of adipose GIPR on energy and weight homeostasis.
{"title":"The other side of the incretin story: GIPR signaling in energy homeostasis","authors":"Susana C.B.R. Nakandakari, Andin E. Fosam, Rachel J. Perry","doi":"10.1016/j.cmet.2024.12.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.12.003","url":null,"abstract":"Incretin receptor agonists have been effective in combatting obesity and diabetes. While the body of knowledge regarding the signaling mechanisms of glucagon-like peptide 1 (GLP-1) receptor agonists is ever-growing, glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists are less understood. The previewed papers offer insight into the impact of adipose GIPR on energy and weight homeostasis.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"28 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.cmet.2024.12.006
Sijie Tan, Nora Kory
Mitochondria produce energy and building blocks essential for cell growth. How these competing processes are balanced and sustained during nutrient scarcity remains unclear. Ryu et al. uncover distinct mitochondrial subpopulations, one dedicated to ATP production and another to macromolecule synthesis, enabling cell growth and proliferation under nutrient-limiting conditions.
{"title":"Divide and conquer, mitochondrial edition: Subpopulations direct cellular energy and nutrient supply","authors":"Sijie Tan, Nora Kory","doi":"10.1016/j.cmet.2024.12.006","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.12.006","url":null,"abstract":"Mitochondria produce energy and building blocks essential for cell growth. How these competing processes are balanced and sustained during nutrient scarcity remains unclear. Ryu et al. uncover distinct mitochondrial subpopulations, one dedicated to ATP production and another to macromolecule synthesis, enabling cell growth and proliferation under nutrient-limiting conditions.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"22 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.cmet.2024.12.001
Sean M. Hartig, Mark A. Herman
De novo lipogenesis (DNL) is the process whereby cells synthesize fatty acids from acetyl-CoA, contributing to steatosis in fatty liver disease. Two new studies, using genetic mouse models, metabolomics, and pharmacology, identified alternative pathways in DNL and unexpected physiological effects when targeting key enzymes in this pathway.
{"title":"Advancing de novo lipogenesis: Genetic and metabolic insights","authors":"Sean M. Hartig, Mark A. Herman","doi":"10.1016/j.cmet.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.12.001","url":null,"abstract":"<em>De novo</em> lipogenesis (DNL) is the process whereby cells synthesize fatty acids from acetyl-CoA, contributing to steatosis in fatty liver disease. Two new studies, using genetic mouse models, metabolomics, and pharmacology, identified alternative pathways in DNL and unexpected physiological effects when targeting key enzymes in this pathway.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"35 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroptosis is characterized as an iron-dependent and lipophilic form of cell death. However, it remains unclear what role ferroptosis has in adipose tissue function and activity. Here, we find a lower ferroptotic signature in the adipose tissue of individuals and mice with obesity. We further find that activation of ferroptotic signaling by a non-lethal dose of ferroptosis agonists significantly reduces lipid accumulation in primary adipocytes and high-fat diet (HFD)-fed mice. Notably, adipocyte-specific overexpression of acyl-coenzyme A synthetase long-chain family member 4 (Acsl4) or deletion of ferritin heavy chain (Fth) protects mice from HFD-induced adipose expansion and metabolic disorders via activation of ferroptotic signaling. Mechanistically, we find that 5,15-dihydroxyeicosatetraenoic acid (5,15-DiHETE) activates ferroptotic signaling, resulting in the degradation of hypoxia-inducible factor-1α (HIF1α), thereby derepressing a thermogenic program regulated by the c-Myc-peroxisome proliferator-activated receptor gamma coactivator-1 beta (Pgc1β) pathway. Our findings suggest that activating ferroptosis signaling in adipose tissues might help to prevent and treat obesity and its related metabolic disorders.
{"title":"Adipocyte-derived ferroptotic signaling mitigates obesity","authors":"Xue Wang, Qian Wu, Meijuan Zhong, Ying Chen, Yudi Wang, Xin Li, Wenxi Zhao, Chaodong Ge, Xinhui Wang, Yingying Yu, Sisi Yang, Tianyi Wang, Enjun Xie, Wanting Shi, Junxia Min, Fudi Wang","doi":"10.1016/j.cmet.2024.11.010","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.010","url":null,"abstract":"Ferroptosis is characterized as an iron-dependent and lipophilic form of cell death. However, it remains unclear what role ferroptosis has in adipose tissue function and activity. Here, we find a lower ferroptotic signature in the adipose tissue of individuals and mice with obesity. We further find that activation of ferroptotic signaling by a non-lethal dose of ferroptosis agonists significantly reduces lipid accumulation in primary adipocytes and high-fat diet (HFD)-fed mice. Notably, adipocyte-specific overexpression of acyl-coenzyme A synthetase long-chain family member 4 (<em>Acsl4</em>) or deletion of ferritin heavy chain (<em>F</em><em>th</em>) protects mice from HFD-induced adipose expansion and metabolic disorders via activation of ferroptotic signaling. Mechanistically, we find that 5,15-dihydroxyeicosatetraenoic acid (5,15-DiHETE) activates ferroptotic signaling, resulting in the degradation of hypoxia-inducible factor-1α (HIF1α), thereby derepressing a thermogenic program regulated by the c-Myc-peroxisome proliferator-activated receptor gamma coactivator-1 beta (Pgc1β) pathway. Our findings suggest that activating ferroptosis signaling in adipose tissues might help to prevent and treat obesity and its related metabolic disorders.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"83 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice. Methionine supplementation restores DNA methylation of the Ddit4 promoter in a DNMT3A-dependent manner, thereby inhibiting activating transcription factor 4 (ATF4)-mediated Ddit4 transcription. Thus, with the identification of the methionine/SAM-DNMT3A/DNA hypomethylation-Ddit4/REDD1 axis, our study provides molecular insights into an epigenetic mechanism underlying cancer cachexia, and it suggests nutrient supplementation as a promising therapeutic strategy to prevent or reverse cachectic muscle atrophy.
{"title":"Disrupted methionine cycle triggers muscle atrophy in cancer cachexia through epigenetic regulation of REDD1","authors":"Kai Lin, Lulu Wei, Ranran Wang, Li Li, Shiyu Song, Fei Wang, Meiwei He, Wenyuan Pu, Jinglin Wang, Junaid Wazir, Wangsen Cao, Xiaozhong Yang, Eckardt Treuter, Rongrong Fan, Yongxiang Wang, Zhiqiang Huang, Hongwei Wang","doi":"10.1016/j.cmet.2024.10.017","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.017","url":null,"abstract":"The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (<em>Ddit4</em>) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice. Methionine supplementation restores DNA methylation of the <em>Ddit4</em> promoter in a DNMT3A-dependent manner, thereby inhibiting activating transcription factor 4 (ATF4)-mediated <em>Ddit4</em> transcription. Thus, with the identification of the methionine/SAM-DNMT3A/DNA hypomethylation-<em>Ddit4</em>/REDD1 axis, our study provides molecular insights into an epigenetic mechanism underlying cancer cachexia, and it suggests nutrient supplementation as a promising therapeutic strategy to prevent or reverse cachectic muscle atrophy.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"80 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23DOI: 10.1016/j.cmet.2024.11.009
Amelia M. Douglass, Hakan Kucukdereli, Joseph C. Madara, Daqing Wang, Chen Wu, Elijah D. Lowenstein, Jenkang Tao, Bradford B. Lowell
When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice. We discovered new forms of AgRP neuron regulation, including fast pre-ingestive decreases in activity and unexpectedly rapid activation by fasting. Furthermore, AgRP neuron activity has a circadian rhythm that peaks concurrent with the daily feeding onset. Importantly, this rhythm persists when nutrition is provided via constant-rate gastric infusions. Hence, it is not secondary to a circadian feeding rhythm. The AgRP neuron rhythm is driven by the circadian clock, the suprachiasmatic nucleus (SCN), as SCN ablation abolishes the circadian rhythm in AgRP neuron activity and feeding. The SCN activates AgRP neurons via excitatory afferents from thyrotrophin-releasing hormone-expressing neurons in the dorsomedial hypothalamus (DMHTrh neurons) to drive daily feeding rhythms.
{"title":"Acute and circadian feedforward regulation of agouti-related peptide hunger neurons","authors":"Amelia M. Douglass, Hakan Kucukdereli, Joseph C. Madara, Daqing Wang, Chen Wu, Elijah D. Lowenstein, Jenkang Tao, Bradford B. Lowell","doi":"10.1016/j.cmet.2024.11.009","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.009","url":null,"abstract":"When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous <em>in vivo</em> fiber-photometry recordings in mice. We discovered new forms of AgRP neuron regulation, including fast pre-ingestive decreases in activity and unexpectedly rapid activation by fasting. Furthermore, AgRP neuron activity has a circadian rhythm that peaks concurrent with the daily feeding onset. Importantly, this rhythm persists when nutrition is provided via constant-rate gastric infusions. Hence, it is not secondary to a circadian feeding rhythm. The AgRP neuron rhythm is driven by the circadian clock, the suprachiasmatic nucleus (SCN), as SCN ablation abolishes the circadian rhythm in AgRP neuron activity and feeding. The SCN activates AgRP neurons via excitatory afferents from thyrotrophin-releasing hormone-expressing neurons in the dorsomedial hypothalamus (DMH<sup><em>Trh</em></sup> neurons) to drive daily feeding rhythms.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"92 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1016/j.cmet.2024.11.008
Aijun Long, Yazhuo Wang, Yihua Guo, Jie Hong, Guang Ning, Zhuoxian Meng, Jiqiu Wang, Yiguo Wang
Glucagon is essential for glucose homeostasis, and its dysregulation is associated with diabetes. Despite extensive research, the mechanisms governing glucagon secretion remain incompletely understood. Here, we unveil that famsin, a gut-secreted hormone, promotes glucagon release and modulates glucose homeostasis. Mechanistically, famsin binds to its receptor OLFR796 in mice (OR10P1 in humans), initiating calcium release in the endoplasmic reticulum of islet α cells. This process triggers glucagon secretion, consequently promoting hepatic glucose production through glucagon signaling. Furthermore, deficiency of famsin signaling reduces hepatic glucose production and lowers blood glucose levels, underscoring the significance of the famsin-glucagon axis in glucose homeostasis. Therefore, our findings establish famsin as a crucial regulator of glucagon secretion and provide valuable insights into the intricate gut-islet-liver interorgan crosstalk that maintains glucose homeostasis.
{"title":"A famsin-glucagon axis mediates glucose homeostasis","authors":"Aijun Long, Yazhuo Wang, Yihua Guo, Jie Hong, Guang Ning, Zhuoxian Meng, Jiqiu Wang, Yiguo Wang","doi":"10.1016/j.cmet.2024.11.008","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.11.008","url":null,"abstract":"Glucagon is essential for glucose homeostasis, and its dysregulation is associated with diabetes. Despite extensive research, the mechanisms governing glucagon secretion remain incompletely understood. Here, we unveil that famsin, a gut-secreted hormone, promotes glucagon release and modulates glucose homeostasis. Mechanistically, famsin binds to its receptor OLFR796 in mice (OR10P1 in humans), initiating calcium release in the endoplasmic reticulum of islet α cells. This process triggers glucagon secretion, consequently promoting hepatic glucose production through glucagon signaling. Furthermore, deficiency of famsin signaling reduces hepatic glucose production and lowers blood glucose levels, underscoring the significance of the famsin-glucagon axis in glucose homeostasis. Therefore, our findings establish famsin as a crucial regulator of glucagon secretion and provide valuable insights into the intricate gut-islet-liver interorgan crosstalk that maintains glucose homeostasis.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"262 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}