Pub Date : 2024-05-13DOI: 10.1007/s10553-024-01676-z
T. V. Prokofieva, S. S. Kruglov, S. S. Kruglov, B. P. Tumanyan
The article reviews the most common analytical methods for calculating the parameters of minimum reflux condition during fractionation of multicomponent mixtures, taking account of the specified separation products quality requirements. A calculation procedure that makes it possible to simplify determination of minimum reflux or vapor ratios as well as of distillate or residue compositions under minimum reflux condition compared to the known methods is proposed and described.
{"title":"A New Approach to Calculating Minimum Reflux Condition During Multicomponent Mixture Fractionation","authors":"T. V. Prokofieva, S. S. Kruglov, S. S. Kruglov, B. P. Tumanyan","doi":"10.1007/s10553-024-01676-z","DOIUrl":"https://doi.org/10.1007/s10553-024-01676-z","url":null,"abstract":"<p>The article reviews the most common analytical methods for calculating the parameters of minimum reflux condition during fractionation of multicomponent mixtures, taking account of the specified separation products quality requirements. A calculation procedure that makes it possible to simplify determination of minimum reflux or vapor ratios as well as of distillate or residue compositions under minimum reflux condition compared to the known methods is proposed and described.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"18 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shale gas is an extremely important unconventional oil and gas resource, and its efficient development can effectively alleviate the current tense energy situation. However, shale gas reservoirs often have extremely poor permeability, and reservoir transformation has become a key technology for achieving their efficient development. However, the commonly used hydraulic fracturing technology is difficult to achieve its target production capacity, and other engineering technologies related to reservoir transformation urgently need to be proposed and attempted. The synergistic operation of oxidation dissolution and acid fracturing may provide new ideas for the effective transformation of shale reservoirs. To this end, a comparative analysis was conducted on the synergistic effects of oxidation dissolution and acid fracturing operations in improving shale gas production capacity. The research results indicate that the dissolution effect of oxidants is more effective than acid solution in the transformation process of shale reservoirs. The use of acid only widens the crack width from the initial 4.4 mm to the final 5.1 mm. However, the use of oxidants will result in the final width of hydraulic fractures reaching 8.3 mm. Meanwhile, the effects of acid concentration and oxidant concentration on hydraulic fracture conductivity and shale gas production capacity were investigated. The results indicate that increasing the acid concentration below the low concentration range can significantly enhance the fracture conductivity, thereby promoting the production capacity of shale gas. However, within a higher concentration range, its effect on shale gas production is significantly limited. It is recommended to set the acid concentration design value at 0.5 wt% during the acidizing and fracturing reservoir transformation process of the shale gas reservoir in Changning block. In addition, an increase in the concentration of oxidants can widen the width of fractures and increase permeability, thereby promoting the migration and extraction of shale gas. To avoid the increase in development costs caused by high oxidant concentration in the working fluid, it is recommended to design the oxidant concentration at 3 wt%.
{"title":"Synergistic Effect of Oxidation Dissolution and Acid Fracturing in Improving Shale Gas Production Capacity","authors":"Yongjun Xiao, Wenhan Yue, Chunlin Wu, Zhi Chen, Bingxiao Liu, Ran Wen","doi":"10.1007/s10553-024-01688-9","DOIUrl":"https://doi.org/10.1007/s10553-024-01688-9","url":null,"abstract":"<p>Shale gas is an extremely important unconventional oil and gas resource, and its efficient development can effectively alleviate the current tense energy situation. However, shale gas reservoirs often have extremely poor permeability, and reservoir transformation has become a key technology for achieving their efficient development. However, the commonly used hydraulic fracturing technology is difficult to achieve its target production capacity, and other engineering technologies related to reservoir transformation urgently need to be proposed and attempted. The synergistic operation of oxidation dissolution and acid fracturing may provide new ideas for the effective transformation of shale reservoirs. To this end, a comparative analysis was conducted on the synergistic effects of oxidation dissolution and acid fracturing operations in improving shale gas production capacity. The research results indicate that the dissolution effect of oxidants is more effective than acid solution in the transformation process of shale reservoirs. The use of acid only widens the crack width from the initial 4.4 mm to the final 5.1 mm. However, the use of oxidants will result in the final width of hydraulic fractures reaching 8.3 mm. Meanwhile, the effects of acid concentration and oxidant concentration on hydraulic fracture conductivity and shale gas production capacity were investigated. The results indicate that increasing the acid concentration below the low concentration range can significantly enhance the fracture conductivity, thereby promoting the production capacity of shale gas. However, within a higher concentration range, its effect on shale gas production is significantly limited. It is recommended to set the acid concentration design value at 0.5 wt% during the acidizing and fracturing reservoir transformation process of the shale gas reservoir in Changning block. In addition, an increase in the concentration of oxidants can widen the width of fractures and increase permeability, thereby promoting the migration and extraction of shale gas. To avoid the increase in development costs caused by high oxidant concentration in the working fluid, it is recommended to design the oxidant concentration at 3 wt%.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"185 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1007/s10553-024-01681-2
O. V. Ostolopovskaya, Mohammed A. Khelkhal, A. A. Eskin, A. V. Vakhin
This study investigates the catalytic effects of Nickel-ligated catalysts derived from tall oil (NiTO) and sunflower oil (NiSFO) on the oxidation of heavy oil. Thermogravimetric (TG) analysis were employed to assess the thermal behavior and kinetics of heavy oil degradation. The Friedman isoconversional method provided the activation energies (Ea ), which were then used to derive thermodynamic parameters including changes in enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG). The TG analysis revealed that both NiTO and NiSFO influence the degradation kinetics of heavy oil. Moreover, NiTO exhibited a consistent catalytic effect across a wide range of conversions, lowering the onset temperature of degradation and promoting faster degradation rates, which suggests a rapid breakdown at lower temperatures. Conversely, NiSFO demonstrated a substantial decrease in activation energy at mid-range conversions, indicating a highly efficient catalysis during these stages. In addition, thermodynamic analysis indicated that both catalysts alter the energetic profile of the reaction. Notably, NiSFO reduced ΔG significantly at lower conversions, enhancing the spontaneity of the reaction, while NiTO was associated with lower ΔG values across most conversions, implying a more favorable reaction throughout the process. The findings suggest that the choice of catalyst can be tailored based on the desired conversion range and reaction spontaneity in industrial heavy oil processing. These insights could be crucial for optimizing thermal treatments in heavy oil upgrading, offering potential improvements in the efficiency of in-situ combustion and enhanced oil recovery technologies.
{"title":"Thermogravimetric Analysis of Heavy Oil Oxidation in the Presence of Nickel Based Catalysts","authors":"O. V. Ostolopovskaya, Mohammed A. Khelkhal, A. A. Eskin, A. V. Vakhin","doi":"10.1007/s10553-024-01681-2","DOIUrl":"https://doi.org/10.1007/s10553-024-01681-2","url":null,"abstract":"<p>This study investigates the catalytic effects of Nickel-ligated catalysts derived from tall oil (NiTO) and sunflower oil (NiSFO) on the oxidation of heavy oil. Thermogravimetric (TG) analysis were employed to assess the thermal behavior and kinetics of heavy oil degradation. The Friedman isoconversional method provided the activation energies (Ea ), which were then used to derive thermodynamic parameters including changes in enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG). The TG analysis revealed that both NiTO and NiSFO influence the degradation kinetics of heavy oil. Moreover, NiTO exhibited a consistent catalytic effect across a wide range of conversions, lowering the onset temperature of degradation and promoting faster degradation rates, which suggests a rapid breakdown at lower temperatures. Conversely, NiSFO demonstrated a substantial decrease in activation energy at mid-range conversions, indicating a highly efficient catalysis during these stages. In addition, thermodynamic analysis indicated that both catalysts alter the energetic profile of the reaction. Notably, NiSFO reduced ΔG significantly at lower conversions, enhancing the spontaneity of the reaction, while NiTO was associated with lower ΔG values across most conversions, implying a more favorable reaction throughout the process. The findings suggest that the choice of catalyst can be tailored based on the desired conversion range and reaction spontaneity in industrial heavy oil processing. These insights could be crucial for optimizing thermal treatments in heavy oil upgrading, offering potential improvements in the efficiency of in-situ combustion and enhanced oil recovery technologies.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"35 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1007/s10553-024-01687-w
Yiming Li, Peng Wang, Yiying Liu, Qishuang Yang, Zhongjin Lv, Ning Wang, Haonan Qi, Runyu Liu
As a non-invasive tool, ultrasound waves can be applied to probe gaseous content of the drilling fluid in offshore oil-drilling operations. The approach is believed to improve sensitivity and accuracy of a gas-kick detection system. In this research, four types of bubble flow are designed to simulate undeveloped gas kicks, and their effects on changes of ultrasound waves are investigated. The bubbles are found to have changed power distribution of the sound waves that have been reflected by the bubbles and received by side sensors. The pattern of power spectrum changes around the master frequency is found to be closely related to the type of bubble flow. Such changes are grouped on the basis of cluster analysis, and it is found that bubble strings and bubble groups would produce substantially different effects and that bubble mergences would largely alter spectral property of the sound waves. By establishing relationship between power-change pattern of sound waves and the behavior of a bubble flow, the research is intended to seek a more predictive way of recognizing early-stage gas kicks for offshore oil-drilling practices.
{"title":"Detection of Bubble Flow by Cluster Analysis of Ultrasound Waves’ Spectral Properties","authors":"Yiming Li, Peng Wang, Yiying Liu, Qishuang Yang, Zhongjin Lv, Ning Wang, Haonan Qi, Runyu Liu","doi":"10.1007/s10553-024-01687-w","DOIUrl":"https://doi.org/10.1007/s10553-024-01687-w","url":null,"abstract":"<p>As a non-invasive tool, ultrasound waves can be applied to probe gaseous content of the drilling fluid in offshore oil-drilling operations. The approach is believed to improve sensitivity and accuracy of a gas-kick detection system. In this research, four types of bubble flow are designed to simulate undeveloped gas kicks, and their effects on changes of ultrasound waves are investigated. The bubbles are found to have changed power distribution of the sound waves that have been reflected by the bubbles and received by side sensors. The pattern of power spectrum changes around the master frequency is found to be closely related to the type of bubble flow. Such changes are grouped on the basis of cluster analysis, and it is found that bubble strings and bubble groups would produce substantially different effects and that bubble mergences would largely alter spectral property of the sound waves. By establishing relationship between power-change pattern of sound waves and the behavior of a bubble flow, the research is intended to seek a more predictive way of recognizing early-stage gas kicks for offshore oil-drilling practices.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"37 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1007/s10553-024-01685-y
Tianyu Liu, Zhongbin Ye, Dong Liu
Utilizing emulsion polymerization, a microcapsule breaker with a polystyrene-polyacrylamide core-shell structure was synthesized. Ammonium persulfate served as the breaker, polystyrene as the shell, and polyacrylamide as the drug-carrying agent. The results demonstrated that the synthesized microencapsulated gel-breaker exhibited a uniform spherical shape, superior water dispersion, and enhanced thermal stability. Conductivity tests indicated that the core-shell structure of the microcapsules effectively regulated the release of ammonium persulfate as a gel-breaking agent, resulting in delayed polymer gel-breaking.
{"title":"Preparation and Performance Evaluation of P(St-AM) Microencapsulated Gel-Breaking Agents with Core-Shell Structure","authors":"Tianyu Liu, Zhongbin Ye, Dong Liu","doi":"10.1007/s10553-024-01685-y","DOIUrl":"https://doi.org/10.1007/s10553-024-01685-y","url":null,"abstract":"<p>Utilizing emulsion polymerization, a microcapsule breaker with a polystyrene-polyacrylamide core-shell structure was synthesized. Ammonium persulfate served as the breaker, polystyrene as the shell, and polyacrylamide as the drug-carrying agent. The results demonstrated that the synthesized microencapsulated gel-breaker exhibited a uniform spherical shape, superior water dispersion, and enhanced thermal stability. Conductivity tests indicated that the core-shell structure of the microcapsules effectively regulated the release of ammonium persulfate as a gel-breaking agent, resulting in delayed polymer gel-breaking.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"70 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1007/s10553-024-01678-x
E. M Smirnov, M. I. Rubtsova, V. A. Vinokurov, K. A. Cherednichenko
The feasibility of use of natural nanomaterials, namely, natural aluminosilicate (halloysite) nanotubes and nanocellulose, as modifying additives to commercial polyurethane foam to vary fire resistance and mechanical properties was studied. Series of composite polyurethane foams containing various weight proportions of the modifying additives were obtained via in situ polymerization. The effect of the additives on the polyurethane foam structure, compressibility, and fire resistance was studied. It was observed that introduction of additives into polyurethane foam leads to change of the average pore size and reduction of foams compressibility. However, once the the maximum rigidity of the foam composites was reached, further increase of additive content causes regression of this characteristic. It was also confirmed that increasing additive content positively affects the fire resistance of the produced composites.
{"title":"New Composites Based on Closed-Cell Polyurethane Foam and Natural Nanomaterials","authors":"E. M Smirnov, M. I. Rubtsova, V. A. Vinokurov, K. A. Cherednichenko","doi":"10.1007/s10553-024-01678-x","DOIUrl":"https://doi.org/10.1007/s10553-024-01678-x","url":null,"abstract":"<p>The feasibility of use of natural nanomaterials, namely, natural aluminosilicate (halloysite) nanotubes and nanocellulose, as modifying additives to commercial polyurethane foam to vary fire resistance and mechanical properties was studied. Series of composite polyurethane foams containing various weight proportions of the modifying additives were obtained via in situ polymerization. The effect of the additives on the polyurethane foam structure, compressibility, and fire resistance was studied. It was observed that introduction of additives into polyurethane foam leads to change of the average pore size and reduction of foams compressibility. However, once the the maximum rigidity of the foam composites was reached, further increase of additive content causes regression of this characteristic. It was also confirmed that increasing additive content positively affects the fire resistance of the produced composites.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"60 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1007/s10553-024-01677-y
I. A. Arkhipova, E. G. Petrova, A. V. Leontyev, V. V. Fadeev, S. V. Zaglyadova, A. Kh. Kuptsov
A study was carried out on the quality of the cobalt carbonate raw material and heat treatment conditions on the activity of Co-Mo and Ni-Mo hydrotreating catalysts for a mixed diesel fraction. The relevant properties of the impregnation solution are the purity of the cobalt carbonate starting material and the synthesis temperature. A Raman spectroscopic method was proposed for monitoring the cobalt carbonate quality. Heat treatment of the catalyst was found to affect its activity. The optimal ultimate calcination temperatures for the Co-Mo and Ni-Mo catalysts were found to be very different.
{"title":"Effect of the Conditions of the Preparation of the Impregnating Solution and Heat Treatment on the Activity of Hydrotreating Catalysts","authors":"I. A. Arkhipova, E. G. Petrova, A. V. Leontyev, V. V. Fadeev, S. V. Zaglyadova, A. Kh. Kuptsov","doi":"10.1007/s10553-024-01677-y","DOIUrl":"https://doi.org/10.1007/s10553-024-01677-y","url":null,"abstract":"<p>A study was carried out on the quality of the cobalt carbonate raw material and heat treatment conditions on the activity of Co-Mo and Ni-Mo hydrotreating catalysts for a mixed diesel fraction. The relevant properties of the impregnation solution are the purity of the cobalt carbonate starting material and the synthesis temperature. A Raman spectroscopic method was proposed for monitoring the cobalt carbonate quality. Heat treatment of the catalyst was found to affect its activity. The optimal ultimate calcination temperatures for the Co-Mo and Ni-Mo catalysts were found to be very different.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"9 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1007/s10553-024-01683-0
Fang Shen, Yunfei Feng, Yingwei Di, Xiaojun Jiang
Composting is an effective and cost-efficient engineering technique used to treat agricultural waste. It involves the conversion of organic materials into stable compounds and the rapid degradation of organic matter through microorganisms found in feces. The resulting high-quality fertilizer can improve soil physical, chemical, and biological properties. However, the excessive use of heavy metals in livestock breeding can restrict the use of livestock manure for composting. Long-term application of compost products containing heavy metals can cause irreversible damage to farmland soil environments. This paper summarizes several important factors that affect the detoxification of heavy metals in composting and discusses the passivation effect of typical heavy metal passivators. The detoxification mechanism of heavy metals in compost is summarized from two perspectives: the humification effect of heavy metals and the environmental interface effects of microorganisms. This paper provides a foundation for improving the agronomic use value of avian manure aerobic composting products and for studying heavy metal passivation in compost. The application of aerobic composting in the remediation of petroleum-contaminated soil exhibits a dual impact, primarily focusing on the synergistic effects on petroleum hydrocarbon degradation and soil improvement. Such research endeavors are poised to offer innovative solutions towards achieving comprehensive restoration of petroleum-contaminated soils.
{"title":"Innovative Solutions Towards Achieving Comprehensive Restoration of Petroleum-Contaminated Soils","authors":"Fang Shen, Yunfei Feng, Yingwei Di, Xiaojun Jiang","doi":"10.1007/s10553-024-01683-0","DOIUrl":"https://doi.org/10.1007/s10553-024-01683-0","url":null,"abstract":"<p>Composting is an effective and cost-efficient engineering technique used to treat agricultural waste. It involves the conversion of organic materials into stable compounds and the rapid degradation of organic matter through microorganisms found in feces. The resulting high-quality fertilizer can improve soil physical, chemical, and biological properties. However, the excessive use of heavy metals in livestock breeding can restrict the use of livestock manure for composting. Long-term application of compost products containing heavy metals can cause irreversible damage to farmland soil environments. This paper summarizes several important factors that affect the detoxification of heavy metals in composting and discusses the passivation effect of typical heavy metal passivators. The detoxification mechanism of heavy metals in compost is summarized from two perspectives: the humification effect of heavy metals and the environmental interface effects of microorganisms. This paper provides a foundation for improving the agronomic use value of avian manure aerobic composting products and for studying heavy metal passivation in compost. The application of aerobic composting in the remediation of petroleum-contaminated soil exhibits a dual impact, primarily focusing on the synergistic effects on petroleum hydrocarbon degradation and soil improvement. Such research endeavors are poised to offer innovative solutions towards achieving comprehensive restoration of petroleum-contaminated soils.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"16 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s10553-024-01679-w
V. V. Ignatev, R. Muller, S. G. Pasynkov, A. M. Petunin, K. A. Bardina
A complete analysis of the existing methods of synthesis of polyhydroxylated fullerenes using direct chemical interaction, as well as alternative methods of creation has been carried out in order to identify the optimal methods of obtaining, for their implementation in various technological and biomedical fields. The scientific literature on this field of research is summarized and classified, and a comparative assessment of the efficiency and feasibility of practical implementation of the developed synthesis methods is given on the basis of a comprehensive review of literature and patent documents.
{"title":"Classification of the Methods for the Synthesis of Polyhydroxylated Fullerenes. Part 2. One‑Step and Multi‑Step Procedures","authors":"V. V. Ignatev, R. Muller, S. G. Pasynkov, A. M. Petunin, K. A. Bardina","doi":"10.1007/s10553-024-01679-w","DOIUrl":"https://doi.org/10.1007/s10553-024-01679-w","url":null,"abstract":"<p>A complete analysis of the existing methods of synthesis of polyhydroxylated fullerenes using direct chemical interaction, as well as alternative methods of creation has been carried out in order to identify the optimal methods of obtaining, for their implementation in various technological and biomedical fields. The scientific literature on this field of research is summarized and classified, and a comparative assessment of the efficiency and feasibility of practical implementation of the developed synthesis methods is given on the basis of a comprehensive review of literature and patent documents.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"138 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1007/s10553-024-01660-7
Maoxian Pu
Porosity has an important influence on the elastic properties of tight sandstone. Using acoustic models to study the matrix mineral modulus of tight sandstone reservoirs can provide an important reference for tight sandstone reservoir evaluation. In this paper, taking tight sandstone as an example, starting from the microscopic pore scale and considering the heterogeneity of the rock skeleton, the effect of the effective stress coefficient of porosity (n) on the elastic properties of tight sandstone was discussed. In addition, the acoustic model was used to construct the calculation method of the matrix mineral shear modulus. The research results showed that the porosity disturbance model can better describe the change law of the elastic properties of the tight sandstone. As the value of n decreases from 1 to 0, the bulk modulus (Kφ) of the unencapsulated rock gradually decreases. In the process of increasing from n=0 to n=4, the rock Kud has a slight increase trend. The fluid pressure does not produce a reverse stress effect on the movement of the rock pore boundary, that is, the fluid pressure does not have any effect on the change of the rock porosity. When n>0, the pore fluid pressure will affect the movement of the rock pore boundary to a certain extent. When the porosity disturbance is not considered, the Kφ value of the formation rock will be overestimated. The Ko of tight sandstone can be obtained using Gassmann fluid substitution equation. The calculation results of modulus parameters accord with the internal mineral composition and structural characteristics of tight sandstone, which shows the effectiveness of the method.
孔隙度对致密砂岩的弹性性质有重要影响。利用声学模型研究致密砂岩储层的基质矿物模量,可为致密砂岩储层评价提供重要参考。本文以致密砂岩为例,从微观孔隙尺度出发,考虑岩石骨架的异质性,讨论了孔隙度有效应力系数(n)对致密砂岩弹性性质的影响。此外,还利用声学模型构建了基质矿物剪切模量的计算方法。研究结果表明,孔隙度扰动模型能较好地描述致密砂岩弹性性质的变化规律。随着 n 值从 1 减小到 0,未包裹岩石的体积模量(Kφ)逐渐减小。在 n=0 到 n=4 的过程中,岩石 Kud 有轻微上升的趋势。流体压力对岩石孔隙边界的运动不产生反向应力作用,即流体压力对岩石孔隙度的变化不产生任何影响。当 n>0 时,孔隙流体压力会在一定程度上影响岩石孔隙边界的运动。当不考虑孔隙度扰动时,地层岩石的 Kφ 值将被高估。致密砂岩的 Ko 值可通过 Gassmann 流体置换方程求得。模量参数的计算结果符合致密砂岩的内部矿物组成和结构特征,表明了该方法的有效性。
{"title":"Experimental Study on Logging Evaluation of Matrix Mineral Modulus of Tight Sandstone Reservoir","authors":"Maoxian Pu","doi":"10.1007/s10553-024-01660-7","DOIUrl":"https://doi.org/10.1007/s10553-024-01660-7","url":null,"abstract":"<p>Porosity has an important influence on the elastic properties of tight sandstone. Using acoustic models to study the matrix mineral modulus of tight sandstone reservoirs can provide an important reference for tight sandstone reservoir evaluation. In this paper, taking tight sandstone as an example, starting from the microscopic pore scale and considering the heterogeneity of the rock skeleton, the effect of the effective stress coefficient of porosity (n) on the elastic properties of tight sandstone was discussed. In addition, the acoustic model was used to construct the calculation method of the matrix mineral shear modulus. The research results showed that the porosity disturbance model can better describe the change law of the elastic properties of the tight sandstone. As the value of n decreases from 1 to 0, the bulk modulus (K<sub>φ</sub>) of the unencapsulated rock gradually decreases. In the process of increasing from n=0 to n=4, the rock Kud has a slight increase trend. The fluid pressure does not produce a reverse stress effect on the movement of the rock pore boundary, that is, the fluid pressure does not have any effect on the change of the rock porosity. When n>0, the pore fluid pressure will affect the movement of the rock pore boundary to a certain extent. When the porosity disturbance is not considered, the K<sub>φ</sub> value of the formation rock will be overestimated. The Ko of tight sandstone can be obtained using Gassmann fluid substitution equation. The calculation results of modulus parameters accord with the internal mineral composition and structural characteristics of tight sandstone, which shows the effectiveness of the method.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"6 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}