首页 > 最新文献

Cellular &Molecular Immunology最新文献

英文 中文
Neuropilin-1high monocytes protect against neonatal inflammation 神经纤蛋白-1 高的单核细胞可防止新生儿发炎
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-04-17 DOI: 10.1038/s41423-024-01157-7
Xiaoqing Zheng, Wen Lei, Yongmei Zhang, Han Jin, Cha Han, Fan Wu, Chonghong Jia, Ruihong Zeng, Zhanghua Chen, Yuxia Zhang, Haitao Wang, Qiang Liu, Zhi Yao, Ying Yu, Jie Zhou
Neonates are susceptible to inflammatory disorders such as necrotizing enterocolitis (NEC) due to their immature immune system. The timely appearance of regulatory immune cells in early life contributes to the control of inflammation in neonates, yet the underlying mechanisms of which remain poorly understood. In this study, we identified a subset of neonatal monocytes characterized by high levels of neuropilin-1 (Nrp1), termed Nrp1high monocytes. Compared with their Nrp1low counterparts, Nrp1high monocytes displayed potent immunosuppressive activity. Nrp1 deficiency in myeloid cells aggravated the severity of NEC, whereas adoptive transfer of Nrp1high monocytes led to remission of NEC. Mechanistic studies showed that Nrp1, by binding to its ligand Sema4a, induced intracellular p38-MAPK/mTOR signaling and activated the transcription factor KLF4. KLF4 transactivated Nos2 and enhanced the production of nitric oxide (NO), a key mediator of immunosuppression in monocytes. These findings reveal an important immunosuppressive axis in neonatal monocytes and provide a potential therapeutic strategy for treating inflammatory disorders in neonates.
新生儿的免疫系统尚未发育成熟,很容易患上炎症性疾病,如坏死性小肠结肠炎(NEC)。早期调节性免疫细胞的及时出现有助于控制新生儿的炎症,但其潜在机制仍鲜为人知。在这项研究中,我们发现了一个新生儿单核细胞亚群,其特点是神经纤蛋白-1(Nrp1)含量高,被称为 Nrp1 高单核细胞。与 Nrp1 低的单核细胞相比,Nrp1 高的单核细胞显示出强大的免疫抑制活性。髓系细胞中缺乏 Nrp1 会加重 NEC 的严重程度,而 Nrp1 高单核细胞的收养性转移则会导致 NEC 的缓解。机理研究表明,Nrp1通过与其配体Sema4a结合,诱导细胞内p38-MAPK/mTOR信号传导,并激活转录因子KLF4。KLF4 可转录 Nos2 并促进一氧化氮(NO)的产生,一氧化氮是单核细胞免疫抑制的关键介质。这些发现揭示了新生儿单核细胞中重要的免疫抑制轴,为治疗新生儿炎症性疾病提供了潜在的治疗策略。
{"title":"Neuropilin-1high monocytes protect against neonatal inflammation","authors":"Xiaoqing Zheng, Wen Lei, Yongmei Zhang, Han Jin, Cha Han, Fan Wu, Chonghong Jia, Ruihong Zeng, Zhanghua Chen, Yuxia Zhang, Haitao Wang, Qiang Liu, Zhi Yao, Ying Yu, Jie Zhou","doi":"10.1038/s41423-024-01157-7","DOIUrl":"10.1038/s41423-024-01157-7","url":null,"abstract":"Neonates are susceptible to inflammatory disorders such as necrotizing enterocolitis (NEC) due to their immature immune system. The timely appearance of regulatory immune cells in early life contributes to the control of inflammation in neonates, yet the underlying mechanisms of which remain poorly understood. In this study, we identified a subset of neonatal monocytes characterized by high levels of neuropilin-1 (Nrp1), termed Nrp1high monocytes. Compared with their Nrp1low counterparts, Nrp1high monocytes displayed potent immunosuppressive activity. Nrp1 deficiency in myeloid cells aggravated the severity of NEC, whereas adoptive transfer of Nrp1high monocytes led to remission of NEC. Mechanistic studies showed that Nrp1, by binding to its ligand Sema4a, induced intracellular p38-MAPK/mTOR signaling and activated the transcription factor KLF4. KLF4 transactivated Nos2 and enhanced the production of nitric oxide (NO), a key mediator of immunosuppression in monocytes. These findings reveal an important immunosuppressive axis in neonatal monocytes and provide a potential therapeutic strategy for treating inflammatory disorders in neonates.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 6","pages":"575-588"},"PeriodicalIF":24.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bypassing PELO-mediated ATPase activation of the NLR is a common pathogenic cause of NLR-associated autoinflammatory diseases 绕过 PELO 介导的 NLR ATPase 激活是 NLR 相关自身炎症性疾病的常见致病原因
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-04-17 DOI: 10.1038/s41423-024-01162-w
Xiurong Wu, Zhang-Hua Yang, Yue Zheng, Jianfeng Wu, Jiahuai Han
{"title":"Bypassing PELO-mediated ATPase activation of the NLR is a common pathogenic cause of NLR-associated autoinflammatory diseases","authors":"Xiurong Wu, Zhang-Hua Yang, Yue Zheng, Jianfeng Wu, Jiahuai Han","doi":"10.1038/s41423-024-01162-w","DOIUrl":"10.1038/s41423-024-01162-w","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 6","pages":"634-637"},"PeriodicalIF":24.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic biology approaches for improving the specificity and efficacy of cancer immunotherapy 提高癌症免疫疗法特异性和疗效的合成生物学方法
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-04-11 DOI: 10.1038/s41423-024-01153-x
Bo Zhu, Hang Yin, Di Zhang, Meiling Zhang, Xiaojuan Chao, Luca Scimeca, Ming-Ru Wu
Immunotherapy has shown robust efficacy in treating a broad spectrum of hematological and solid cancers. Despite the transformative impact of immunotherapy on cancer treatment, several outstanding challenges remain. These challenges include on-target off-tumor toxicity, systemic toxicity, and the complexity of achieving potent and sustainable therapeutic efficacy. Synthetic biology has emerged as a promising approach to overcome these obstacles, offering innovative tools for engineering living cells with customized functions. This review provides an overview of the current landscape and future prospects of cancer immunotherapy, particularly emphasizing the role of synthetic biology in augmenting its specificity, controllability, and efficacy. We delineate and discuss two principal synthetic biology strategies: those targeting tumor surface antigens with engineered immune cells and those detecting intratumoral disease signatures with engineered gene circuits. This review concludes with a forward-looking perspective on the enduring challenges in cancer immunotherapy and the potential breakthroughs that synthetic biology may contribute to the field.
免疫疗法在治疗各种血液肿瘤和实体肿瘤方面显示出强大的疗效。尽管免疫疗法对癌症治疗产生了变革性影响,但仍存在一些突出的挑战。这些挑战包括靶向肿瘤外毒性、全身毒性以及实现强效和可持续疗效的复杂性。合成生物学已成为克服这些障碍的一种前景广阔的方法,它为具有定制功能的活细胞工程提供了创新工具。本综述概述了癌症免疫疗法的现状和未来前景,特别强调了合成生物学在增强特异性、可控性和疗效方面的作用。我们划分并讨论了两种主要的合成生物学策略:利用工程化免疫细胞靶向肿瘤表面抗原的策略,以及利用工程化基因回路检测肿瘤内疾病特征的策略。本综述最后以前瞻性的视角探讨了癌症免疫疗法面临的持久挑战以及合成生物学可能为该领域带来的潜在突破。
{"title":"Synthetic biology approaches for improving the specificity and efficacy of cancer immunotherapy","authors":"Bo Zhu, Hang Yin, Di Zhang, Meiling Zhang, Xiaojuan Chao, Luca Scimeca, Ming-Ru Wu","doi":"10.1038/s41423-024-01153-x","DOIUrl":"10.1038/s41423-024-01153-x","url":null,"abstract":"Immunotherapy has shown robust efficacy in treating a broad spectrum of hematological and solid cancers. Despite the transformative impact of immunotherapy on cancer treatment, several outstanding challenges remain. These challenges include on-target off-tumor toxicity, systemic toxicity, and the complexity of achieving potent and sustainable therapeutic efficacy. Synthetic biology has emerged as a promising approach to overcome these obstacles, offering innovative tools for engineering living cells with customized functions. This review provides an overview of the current landscape and future prospects of cancer immunotherapy, particularly emphasizing the role of synthetic biology in augmenting its specificity, controllability, and efficacy. We delineate and discuss two principal synthetic biology strategies: those targeting tumor surface antigens with engineered immune cells and those detecting intratumoral disease signatures with engineered gene circuits. This review concludes with a forward-looking perspective on the enduring challenges in cancer immunotherapy and the potential breakthroughs that synthetic biology may contribute to the field.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 5","pages":"436-447"},"PeriodicalIF":24.1,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01153-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GSNOR negatively regulates the NLRP3 inflammasome via S-nitrosation of MAPK14 GSNOR 通过 S-亚硝基化 MAPK14 负向调节 NLRP3 炎症体
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-04-03 DOI: 10.1038/s41423-024-01155-9
Qianjin Liu, Lijin Jiao, Mao-Sen Ye, Zhiyu Ma, Jinsong Yu, Ling-Yan Su, Wei-Yin Zou, Lu-Xiu Yang, Chang Chen, Yong-Gang Yao
Hyperactivation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous diseases. However, the precise molecular mechanisms that modulate the transcriptional regulation of NLRP3 remain largely unknown. In this study, we demonstrated that S-nitrosoglutathione reductase (GSNOR) deficiency in macrophages leads to significant increases in the Nlrp3 and Il-1β expression levels and interleukin-1β (IL-1β) secretion in response to NLRP3 inflammasome stimulation. Furthermore, in vivo experiments utilizing Gsnor−/− mice revealed increased disease severity in both lipopolysaccharide (LPS)-induced septic shock and dextran sodium sulfate (DSS)-induced colitis models. Additionally, we showed that both LPS-induced septic shock and DSS-induced colitis were ameliorated in Gsnor−/− Nlrp3−/− double-knockout (DKO) mice. Mechanistically, GSNOR deficiency increases the S-nitrosation of mitogen-activated protein kinase 14 (MAPK14) at the Cys211 residue and augments MAPK14 kinase activity, thereby promoting Nlrp3 and Il-1β transcription and stimulating NLRP3 inflammasome activity. Our findings suggested that GSNOR is a regulator of the NLRP3 inflammasome and that reducing the level of S-nitrosylated MAPK14 may constitute an effective strategy for alleviating diseases associated with NLRP3-mediated inflammation.
NLRP3 炎性体的过度激活与多种疾病的发病机制有关。然而,调节 NLRP3 转录调控的确切分子机制在很大程度上仍然未知。在这项研究中,我们证实了巨噬细胞中 S-亚硝基谷胱甘肽还原酶(GSNOR)的缺乏会导致 Nlrp3 和 Il-1β 的表达水平以及白细胞介素-1β(IL-1β)的分泌在 NLRP3 炎性体刺激下显著增加。此外,利用 Gsnor-/- 小鼠进行的体内实验显示,在脂多糖(LPS)诱导的脓毒性休克和右旋糖酐硫酸钠(DSS)诱导的结肠炎模型中,疾病的严重程度都有所增加。此外,我们还发现,Gsnor-/- Nlrp3-/- 双基因敲除(DKO)小鼠的脓毒性休克和右旋糖酐硫酸钠(DSS)诱导的结肠炎均有所改善。从机理上讲,GSNOR的缺乏增加了丝裂原活化蛋白激酶14(MAPK14)在Cys211残基上的S-亚硝基化,增强了MAPK14激酶的活性,从而促进了Nlrp3和Il-1β的转录,刺激了NLRP3炎性体的活性。我们的研究结果表明,GSNOR 是 NLRP3 炎症体的调控因子,降低 S-亚硝基化 MAPK14 的水平可能是缓解 NLRP3 介导的炎症相关疾病的有效策略。
{"title":"GSNOR negatively regulates the NLRP3 inflammasome via S-nitrosation of MAPK14","authors":"Qianjin Liu, Lijin Jiao, Mao-Sen Ye, Zhiyu Ma, Jinsong Yu, Ling-Yan Su, Wei-Yin Zou, Lu-Xiu Yang, Chang Chen, Yong-Gang Yao","doi":"10.1038/s41423-024-01155-9","DOIUrl":"10.1038/s41423-024-01155-9","url":null,"abstract":"Hyperactivation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous diseases. However, the precise molecular mechanisms that modulate the transcriptional regulation of NLRP3 remain largely unknown. In this study, we demonstrated that S-nitrosoglutathione reductase (GSNOR) deficiency in macrophages leads to significant increases in the Nlrp3 and Il-1β expression levels and interleukin-1β (IL-1β) secretion in response to NLRP3 inflammasome stimulation. Furthermore, in vivo experiments utilizing Gsnor−/− mice revealed increased disease severity in both lipopolysaccharide (LPS)-induced septic shock and dextran sodium sulfate (DSS)-induced colitis models. Additionally, we showed that both LPS-induced septic shock and DSS-induced colitis were ameliorated in Gsnor−/− Nlrp3−/− double-knockout (DKO) mice. Mechanistically, GSNOR deficiency increases the S-nitrosation of mitogen-activated protein kinase 14 (MAPK14) at the Cys211 residue and augments MAPK14 kinase activity, thereby promoting Nlrp3 and Il-1β transcription and stimulating NLRP3 inflammasome activity. Our findings suggested that GSNOR is a regulator of the NLRP3 inflammasome and that reducing the level of S-nitrosylated MAPK14 may constitute an effective strategy for alleviating diseases associated with NLRP3-mediated inflammation.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 6","pages":"561-574"},"PeriodicalIF":24.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular metabolism regulates the differentiation and function of T-cell subsets 细胞代谢调节 T 细胞亚群的分化和功能
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-04-02 DOI: 10.1038/s41423-024-01148-8
Sicong Ma, Yanan Ming, Jingxia Wu, Guoliang Cui
T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes—lipids, glucose, and amino acids—in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of “editing” metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.
T 细胞是适应性免疫的重要组成部分,能保护宿主免受传染病和癌症的侵袭。然而,不受控制的 T 细胞免疫可能会导致自身免疫性疾病。在这两种情况下,抗原特异性 T 细胞在接触和激活抗原后都会发生克隆扩增。细胞代谢被重新编程,以满足与效应 T 细胞扩增相关的生物能和生物合成需求的增加。代谢物不仅是促进细胞生长和扩增的构件或能量来源,还能调节多种细胞信号,指导多个 T 细胞亚群的分化。免疫代谢研究领域正在迅速发展。我们不可能在这篇简明扼要的综述中囊括所有最新进展。相反,我们的目标是简明扼要地介绍这项进展迅速的研究,集中探讨 T 细胞中三种关键营养物质--脂质、葡萄糖和氨基酸--代谢的复杂性。我们阐明了最近的研究,这些研究阐明了这三类代谢物在介导 T 细胞代谢和免疫功能方面的作用。此外,我们还深入探讨了利用药理学或遗传学方法 "编辑 "T 细胞内代谢途径的前景,目的是使这种方法与现有的免疫疗法协同增效,提高抗肿瘤和抗感染免疫反应的疗效。
{"title":"Cellular metabolism regulates the differentiation and function of T-cell subsets","authors":"Sicong Ma, Yanan Ming, Jingxia Wu, Guoliang Cui","doi":"10.1038/s41423-024-01148-8","DOIUrl":"10.1038/s41423-024-01148-8","url":null,"abstract":"T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes—lipids, glucose, and amino acids—in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of “editing” metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 5","pages":"419-435"},"PeriodicalIF":24.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01148-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining two subpopulations of marginal zone B cells 定义边缘区 B 细胞的两个亚群
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-03-27 DOI: 10.1038/s41423-024-01141-1
Xiaojing Liu, Fei-Long Meng
{"title":"Defining two subpopulations of marginal zone B cells","authors":"Xiaojing Liu, Fei-Long Meng","doi":"10.1038/s41423-024-01141-1","DOIUrl":"10.1038/s41423-024-01141-1","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"412-413"},"PeriodicalIF":24.1,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The chemerin-CMKLR1 axis in keratinocytes impairs innate host defense against cutaneous Staphylococcus aureus infection 角质细胞中的螯合素-CMKLR1轴会损害宿主对皮肤金黄色葡萄球菌感染的先天防御能力。
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-03-26 DOI: 10.1038/s41423-024-01152-y
Yu Chen, Yan Song, Zhe Wang, Yangfan Lai, Wei Yin, Qian Cai, Miaomiao Han, Yiheng Cai, Yushan Xue, Zhengrong Chen, Xi Li, Jing Chen, Min Li, Huabin Li, Rui He
The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.
皮肤是金黄色葡萄球菌感染的最常见部位,金黄色葡萄球菌可通过逃避宿主防御而导致各种疾病,包括侵袭性感染和危及生命的感染。然而,人们对促进金黄色葡萄球菌在皮肤中逃避先天性免疫的宿主因素知之甚少。螯合素在皮肤中大量表达,可被来自金黄色葡萄球菌的蛋白酶激活,具有直接杀灭细菌的活性,并通过与其受体 CMKLR1 的相互作用产生免疫调节作用。在这里,我们证明了在小鼠皮肤感染模型中,缺乏螯合素/CMKLR1轴会增加中性粒细胞介导的宿主对金黄色葡萄球菌的防御能力,而螯合素过表达(模拟肥胖个体中高水平的螯合素)则会加剧金黄色葡萄球菌的皮肤感染。从机理上讲,我们发现表达 CMKLR1 的角质形成细胞是螯合素抑制金黄色葡萄球菌诱导的 IL-33 表达的主要靶点,从而导致皮肤中性粒细胞增多和细菌清除能力受损。CMKLR1 信号传导通过抑制小鼠角质形成细胞中 Akt 的活化,特异性地抑制金黄色葡萄球菌细胞壁成分而非分泌蛋白诱导的 IL-33 表达。因此,我们的研究揭示了螯合素/CMKLR1轴的免疫调节作用介导了体内先天性免疫对金葡菌的规避,并可能增加肥胖者对金葡菌感染的易感性。
{"title":"The chemerin-CMKLR1 axis in keratinocytes impairs innate host defense against cutaneous Staphylococcus aureus infection","authors":"Yu Chen, Yan Song, Zhe Wang, Yangfan Lai, Wei Yin, Qian Cai, Miaomiao Han, Yiheng Cai, Yushan Xue, Zhengrong Chen, Xi Li, Jing Chen, Min Li, Huabin Li, Rui He","doi":"10.1038/s41423-024-01152-y","DOIUrl":"10.1038/s41423-024-01152-y","url":null,"abstract":"The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 6","pages":"533-545"},"PeriodicalIF":24.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insights into regulation of butyrophilin molecules: critical components of cancer immunosurveillance by γδ T cells 丁嗜蛋白分子调控的新见解:γδ T 细胞对癌症免疫监视的关键成分。
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-03-26 DOI: 10.1038/s41423-024-01138-w
Dieter Kabelitz
{"title":"Novel insights into regulation of butyrophilin molecules: critical components of cancer immunosurveillance by γδ T cells","authors":"Dieter Kabelitz","doi":"10.1038/s41423-024-01138-w","DOIUrl":"10.1038/s41423-024-01138-w","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"409-411"},"PeriodicalIF":24.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01138-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic glycolysis enables the effector differentiation potential of stem-like CD4+ T cells to combat cancer 有氧糖酵解使干性 CD4+ T 细胞具有抗癌的效应分化潜能。
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-03-21 DOI: 10.1038/s41423-024-01154-w
Dawei Zou, Xiaolong Zhang, Shuang Li, Xiang Xiao, Nancy M. Gonzalez, Laurie J. Minze, Xian C. Li, Wenhao Chen
{"title":"Aerobic glycolysis enables the effector differentiation potential of stem-like CD4+ T cells to combat cancer","authors":"Dawei Zou, Xiaolong Zhang, Shuang Li, Xiang Xiao, Nancy M. Gonzalez, Laurie J. Minze, Xian C. Li, Wenhao Chen","doi":"10.1038/s41423-024-01154-w","DOIUrl":"10.1038/s41423-024-01154-w","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 5","pages":"527-529"},"PeriodicalIF":24.1,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140183902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insm1: orchestrating cellular mimicry in the thymus medulla Insm1:协调胸腺髓质中的细胞拟态
IF 24.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-03-19 DOI: 10.1038/s41423-024-01151-z
K. D. James, J. E. Cowan
{"title":"Insm1: orchestrating cellular mimicry in the thymus medulla","authors":"K. D. James, J. E. Cowan","doi":"10.1038/s41423-024-01151-z","DOIUrl":"10.1038/s41423-024-01151-z","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 4","pages":"416-418"},"PeriodicalIF":24.1,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular &Molecular Immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1