首页 > 最新文献

Cell metabolism最新文献

英文 中文
Adipocyte-derived extracellular vesicles are key regulators of central leptin sensitivity and energy homeostasis 脂肪细胞衍生的细胞外囊泡是中枢瘦素敏感性和能量稳态的关键调节因子
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-11 DOI: 10.1016/j.cmet.2025.10.005
Jin Wang, Xuhong Zhang, Ye Zhu, Haixiang Sun, Xuetao Chen, Zhicong Zhao, Nina Zhang, Chenyu Zhang, Liang Li, Yan Bi
The exact mechanisms underlying leptin resistance, the central mechanism of obesity, remain elusive. Herein, we demonstrate that adipocyte-derived extracellular vesicles (Ad-EVs) serve as key regulatory factors of hypothalamic circuits governing food intake and body weight by modulating leptin responsiveness. Specifically, we identified a subset of microRNA (miRNA) within Ad-EVs that exerts leptin-sensitizing effects by inhibiting negative feedback regulators of leptin receptor signaling. Loss of these leptin-sensitizing miRNAs in Ad-EVs contributes to leptin resistance and subsequent weight gain in obesity. Of note, we developed engineered EVs modified with specific Ad-EV membrane proteins for targeted delivery of leptin-sensitizing miRNAs to the central nervous system, which reversed central leptin resistance and induced significant weight loss in obese mice. These findings highlight the critical role of Ad-EVs in central leptin sensitivity regulation, offering new insights into the role of the adipose tissue-brain axis in maintaining energy balance and potential pharmacological targets for obesity treatment.
瘦素抵抗的确切机制,即肥胖的核心机制,仍然难以捉摸。在此,我们证明脂肪细胞衍生的细胞外囊泡(Ad-EVs)通过调节瘦素反应作为下丘脑回路控制食物摄入和体重的关键调节因子。具体来说,我们在ad - ev中发现了一个microRNA (miRNA)亚群,它通过抑制瘦素受体信号的负反馈调节来发挥瘦素增敏作用。ad - ev中这些瘦素敏感mirna的缺失有助于瘦素抵抗和随后的肥胖体重增加。值得注意的是,我们开发了用特异性Ad-EV膜蛋白修饰的工程化ev,用于靶向递送瘦素敏感mirna到中枢神经系统,从而逆转了中枢瘦素抵抗,并诱导肥胖小鼠显著体重减轻。这些发现强调了ad - ev在中枢瘦素敏感性调节中的关键作用,为脂肪组织-脑轴在维持能量平衡中的作用和肥胖治疗的潜在药理靶点提供了新的见解。
{"title":"Adipocyte-derived extracellular vesicles are key regulators of central leptin sensitivity and energy homeostasis","authors":"Jin Wang, Xuhong Zhang, Ye Zhu, Haixiang Sun, Xuetao Chen, Zhicong Zhao, Nina Zhang, Chenyu Zhang, Liang Li, Yan Bi","doi":"10.1016/j.cmet.2025.10.005","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.005","url":null,"abstract":"The exact mechanisms underlying leptin resistance, the central mechanism of obesity, remain elusive. Herein, we demonstrate that adipocyte-derived extracellular vesicles (Ad-EVs) serve as key regulatory factors of hypothalamic circuits governing food intake and body weight by modulating leptin responsiveness. Specifically, we identified a subset of microRNA (miRNA) within Ad-EVs that exerts leptin-sensitizing effects by inhibiting negative feedback regulators of leptin receptor signaling. Loss of these leptin-sensitizing miRNAs in Ad-EVs contributes to leptin resistance and subsequent weight gain in obesity. Of note, we developed engineered EVs modified with specific Ad-EV membrane proteins for targeted delivery of leptin-sensitizing miRNAs to the central nervous system, which reversed central leptin resistance and induced significant weight loss in obese mice. These findings highlight the critical role of Ad-EVs in central leptin sensitivity regulation, offering new insights into the role of the adipose tissue-brain axis in maintaining energy balance and potential pharmacological targets for obesity treatment.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"47 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145485829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catenibacterium mitsuokai promotes hepatocellular carcinogenesis by binding to hepatocytes and generating quinolinic acid Catenibacterium mitsuokai通过与肝细胞结合并产生喹啉酸促进肝细胞癌变
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-06 DOI: 10.1016/j.cmet.2025.10.024
Ying Zhang, Weixin Liu, Chi Chun Wong, Qian Song, Xinyue Zhang, Qianying Zhou, Xuxin Ren, Xiaoxue Ren, Ruiyan Xuan, Yutong Zhao, Linfu Xu, Xiaoxing Li, Lixia Xu, Xiang Zhang, Ming Kuang, Jun Yu
(Cell Metabolism 37, 1998–2013.e1–e7; October 7, 2025)
(细胞代谢37,1998 - 2013.01 - e7; 2025年10月7日)
{"title":"Catenibacterium mitsuokai promotes hepatocellular carcinogenesis by binding to hepatocytes and generating quinolinic acid","authors":"Ying Zhang, Weixin Liu, Chi Chun Wong, Qian Song, Xinyue Zhang, Qianying Zhou, Xuxin Ren, Xiaoxue Ren, Ruiyan Xuan, Yutong Zhao, Linfu Xu, Xiaoxing Li, Lixia Xu, Xiang Zhang, Ming Kuang, Jun Yu","doi":"10.1016/j.cmet.2025.10.024","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.024","url":null,"abstract":"(Cell Metabolism <em>37</em>, 1998–2013.e1–e7; October 7, 2025)","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"728 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145447676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary fat disrupts a commensal-host lipid network that promotes metabolic health 膳食脂肪破坏了促进代谢健康的共栖宿主脂质网络
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-06 DOI: 10.1016/j.cmet.2025.10.007
Kendra Klag, Darci Ott, Trevor S. Tippetts, Rebekah J. Nicolson, Sean M. Tatum, Kaylyn M. Bauer, Emmanuel Stephen-Victor, Allison M. Weis, Rickesha Bell, James Weagley, J. Alan Maschek, Dai Long Vu, Stacey Heaver, Ruth Ley, Ryan O’Connell, William L. Holland, Scott A. Summers, W. Zac Stephens, June L. Round
The microbiota influences metabolic health; however, few specific microbial molecules and mechanisms have been identified. We isolated a Turicibacter strain from a community of spore-forming bacteria that promotes leanness in mice. Human metagenomic analysis demonstrates reduced Turicibacter abundance in individuals with obesity. Similarly, a high-fat diet reduces Turicibacter colonization, preventing its weight-suppressive effects, which can be overcome with continuous Turicibacter supplementation. Ceramides accumulate during a high-fat diet and promote weight gain. Transcriptomics and lipidomics reveal that the spore-forming community and Turicibacter suppress host ceramides. Turicibacter produces unique lipids, which are reduced during a high-fat diet. These lipids can be transferred to host epithelial cells, reduce ceramide production, and decrease fat uptake. Treatment of animals with purified Turicibacter lipids prevents obesity, demonstrating that bacterial lipids can promote host metabolic health. These data identify a lipid metabolic circuit between bacteria and host that is disrupted by diet and can be targeted therapeutically.
微生物群影响代谢健康;然而,很少有特定的微生物分子和机制被确定。我们从一个促进小鼠瘦的孢子形成细菌群落中分离出一株Turicibacter菌株。人类宏基因组分析显示肥胖个体中Turicibacter丰度降低。同样,高脂肪饮食减少了Turicibacter的定植,阻止了其体重抑制作用,这可以通过持续补充Turicibacter来克服。神经酰胺在高脂肪饮食中积累,促进体重增加。转录组学和脂质组学表明,孢子形成群落和Turicibacter抑制宿主神经酰胺。Turicibacter产生独特的脂质,在高脂肪饮食中会减少。这些脂质可以转移到宿主上皮细胞,减少神经酰胺的产生,减少脂肪的摄取。用纯化的Turicibacter脂质治疗动物可以预防肥胖,表明细菌脂质可以促进宿主代谢健康。这些数据确定了细菌和宿主之间的脂质代谢回路被饮食破坏,可以靶向治疗。
{"title":"Dietary fat disrupts a commensal-host lipid network that promotes metabolic health","authors":"Kendra Klag, Darci Ott, Trevor S. Tippetts, Rebekah J. Nicolson, Sean M. Tatum, Kaylyn M. Bauer, Emmanuel Stephen-Victor, Allison M. Weis, Rickesha Bell, James Weagley, J. Alan Maschek, Dai Long Vu, Stacey Heaver, Ruth Ley, Ryan O’Connell, William L. Holland, Scott A. Summers, W. Zac Stephens, June L. Round","doi":"10.1016/j.cmet.2025.10.007","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.007","url":null,"abstract":"The microbiota influences metabolic health; however, few specific microbial molecules and mechanisms have been identified. We isolated a <em>Turicibacter</em> strain from a community of spore-forming bacteria that promotes leanness in mice. Human metagenomic analysis demonstrates reduced <em>Turicibacter</em> abundance in individuals with obesity. Similarly, a high-fat diet reduces <em>Turicibacter</em> colonization, preventing its weight-suppressive effects, which can be overcome with continuous <em>Turicibacter</em> supplementation. Ceramides accumulate during a high-fat diet and promote weight gain. Transcriptomics and lipidomics reveal that the spore-forming community and <em>Turicibacter</em> suppress host ceramides. <em>Turicibacter</em> produces unique lipids, which are reduced during a high-fat diet. These lipids can be transferred to host epithelial cells, reduce ceramide production, and decrease fat uptake. Treatment of animals with purified <em>Turicibacter</em> lipids prevents obesity, demonstrating that bacterial lipids can promote host metabolic health. These data identify a lipid metabolic circuit between bacteria and host that is disrupted by diet and can be targeted therapeutically.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"1 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145447678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lighting up arginine metabolism reveals its functional diversity in physiology and pathology 点亮精氨酸代谢揭示了其生理病理功能的多样性
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-05 DOI: 10.1016/j.cmet.2025.10.023
Rui Li, Yan Li, Kun Jiang, Lijuan Zhang, Ting Li, Aihua Zhao, Zhuo Zhang, Yale Xia, Kun Ge, Yaqiong Chen, Chengnuo Wang, Weitao Tang, Shuning Liu, Xiaoxi Lin, Yuqin Song, Jie Mei, Chun Xiao, Aoxue Wang, Yejun Zou, Xie Li, Xianjun Chen, Zhenyu Ju, Wei Jia, Joseph Loscalzo, Yu Sun, Wei Fang, Yi Yang, Yuzheng Zhao
{"title":"Lighting up arginine metabolism reveals its functional diversity in physiology and pathology","authors":"Rui Li, Yan Li, Kun Jiang, Lijuan Zhang, Ting Li, Aihua Zhao, Zhuo Zhang, Yale Xia, Kun Ge, Yaqiong Chen, Chengnuo Wang, Weitao Tang, Shuning Liu, Xiaoxi Lin, Yuqin Song, Jie Mei, Chun Xiao, Aoxue Wang, Yejun Zou, Xie Li, Xianjun Chen, Zhenyu Ju, Wei Jia, Joseph Loscalzo, Yu Sun, Wei Fang, Yi Yang, Yuzheng Zhao","doi":"10.1016/j.cmet.2025.10.023","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.023","url":null,"abstract":"","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"166 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145441527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat 12-脂氧合酶通过从棕色脂肪中产生-3脂质12-HEPE调节冷适应和葡萄糖代谢
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-05 DOI: 10.1016/j.cmet.2025.10.019
Luiz Osório Leiria, Chih-Hao Wang, Matthew D. Lynes, Kunyan Yang, Farnaz Shamsi, Mari Sato, Satoru Sugimoto, Emily Y. Chen, Valerie Bussberg, Niven R. Narain, Brian E. Sansbury, Justin Darcy, Tian Lian Huang, Sean D. Kodani, Masaji Sakaguchi, Andréa L. Rocha, Tim J. Schulz, Alexander Bartelt, Gökhan S. Hotamisligil, Michael F. Hirshman, Yu-Hua Tseng
(Cell Metabolism 30, 768–783.e1–e7; October 1, 2019)
(细胞代谢30,768-783.e1-e7; 2019年10月1日)
{"title":"12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat","authors":"Luiz Osório Leiria, Chih-Hao Wang, Matthew D. Lynes, Kunyan Yang, Farnaz Shamsi, Mari Sato, Satoru Sugimoto, Emily Y. Chen, Valerie Bussberg, Niven R. Narain, Brian E. Sansbury, Justin Darcy, Tian Lian Huang, Sean D. Kodani, Masaji Sakaguchi, Andréa L. Rocha, Tim J. Schulz, Alexander Bartelt, Gökhan S. Hotamisligil, Michael F. Hirshman, Yu-Hua Tseng","doi":"10.1016/j.cmet.2025.10.019","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.019","url":null,"abstract":"(Cell Metabolism <em>30</em>, 768–783.e1–e7; October 1, 2019)","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"40 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145442010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAD depletion in skeletal muscle does not compromise muscle function or accelerate aging 骨骼肌中NAD的消耗不会损害肌肉功能或加速衰老
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-05 DOI: 10.1016/j.cmet.2025.10.020
Sabina Chubanava, Iuliia Karavaeva, Amy M. Ehrlich, Roger M. Justicia, Astrid L. Basse, Ivan Kulik, Emilie Dalbram, Danial Ahwazi, Samuel R. Heaselgrave, Kajetan Trošt, Ben Stocks, Ondřej Hodek, Raissa N. Rodrigues, Jesper F. Havelund, Farina L. Schlabs, Steen Larsen, Caio Y. Yonamine, Carlos Henriquez-Olguín, Daniela Giustarini, Ranieri Rossi, Zachary Gerhart-Hines, Thomas Moritz, Juleen R. Zierath, Kei Sakamoto, Thomas E. Jensen, Nils J. Færgeman, Gareth G. Lavery, Atul S. Deshmukh, Jonas T. Treebak
{"title":"NAD depletion in skeletal muscle does not compromise muscle function or accelerate aging","authors":"Sabina Chubanava, Iuliia Karavaeva, Amy M. Ehrlich, Roger M. Justicia, Astrid L. Basse, Ivan Kulik, Emilie Dalbram, Danial Ahwazi, Samuel R. Heaselgrave, Kajetan Trošt, Ben Stocks, Ondřej Hodek, Raissa N. Rodrigues, Jesper F. Havelund, Farina L. Schlabs, Steen Larsen, Caio Y. Yonamine, Carlos Henriquez-Olguín, Daniela Giustarini, Ranieri Rossi, Zachary Gerhart-Hines, Thomas Moritz, Juleen R. Zierath, Kei Sakamoto, Thomas E. Jensen, Nils J. Færgeman, Gareth G. Lavery, Atul S. Deshmukh, Jonas T. Treebak","doi":"10.1016/j.cmet.2025.10.020","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.020","url":null,"abstract":"","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"39 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145441526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging genetic and phenotypic variation to discover metabolite-protein interactions 利用遗传和表型变异来发现代谢-蛋白质的相互作用
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-04 DOI: 10.1016/j.cmet.2025.10.008
Gregory S. Ducker, Jared Rutter
How metabolites regulate protein function is still poorly understood. Leveraging the power of genetic variation, Xiao et al. built a global protein-metabolite covariation dataset to reveal novel protein-metabolite regulations in mouse that led to the discovery of cysteine catabolism as an unexpected regulator of cholesterol.
代谢物如何调节蛋白质功能仍然知之甚少。利用遗传变异的力量,Xiao等人建立了一个全球蛋白质-代谢物共变异数据集,揭示了小鼠中蛋白质-代谢物的新调控,从而发现了半胱氨酸分解代谢作为胆固醇的意想不到的调节剂。
{"title":"Leveraging genetic and phenotypic variation to discover metabolite-protein interactions","authors":"Gregory S. Ducker, Jared Rutter","doi":"10.1016/j.cmet.2025.10.008","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.008","url":null,"abstract":"How metabolites regulate protein function is still poorly understood. Leveraging the power of genetic variation, Xiao et al. built a global protein-metabolite covariation dataset to reveal novel protein-metabolite regulations in mouse that led to the discovery of cysteine catabolism as an unexpected regulator of cholesterol.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"130 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the ventromedial hypothalamus in glycemic responses 腹内侧下丘脑在血糖反应中的作用
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-04 DOI: 10.1016/j.cmet.2025.10.004
Kaylee Zilinger, Rachel J. Perry
Mechanisms that preserve glucose homeostasis are highly conserved across species, with the brain playing a central role in regulating these counterregulatory responses. However, the exact neural circuits underlying this regulation remain poorly understood. The previewed papers illuminate how the ventromedial hypothalamus orchestrates glycemic responses through brain-liver communication during periods of increased glucose demand.
维持葡萄糖稳态的机制在物种间是高度保守的,大脑在调节这些反调节反应中起着核心作用。然而,这种调节背后的确切神经回路仍然知之甚少。这些论文阐明了下丘脑腹内侧如何在葡萄糖需求增加期间通过脑-肝通讯协调血糖反应。
{"title":"The role of the ventromedial hypothalamus in glycemic responses","authors":"Kaylee Zilinger, Rachel J. Perry","doi":"10.1016/j.cmet.2025.10.004","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.004","url":null,"abstract":"Mechanisms that preserve glucose homeostasis are highly conserved across species, with the brain playing a central role in regulating these counterregulatory responses. However, the exact neural circuits underlying this regulation remain poorly understood. The previewed papers illuminate how the ventromedial hypothalamus orchestrates glycemic responses through brain-liver communication during periods of increased glucose demand.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"112 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When more is not worse: Genetic subtypes of obesity challenge conventional risk paradigms 当更多不是更糟:肥胖的遗传亚型挑战传统的风险范式
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-04 DOI: 10.1016/j.cmet.2025.10.002
Hanieh Yaghootkar
Emerging evidence challenges the view of obesity as a uniform metabolic risk. Spotlighting the recent Nature Medicine study by Chami et al.,1 this piece discusses how “uncoupling” adiposity from its cardiometabolic consequences reveals biologically distinct subtypes of obesity. Integrating imaging and multi-omics offers a promising path toward personalized obesity management and deeper mechanistic insight.
新出现的证据挑战了肥胖是一种统一的代谢风险的观点。在Chami等人最近的《自然医学》研究中,这篇文章讨论了从心脏代谢结果中“解耦”肥胖如何揭示出生物学上不同的肥胖亚型。整合成像和多组学为个性化肥胖管理和更深入的机制洞察提供了有希望的途径。
{"title":"When more is not worse: Genetic subtypes of obesity challenge conventional risk paradigms","authors":"Hanieh Yaghootkar","doi":"10.1016/j.cmet.2025.10.002","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.002","url":null,"abstract":"Emerging evidence challenges the view of obesity as a uniform metabolic risk. Spotlighting the recent <em>Nature Medicine</em> study by Chami et al.,<span><span><sup>1</sup></span></span> this piece discusses how “uncoupling” adiposity from its cardiometabolic consequences reveals biologically distinct subtypes of obesity. Integrating imaging and multi-omics offers a promising path toward personalized obesity management and deeper mechanistic insight.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"43 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cystine import and oxidative catabolism fuel vascular growth and repair via nutrient-responsive histone acetylation 胱氨酸输入和氧化分解代谢通过营养反应性组蛋白乙酰化促进血管生长和修复
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-31 DOI: 10.1016/j.cmet.2025.10.003
Maria-Kyriaki Drekolia, Janina Mettner, Daiyu Wang, Fredy Delgado Lagos, Christian Koch, Dennis Hecker, Jeanette Eresch, Yifang Mao, Marion Bähr, Dieter Weichenhan, Julio Cordero, Janina Wittig, Boran Zhang, Hanyu Cui, Xiaoming Li, James A. Oo, Andreas Weigert, Mauro Siragusa, Stephan Klatt, Ingrid Fleming, Sofia-Iris Bibli
Endothelial metabolism underpins tissue regeneration, health, and longevity. We uncover a nuclear oxidative catabolic pathway linking cystine to gene regulation. Cells preparing to proliferate upregulate the SLC7A11 transporter to import cystine, which is oxidatively catabolized by cystathionine-γ-lyase (CSE) in the nucleus. This generates acetyl units via pyruvate dehydrogenase, driving site-specific histone H3 acetylation and chromatin remodeling that sustain endothelial transcription and proliferation. Combined loss of SLC7A11 and CSE abolishes cystine oxidative and reductive metabolism and causes embryonic lethality, whereas single deletions reveal distinct effects. SLC7A11 deficiency triggers compensatory cysteine de novo biosynthesis, partially maintaining angiogenesis, while CSE deletion disrupts nuclear cystine oxidative catabolism, transcription, and vessel formation. Therapeutically, cystine supplementation promotes vascular repair in retinopathy of prematurity, myocardial infarction, and injury in aging. These findings establish the role of cystine nuclear oxidative catabolism as a fundamental metabolic axis coupling nutrient utilization to gene regulation, with implications for vascular regeneration.
内皮代谢是组织再生、健康和长寿的基础。我们发现了一个核氧化分解代谢途径,将胱氨酸与基因调控联系起来。准备增殖的细胞上调SLC7A11转运体以输入胱氨酸,胱氨酸在细胞核中被胱氨酸-γ-裂解酶(CSE)氧化分解。这通过丙酮酸脱氢酶产生乙酰基单位,驱动位点特异性组蛋白H3乙酰化和染色质重塑,维持内皮细胞的转录和增殖。SLC7A11和CSE的联合缺失会破坏胱氨酸的氧化和还原代谢,导致胚胎死亡,而单个缺失则有不同的影响。SLC7A11缺陷触发代偿性半胱氨酸从头合成,部分维持血管生成,而CSE缺失破坏核胱氨酸氧化分解代谢、转录和血管形成。在治疗上,补充胱氨酸可促进早产儿视网膜病变、心肌梗死和衰老损伤的血管修复。这些发现确定了胱氨酸核氧化分解代谢作为一个基本代谢轴的作用,将营养利用与基因调控结合起来,这对血管再生具有重要意义。
{"title":"Cystine import and oxidative catabolism fuel vascular growth and repair via nutrient-responsive histone acetylation","authors":"Maria-Kyriaki Drekolia, Janina Mettner, Daiyu Wang, Fredy Delgado Lagos, Christian Koch, Dennis Hecker, Jeanette Eresch, Yifang Mao, Marion Bähr, Dieter Weichenhan, Julio Cordero, Janina Wittig, Boran Zhang, Hanyu Cui, Xiaoming Li, James A. Oo, Andreas Weigert, Mauro Siragusa, Stephan Klatt, Ingrid Fleming, Sofia-Iris Bibli","doi":"10.1016/j.cmet.2025.10.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2025.10.003","url":null,"abstract":"Endothelial metabolism underpins tissue regeneration, health, and longevity. We uncover a nuclear oxidative catabolic pathway linking cystine to gene regulation. Cells preparing to proliferate upregulate the SLC7A11 transporter to import cystine, which is oxidatively catabolized by cystathionine-γ-lyase (CSE) in the nucleus. This generates acetyl units via pyruvate dehydrogenase, driving site-specific histone H3 acetylation and chromatin remodeling that sustain endothelial transcription and proliferation. Combined loss of SLC7A11 and CSE abolishes cystine oxidative and reductive metabolism and causes embryonic lethality, whereas single deletions reveal distinct effects. SLC7A11 deficiency triggers compensatory cysteine <em>de novo</em> biosynthesis, partially maintaining angiogenesis, while CSE deletion disrupts nuclear cystine oxidative catabolism, transcription, and vessel formation. Therapeutically, cystine supplementation promotes vascular repair in retinopathy of prematurity, myocardial infarction, and injury in aging. These findings establish the role of cystine nuclear oxidative catabolism as a fundamental metabolic axis coupling nutrient utilization to gene regulation, with implications for vascular regeneration.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"67 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145404394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1