The immense waste generated from sweet orange (Citrus sinensis) peel during processing poses significant challenges in waste management, contributing to environmental pollution and health hazards. This study explores the impact of plasma-activated water (PAW) on sweet orange peel, focusing on polyphenols total phenol content (TPC), total flavonoid content (TFC), total terpenoid content (TTC), flavonoids (hesperidin, naringin), limonin, antioxidant activity 1, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and anti-nutritional factors (tannin, phytic acid, and saponin), with an emphasis on optimization. The central composite rotatable design (CCRD) was employed, resulting in 13 experimental runs with independent parameters set at 7–13 kV (voltage) and 60–180 min (soaking time). PAW treatment significantly enhanced total polyphenols [112.52- ± 4.63- to 170.56- ± 5.78-mg gallic acid equivalent (GAE)/100 g], total flavonoids (621.26- ±25.15- to 972.69- ±80.29-mg QE/100 g), and antioxidant activities (DPPH 37.59% ±3.71% to 79.61% ±1.83% and FRAP 96.34- ±2.13- to 256.01- ±11.8-$mu $ g AA/g) in sweet orange peel powder (SOPP). Conversely, TTC, naringin, limonin, and anti-nutrients decreased compared to control samples. Fourier transform infrared (FT-IR) analysis revealed characteristic peaks, confirming the alteration of polyphenolic functional groups. This study presents strategies for valorizing SOPP, enhancing its polyphenols and antioxidant properties for potential applications in nutraceuticals and novel functional foods.
{"title":"Enhancing Nutritional Potential: Plasma-Activated Water Treatment on Sweet Orange Peel Powder—Polyphenols, Flavonoids, Antioxidants, and Anti-Nutrients Optimization","authors":"Venkatraman Bansode;Tarak Chandra Panda;Samuel Jaddu;Sibasish Sahoo;Kadavakollu Subrahmanyam;V. Vignesh;Thota Niranjan;Rama Chandra Pradhan;Madhuresh Dwivedi","doi":"10.1109/TPS.2024.3523670","DOIUrl":"https://doi.org/10.1109/TPS.2024.3523670","url":null,"abstract":"The immense waste generated from sweet orange (Citrus sinensis) peel during processing poses significant challenges in waste management, contributing to environmental pollution and health hazards. This study explores the impact of plasma-activated water (PAW) on sweet orange peel, focusing on polyphenols total phenol content (TPC), total flavonoid content (TFC), total terpenoid content (TTC), flavonoids (hesperidin, naringin), limonin, antioxidant activity 1, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and anti-nutritional factors (tannin, phytic acid, and saponin), with an emphasis on optimization. The central composite rotatable design (CCRD) was employed, resulting in 13 experimental runs with independent parameters set at 7–13 kV (voltage) and 60–180 min (soaking time). PAW treatment significantly enhanced total polyphenols [112.52- ± 4.63- to 170.56- ± 5.78-mg gallic acid equivalent (GAE)/100 g], total flavonoids (621.26- ±25.15- to 972.69- ±80.29-mg QE/100 g), and antioxidant activities (DPPH 37.59% ±3.71% to 79.61% ±1.83% and FRAP 96.34- ±2.13- to 256.01- ±11.8-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>g AA/g) in sweet orange peel powder (SOPP). Conversely, TTC, naringin, limonin, and anti-nutrients decreased compared to control samples. Fourier transform infrared (FT-IR) analysis revealed characteristic peaks, confirming the alteration of polyphenolic functional groups. This study presents strategies for valorizing SOPP, enhancing its polyphenols and antioxidant properties for potential applications in nutraceuticals and novel functional foods.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"51-62"},"PeriodicalIF":1.3,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1109/OJNANO.2025.3531759
Roopesh Singh;Shivam Verma
Energy-efficient non-volatile memory that supports non-destructive read capabilities is in high demand for random-access memory applications. This article presents the proposal and demonstration of a 1T-1R non-volatile memory cell, which has distinct read and write paths that utilize a memristive variant of the ferroelectric field effect transistor (MFeFET) for data storage. Through a combination of experimentally calibrated models and TCAD-based mixed-mode simulations, the proposed MFeFET-based memory cell is demonstrated to achieve a non-destructive read operation and higher read current at low operating voltages. Furthermore, the memory cell demonstrates a 50% reduction in read latency compared to spin transfer torque (STT) magneto-resistive random-access memory (MRAM) technologies, positioning it as a highly efficient solution for next-generation non-volatile memory applications.
{"title":"Memristive Ferroelectric FET for 1T-1R Nonvolatile Memory With Non-Destructive Readout","authors":"Roopesh Singh;Shivam Verma","doi":"10.1109/OJNANO.2025.3531759","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3531759","url":null,"abstract":"Energy-efficient non-volatile memory that supports non-destructive read capabilities is in high demand for random-access memory applications. This article presents the proposal and demonstration of a 1T-1R non-volatile memory cell, which has distinct read and write paths that utilize a memristive variant of the ferroelectric field effect transistor (MFeFET) for data storage. Through a combination of experimentally calibrated models and TCAD-based mixed-mode simulations, the proposed MFeFET-based memory cell is demonstrated to achieve a non-destructive read operation and higher read current at low operating voltages. Furthermore, the memory cell demonstrates a 50% reduction in read latency compared to spin transfer torque (STT) magneto-resistive random-access memory (MRAM) technologies, positioning it as a highly efficient solution for next-generation non-volatile memory applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"27-34"},"PeriodicalIF":1.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-homogeneous orthorhombic phase in doped ferroelectric (FE) HfO$_{2}$ film presents challenges towards the optimization and performance predictability of negative capacitance (NC) field-effect transistor (FET) performance. We set out to understand the consequences of these dielectric (DE) phases in doped FE-HfO$_{2}$ on steep-switching device performance through self-consistent quantum transport simulations. Firstly, we consider a fixed DE phase study to understand how the position, percentage, and number of phase components alter the switching characteristics. Then, to predict device performance variation, we conduct a statistical analysis using a large number of randomly distributed DE phase profiles. We find that DE phases positioned near the center of the potential barrier exert the most significant impact on device performance by lowering the top-of-the-barrier, while those closer to the drain have minimal influence on carrier transport and current. While DE phases in the FE layer degrade the subthreshold swing, they also favorably narrow the hysteretic window, which presents opportunities for optimization in logic devices. Through dimensional scaling and statistical analysis, we demonstrate how optimized performance can be achieved even with large variations in device performance.
{"title":"Implications of Dielectric Phases in Ferroelectric HfO$_{2}$ Films on the Performance of Negative Capacitance FETs","authors":"Mayuri Sritharan;Hyunjae Lee;Michael Spinazze;Youngki Yoon","doi":"10.1109/TNANO.2025.3531552","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3531552","url":null,"abstract":"Non-homogeneous orthorhombic phase in doped ferroelectric (FE) HfO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> film presents challenges towards the optimization and performance predictability of negative capacitance (NC) field-effect transistor (FET) performance. We set out to understand the consequences of these dielectric (DE) phases in doped FE-HfO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> on steep-switching device performance through self-consistent quantum transport simulations. Firstly, we consider a fixed DE phase study to understand how the position, percentage, and number of phase components alter the switching characteristics. Then, to predict device performance variation, we conduct a statistical analysis using a large number of randomly distributed DE phase profiles. We find that DE phases positioned near the center of the potential barrier exert the most significant impact on device performance by lowering the top-of-the-barrier, while those closer to the drain have minimal influence on carrier transport and current. While DE phases in the FE layer degrade the subthreshold swing, they also favorably narrow the hysteretic window, which presents opportunities for optimization in logic devices. Through dimensional scaling and statistical analysis, we demonstrate how optimized performance can be achieved even with large variations in device performance.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"67-72"},"PeriodicalIF":2.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, a 1-THz fourth harmonic complex cavity gyrotron with the magnetic cusp gun (MCG) has been investigated theoretically with the self-consistent nonlinear theory. The self-consistent nonlinear theory is composed of the electron motion equation and the electron excitation equation, which could accurately describe the interaction process between the electron beam and electromagnetic wave. The MCG is optimized to generate a large-orbit beam (LOB), and the complex cavity is designed to suppress parasitic modes and improve the output efficiency. The complex cavity gyrotron is optimized to operate at a frequency of 1-THz, achieving an output efficiency of 1% and an output power of 0.5 kW when the beam voltage is 59 kV, the beam current is 0.8 A, and the magnetic field is 9.9 T. The effects of the beam voltage, the beam current, and the pitch factor of the electron beam on the output efficiency are analyzed. Results show that when the beam voltage varies between 57 and 61 kV, the beam current between 0.3 and 1.2 A, and the pitch factor between 1.05 and 1.5, the output efficiency of the gyrotron is maintained above 0.7%. The effects of the beam quality, including the velocity spread and the beam thickness on the output efficiency, are discussed as well. Meanwhile, the effects of machining errors including structure changes of the complex cavity gyrotron and the eccentricity angle of the cathode in MCG on the output efficiency are discussed.
{"title":"Simulation of a 1-THz Complex Cavity Gyrotron With a Magnetic Cusp Gun","authors":"Xu Qi;Zhi Yi;Tao Song;Yuxuan Chai;Taotao Mao;Chen Zhang;Peisheng Liang;Chenghui Zhu;Jiao Jiao;Na Yao;Kaichun Zhang;Zhenhua Wu;Yanyu Wei;Yubin Gong;Wei Wang;Diwei Liu","doi":"10.1109/TPS.2025.3526243","DOIUrl":"https://doi.org/10.1109/TPS.2025.3526243","url":null,"abstract":"In this article, a 1-THz fourth harmonic complex cavity gyrotron with the magnetic cusp gun (MCG) has been investigated theoretically with the self-consistent nonlinear theory. The self-consistent nonlinear theory is composed of the electron motion equation and the electron excitation equation, which could accurately describe the interaction process between the electron beam and electromagnetic wave. The MCG is optimized to generate a large-orbit beam (LOB), and the complex cavity is designed to suppress parasitic modes and improve the output efficiency. The complex cavity gyrotron is optimized to operate at a frequency of 1-THz, achieving an output efficiency of 1% and an output power of 0.5 kW when the beam voltage is 59 kV, the beam current is 0.8 A, and the magnetic field is 9.9 T. The effects of the beam voltage, the beam current, and the pitch factor of the electron beam on the output efficiency are analyzed. Results show that when the beam voltage varies between 57 and 61 kV, the beam current between 0.3 and 1.2 A, and the pitch factor between 1.05 and 1.5, the output efficiency of the gyrotron is maintained above 0.7%. The effects of the beam quality, including the velocity spread and the beam thickness on the output efficiency, are discussed as well. Meanwhile, the effects of machining errors including structure changes of the complex cavity gyrotron and the eccentricity angle of the cathode in MCG on the output efficiency are discussed.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"153-160"},"PeriodicalIF":1.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1109/JSEN.2025.3527471
Chaojian Xing;Shuxin Liu;Yankai Li;Jing Xu;Jing Li
The stage division and state recognition during ac contactor degradation process is an important prerequisite for realizing its self-perception. In the recognition of its degradation state, the traditional method cannot effectively identify similar and overlapping degradation states, which makes it impossible to make accurate judgments when evaluating the health state of ac contactor. To solve the above problems, a method of ac contactor’s contact degradation stage division and state recognition based on boundary detection and temporal convolutional network-transformer–bidirectional gated recurrent unit (TCN-Transformer–BiGRU) was proposed in this article. First, the characteristic parameters related to the degradation of the ac contactor were obtained through the full life test, and the kernel principal component analysis (KPCA) was introduced to fuse the characteristic parameters. Then, the degradation trend of the contact system was characterized, and the boundary detection method was used to divide the ac contactor degradation stage. Finally, the TCN-Transformer–BiGRU classification prediction model was used to accurately identify the degradation state of the ac contactor. Taking other samples of the same type of ac contactor as examples, it is verified that the method has good universality and high accuracy.
{"title":"Degradation Stage Division and Identification of AC Contactor’s Contact System","authors":"Chaojian Xing;Shuxin Liu;Yankai Li;Jing Xu;Jing Li","doi":"10.1109/JSEN.2025.3527471","DOIUrl":"https://doi.org/10.1109/JSEN.2025.3527471","url":null,"abstract":"The stage division and state recognition during ac contactor degradation process is an important prerequisite for realizing its self-perception. In the recognition of its degradation state, the traditional method cannot effectively identify similar and overlapping degradation states, which makes it impossible to make accurate judgments when evaluating the health state of ac contactor. To solve the above problems, a method of ac contactor’s contact degradation stage division and state recognition based on boundary detection and temporal convolutional network-transformer–bidirectional gated recurrent unit (TCN-Transformer–BiGRU) was proposed in this article. First, the characteristic parameters related to the degradation of the ac contactor were obtained through the full life test, and the kernel principal component analysis (KPCA) was introduced to fuse the characteristic parameters. Then, the degradation trend of the contact system was characterized, and the boundary detection method was used to divide the ac contactor degradation stage. Finally, the TCN-Transformer–BiGRU classification prediction model was used to accurately identify the degradation state of the ac contactor. Taking other samples of the same type of ac contactor as examples, it is verified that the method has good universality and high accuracy.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"7068-7078"},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1109/JSEN.2025.3525662
Hui Xu;Chaorong Zhang;Qingying Wu;Benjamin K. Ng;Chan-Tong Lam;Halim Yanikomeroglu
In the next-generation wireless Internet-of-Things (IoT) networks empowered by modern communication technology, nonorthogonal multiple access (NOMA) and faster-than-Nyquist (FTN) signaling are purportedly two enabling technologies that enhance spectral efficiency (SE) without requiring additional spectrum resources. In addition, simultaneous wireless information and power transfer (SWIPT) technology enables IoT sensors and devices to harvest energy from radio frequency (RF) signals, effectively mitigating power supply limitations. This article proposes and investigates a novel SWIPT-NOMA system based on FTN technology, referred to as FTN-assisted SWIPT-NOMA, for IoT relay networks over Rayleigh fading channels. We provide a comprehensive analysis of the ergodic capacity and achievable rate of the FTN-assisted SWIPT-NOMA system applied in IoT relay networks. Specifically, we explore two distinct relaying architectures geared toward augmenting SE and energy utilization, i.e., power-splitting (PS) and time-switching (TS). We derive approximated expressions for the ergodic capacity and analyze high- signal-to-noise radio (SNR) slopes for sensor users in both architectures. Simulation results show that the ergodic capacity of the proposed system surpasses that of the conventional Nyquist SWIPT-NOMA system, with greater capacity improvements as the FTN acceleration factor $tau $ decreases. This highlights the substantial potential of FTN-assisted SWIPT-NOMA systems in enhancing the performance of IoT relay networks, particularly with respect to SE.
{"title":"FTN-Assisted SWIPT-NOMA Design for IoT Wireless Networks: A Paradigm in Wireless Efficiency and Energy Utilization","authors":"Hui Xu;Chaorong Zhang;Qingying Wu;Benjamin K. Ng;Chan-Tong Lam;Halim Yanikomeroglu","doi":"10.1109/JSEN.2025.3525662","DOIUrl":"https://doi.org/10.1109/JSEN.2025.3525662","url":null,"abstract":"In the next-generation wireless Internet-of-Things (IoT) networks empowered by modern communication technology, nonorthogonal multiple access (NOMA) and faster-than-Nyquist (FTN) signaling are purportedly two enabling technologies that enhance spectral efficiency (SE) without requiring additional spectrum resources. In addition, simultaneous wireless information and power transfer (SWIPT) technology enables IoT sensors and devices to harvest energy from radio frequency (RF) signals, effectively mitigating power supply limitations. This article proposes and investigates a novel SWIPT-NOMA system based on FTN technology, referred to as FTN-assisted SWIPT-NOMA, for IoT relay networks over Rayleigh fading channels. We provide a comprehensive analysis of the ergodic capacity and achievable rate of the FTN-assisted SWIPT-NOMA system applied in IoT relay networks. Specifically, we explore two distinct relaying architectures geared toward augmenting SE and energy utilization, i.e., power-splitting (PS) and time-switching (TS). We derive approximated expressions for the ergodic capacity and analyze high- signal-to-noise radio (SNR) slopes for sensor users in both architectures. Simulation results show that the ergodic capacity of the proposed system surpasses that of the conventional Nyquist SWIPT-NOMA system, with greater capacity improvements as the FTN acceleration factor <inline-formula> <tex-math>$tau $ </tex-math></inline-formula> decreases. This highlights the substantial potential of FTN-assisted SWIPT-NOMA systems in enhancing the performance of IoT relay networks, particularly with respect to SE.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"7431-7444"},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1109/JSEN.2025.3526951
Qian Liu;Jun Chen
This article presents a Ag nanoparticles (NPs)/MoS2 quantum dots (QDs)/single-walled carbon nanotubes (SWCNTs)/Si photodetector operating in the near-infrared (NIR) region. The QDs and metal NPs are combined on the prepared photodetector to improve the performance through the optical absorption enhancement of QDs and the local surface plasmon resonance effect of metal NPs. Meanwhile, the speed of the device is improved by the high mobility of SWCNTs. At −1 V, the responsivity of the photodetector is 454.7 mA/W for the 808-nm laser and 347.5 mA/W for the 1064-nm laser. The detectivity of this photograph detector reaches $2.75times 10^{{11}}$ Jones at 808 nm and $2.12times 10^{{11}}$ Jones at 1064 nm. It also has a good response time under high-frequency illumination, with a rise time of $2.5~mu $ s and a fall time of $62~mu $ s. Such Ag NPs/MoS2 QDs/SWCNTs/Si heterostructured photodetectors have high performance and can be widely used for NIR photodetection.
{"title":"High-Performance Ag NPs/MoS₂ QDs/SWCNTs/Si Near-Infrared Photodetector","authors":"Qian Liu;Jun Chen","doi":"10.1109/JSEN.2025.3526951","DOIUrl":"https://doi.org/10.1109/JSEN.2025.3526951","url":null,"abstract":"This article presents a Ag nanoparticles (NPs)/MoS2 quantum dots (QDs)/single-walled carbon nanotubes (SWCNTs)/Si photodetector operating in the near-infrared (NIR) region. The QDs and metal NPs are combined on the prepared photodetector to improve the performance through the optical absorption enhancement of QDs and the local surface plasmon resonance effect of metal NPs. Meanwhile, the speed of the device is improved by the high mobility of SWCNTs. At −1 V, the responsivity of the photodetector is 454.7 mA/W for the 808-nm laser and 347.5 mA/W for the 1064-nm laser. The detectivity of this photograph detector reaches <inline-formula> <tex-math>$2.75times 10^{{11}}$ </tex-math></inline-formula> Jones at 808 nm and <inline-formula> <tex-math>$2.12times 10^{{11}}$ </tex-math></inline-formula> Jones at 1064 nm. It also has a good response time under high-frequency illumination, with a rise time of <inline-formula> <tex-math>$2.5~mu $ </tex-math></inline-formula>s and a fall time of <inline-formula> <tex-math>$62~mu $ </tex-math></inline-formula>s. Such Ag NPs/MoS2 QDs/SWCNTs/Si heterostructured photodetectors have high performance and can be widely used for NIR photodetection.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"6283-6289"},"PeriodicalIF":4.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1109/TDMR.2025.3528093
{"title":"2024 Index IEEE Transactions on Device and Materials Reliability Vol. 24","authors":"","doi":"10.1109/TDMR.2025.3528093","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3528093","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"665-682"},"PeriodicalIF":2.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841807","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1109/JSEN.2025.3527150
Xiaozhu Yu;Yiqing Shen
Green tea from different origins develops unique qualities and flavors due to varying environmental factors, such as climate, soil, and water quality. Unfortunately, lower quality green tea is sometimes misrepresented as coming from prestigious origins. This study presents a fast, objective, and effective gas detection method combined with deep learning to assess green tea quality from different origins. First, gas information from green tea of six renowned Chinese origins is captured using an electronic nose (e-nose) system. Next, we introduce an adaptive gas features calculation module (AGFCM) that integrates deep gas features through two methods: multiscales convolution calculations and adaptive attention mechanisms. Finally, we propose an adaptive gas features classification network (AGFC-Net) to classify the gas information from different origins. Following structural optimizations, ablation studies, and comparison across classification methods, AGFC-Net achieves the best results, with 98.42% accuracy, 98.56% ${F}_{{1}}$ -score, and 98.62% kappa coefficient. Overall, this e-nose-based gas detection technology, combined with AGFC-Net, enables effective and rapid identification of green tea quality variations, offering technical support for quality assurance and market safety.
{"title":"Traceability of Green Tea Origin: An Adaptive Gas Features Classification Network Coupled With an Electronic Nose","authors":"Xiaozhu Yu;Yiqing Shen","doi":"10.1109/JSEN.2025.3527150","DOIUrl":"https://doi.org/10.1109/JSEN.2025.3527150","url":null,"abstract":"Green tea from different origins develops unique qualities and flavors due to varying environmental factors, such as climate, soil, and water quality. Unfortunately, lower quality green tea is sometimes misrepresented as coming from prestigious origins. This study presents a fast, objective, and effective gas detection method combined with deep learning to assess green tea quality from different origins. First, gas information from green tea of six renowned Chinese origins is captured using an electronic nose (e-nose) system. Next, we introduce an adaptive gas features calculation module (AGFCM) that integrates deep gas features through two methods: multiscales convolution calculations and adaptive attention mechanisms. Finally, we propose an adaptive gas features classification network (AGFC-Net) to classify the gas information from different origins. Following structural optimizations, ablation studies, and comparison across classification methods, AGFC-Net achieves the best results, with 98.42% accuracy, 98.56% <inline-formula> <tex-math>${F}_{{1}}$ </tex-math></inline-formula>-score, and 98.62% kappa coefficient. Overall, this e-nose-based gas detection technology, combined with AGFC-Net, enables effective and rapid identification of green tea quality variations, offering technical support for quality assurance and market safety.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"7708-7715"},"PeriodicalIF":4.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1109/TPS.2024.3520713
Daisheng Zhang;Wenxuan Liao;Xiaojun Sun;Wei Chen;Lixia Yang
In this study, the Bhatnagar-Gross–Krook (BGK) collision model for weakly ionized dusty plasmas is obtained and the FDTD iterative equations for dusty plasma in the time-varying case is derived in combination with the Z-finite difference time domain (Z-FDTD) method (2-D TM wave). The electromagnetic (EM) scattering characteristic of a time-varying hypersonic target with a dusty plasma coating in the BGK collision model is studied by calculating the radar scattering cross section (RCS) with varying dust particle radius, dust particle concentration ratio, dusty plasma relaxation time, collision frequency, incident angle, and time-varying laws of electron density in the dusty plasma. Results show that the increase in dust particle radius and concentration, as influenced by the charging effect of dust particles, enhances the scattering of EM waves. This improvement leads to the increment in RCS. The augmented charging and collision frequencies of dusty plasma intensify the collision effect of electrons, ions, and dust particles, which decreases RCS. In addition, the effects of different incident angles and time-varying laws on the RCS are analyzed. In addition, the change in incident angle causes deviations in the overall change in RCS. Furthermore, different time-varying laws change the oscillation amplitude of RCS to some extent. These results provide theoretical support for solving the “communication blackout” problem.
{"title":"Study on the Electromagnetic Scattering Characteristics of Time-Varying Dusty Plasma Target in the BGK Collision Model-TM Case","authors":"Daisheng Zhang;Wenxuan Liao;Xiaojun Sun;Wei Chen;Lixia Yang","doi":"10.1109/TPS.2024.3520713","DOIUrl":"https://doi.org/10.1109/TPS.2024.3520713","url":null,"abstract":"In this study, the Bhatnagar-Gross–Krook (BGK) collision model for weakly ionized dusty plasmas is obtained and the FDTD iterative equations for dusty plasma in the time-varying case is derived in combination with the Z-finite difference time domain (Z-FDTD) method (2-D TM wave). The electromagnetic (EM) scattering characteristic of a time-varying hypersonic target with a dusty plasma coating in the BGK collision model is studied by calculating the radar scattering cross section (RCS) with varying dust particle radius, dust particle concentration ratio, dusty plasma relaxation time, collision frequency, incident angle, and time-varying laws of electron density in the dusty plasma. Results show that the increase in dust particle radius and concentration, as influenced by the charging effect of dust particles, enhances the scattering of EM waves. This improvement leads to the increment in RCS. The augmented charging and collision frequencies of dusty plasma intensify the collision effect of electrons, ions, and dust particles, which decreases RCS. In addition, the effects of different incident angles and time-varying laws on the RCS are analyzed. In addition, the change in incident angle causes deviations in the overall change in RCS. Furthermore, different time-varying laws change the oscillation amplitude of RCS to some extent. These results provide theoretical support for solving the “communication blackout” problem.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"116-121"},"PeriodicalIF":1.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}