Pub Date : 2025-03-21DOI: 10.1109/TSTE.2025.3553209
{"title":"Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TSTE.2025.3553209","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3553209","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1487-1487"},"PeriodicalIF":8.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10936646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1109/TSTE.2025.3547400
{"title":"IEEE Transactions on Sustainable Energy Publication Information","authors":"","doi":"10.1109/TSTE.2025.3547400","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3547400","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"C2-C2"},"PeriodicalIF":8.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1109/TPS.2025.3547632
Horia-Eugen Porteanu;Ilija Stefanović;Michael Klute;Peter Awakowicz;Ralf-Peter Brinkmann;Wolfgang Heinrich
Measurement of resonances requires data acquisition at different frequencies. Tracing the evolution of a resonance, therefore, requires a long time for each step. Reproducible events allow us to record data in the time domain at different fixed frequencies and then to rebuild the resonance shapes at different times. Using this method, the ignition process and the transition from electrostatic to electromagnetic coupling (E–H) have been investigated for plasma formation in different gases (He, Ar, N2, and O2) and pressures (20–2000 Pa). The microwave source used offers a miniature model of an inductively coupled plasma (ICP) inside a quartz tube and has a relatively narrow resonance in the range of 2.4–2.5 GHz with or without plasma. After a short time with only capacitive coupling, at low pressures, there is a coexistence of two resonances, indicating that capacitive and inductive coupling exist. At high pressures, the ignition time is much longer, and a common hybrid resonance appears. Helium and argon show an increase in time over tens of microseconds of the resonance frequency corresponding to inductive coupling, which means, in our global model, a very slow increase of the electron density. Nitrogen and oxygen show, on the contrary, a relatively long initial phase of capacitive coupling and then a stable electron density with inductive coupling. Moreover, oxygen at high pressures shows a plateau, initially indicating an attachment of electrons to oxygen atoms (O$^{-}$ ) and after hundreds of microseconds followed by the formation of positive oxygen ions.
{"title":"Time-Resolved Investigations of the Capacitive to Inductive Transition in a Microwave-Driven Plasma Source","authors":"Horia-Eugen Porteanu;Ilija Stefanović;Michael Klute;Peter Awakowicz;Ralf-Peter Brinkmann;Wolfgang Heinrich","doi":"10.1109/TPS.2025.3547632","DOIUrl":"https://doi.org/10.1109/TPS.2025.3547632","url":null,"abstract":"Measurement of resonances requires data acquisition at different frequencies. Tracing the evolution of a resonance, therefore, requires a long time for each step. Reproducible events allow us to record data in the time domain at different fixed frequencies and then to rebuild the resonance shapes at different times. Using this method, the ignition process and the transition from electrostatic to electromagnetic coupling (<italic>E</i>–<italic>H</i>) have been investigated for plasma formation in different gases (He, Ar, N<sub>2</sub>, and O<sub>2</sub>) and pressures (20–2000 Pa). The microwave source used offers a miniature model of an inductively coupled plasma (ICP) inside a quartz tube and has a relatively narrow resonance in the range of 2.4–2.5 GHz with or without plasma. After a short time with only capacitive coupling, at low pressures, there is a coexistence of two resonances, indicating that capacitive and inductive coupling exist. At high pressures, the ignition time is much longer, and a common hybrid resonance appears. Helium and argon show an increase in time over tens of microseconds of the resonance frequency corresponding to inductive coupling, which means, in our global model, a very slow increase of the electron density. Nitrogen and oxygen show, on the contrary, a relatively long initial phase of capacitive coupling and then a stable electron density with inductive coupling. Moreover, oxygen at high pressures shows a plateau, initially indicating an attachment of electrons to oxygen atoms (O<inline-formula> <tex-math>$^{-}$ </tex-math></inline-formula>) and after hundreds of microseconds followed by the formation of positive oxygen ions.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"571-578"},"PeriodicalIF":1.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-20DOI: 10.1109/OJNANO.2025.3553692
Sebastiano De Stefano;Alfredo Spuri;Raffaele Barbella;Ofelia Durante;Adolfo Mazzotti;Andrea Sessa;Angelo Di Bernardo;Antonio Di Bartolomeo
The miniaturization of electronic components remains a critical focus in electronics, particularly in transistor design, with research exploring new solutions such as the use of two-dimensional materials in Schottky Barrier Field Effect Transistors (SB-FETs). Following the trend, this study presents two-dimensional MoS2 SB-FETs, configured with back-gate and van der Pauw contacts, and analyses their electrical behaviour through output and transfer characteristics. The consequences that local inhomogeneities due to fabrication processes have on Schottky barriers height and electrical behaviour of the device are underlined. A hierarchy of the Schottky barrier heights at the contacts is established, and a band model is developed to elucidate the underlying conduction mechanisms. This model combines thermionic emission and tunnelling to explain the operation of the studied MoS2 devices and can be broadly applied to other SB-FETs.
{"title":"Multilayer MoS2 Schottky Barrier Field Effect Transistor","authors":"Sebastiano De Stefano;Alfredo Spuri;Raffaele Barbella;Ofelia Durante;Adolfo Mazzotti;Andrea Sessa;Angelo Di Bernardo;Antonio Di Bartolomeo","doi":"10.1109/OJNANO.2025.3553692","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3553692","url":null,"abstract":"The miniaturization of electronic components remains a critical focus in electronics, particularly in transistor design, with research exploring new solutions such as the use of two-dimensional materials in Schottky Barrier Field Effect Transistors (SB-FETs). Following the trend, this study presents two-dimensional MoS<sub>2</sub> SB-FETs, configured with back-gate and van der Pauw contacts, and analyses their electrical behaviour through output and transfer characteristics. The consequences that local inhomogeneities due to fabrication processes have on Schottky barriers height and electrical behaviour of the device are underlined. A hierarchy of the Schottky barrier heights at the contacts is established, and a band model is developed to elucidate the underlying conduction mechanisms. This model combines thermionic emission and tunnelling to explain the operation of the studied MoS<sub>2</sub> devices and can be broadly applied to other SB-FETs.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"51-57"},"PeriodicalIF":1.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1109/TDMR.2025.3535976
{"title":"Call for Nominations for Editor-in-Chief IEEE Transactions on Semiconductor Manufacturing","authors":"","doi":"10.1109/TDMR.2025.3535976","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3535976","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"173-173"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1109/TDMR.2025.3551113
{"title":"Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Special Issue on: OFS-29","authors":"","doi":"10.1109/TDMR.2025.3551113","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3551113","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"174-174"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1109/TDMR.2025.3549643
{"title":"IEEE Transactions on Device and Materials Reliability Information for Authors","authors":"","doi":"10.1109/TDMR.2025.3549643","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3549643","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1109/TDMR.2025.3544351
Luca Cassano;Mihalis Psarakis
The ten articles in this special issue present innovative research in the field of defect and fault tolerance in VLSI and nanotechnology systems and provide readers with valuable insights into the latest advances and future trends in these challenging research areas. The focus of these articles is on the reliability in the design, technology and testing of electronic devices and systems, integrated circuits, printed modules, as well as methodologies and tools used for reliability and security prediction, verification and design validation.
{"title":"Special Issue on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS 2023) in the IEEE Transactions on Device and Materials Reliability","authors":"Luca Cassano;Mihalis Psarakis","doi":"10.1109/TDMR.2025.3544351","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3544351","url":null,"abstract":"The ten articles in this special issue present innovative research in the field of defect and fault tolerance in VLSI and nanotechnology systems and provide readers with valuable insights into the latest advances and future trends in these challenging research areas. The focus of these articles is on the reliability in the design, technology and testing of electronic devices and systems, integrated circuits, printed modules, as well as methodologies and tools used for reliability and security prediction, verification and design validation.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"2-3"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1109/TDMR.2025.3549656
{"title":"IEEE Transactions on Device and Materials Reliability Publication Information","authors":"","doi":"10.1109/TDMR.2025.3549656","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3549656","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetic skyrmion has great potential as information carriers in next-generation logic, neuromorphic computing, and memory devices because of its topological stability, incredibly compact size, and low current consumption required to operate it. In this work, the computational demonstration of a skyrmion controlled by a voltage controlled magnetic anisotropy (VCMA) gradient on a trapezoidal nanotrack is studied for the application of racetrack memory. The trapezoidal nanotrack aids in guiding the skyrmion's motion under the anisotropy gradient by leveraging the edge repulsion force. By utilizing a defect, the proposed device ensures a continuous flow of binary bits ‘0’ and ‘1’ without any accumulation on the racetrack. The higher angle (θhigh) and higher anisotropy gradient (ΔKu-high) of the trapezoidal nanotrack accelerates the skyrmion owing to higher edge repulsion force and energy gradient force. The maximum speed of 1.27 m/s was achieved by the skyrmion, and the minimum time taken for the skyrmion to reach the detector from the nucleation point was 2.16 ns. The energy used to maintain the electric field is 4.58fJ per bit operation. This presents a novel approach to manipulate skyrmions under anisotropy gradient (ΔKu) on the trapezoidal nanotrack, paving the way for the development of improved skyrmion racetrack memory (sk-RM).
{"title":"VCMA Gradient-Driven Skyrmion on a Trapezoidal Nanotrack for Racetrack Memory Application","authors":"Bikash Sharma;Pema Rinzing Bhutia;Ravish Kumar Raj;Bibek Chettri;Brajesh Kumar Kaushik;Sonal Shreya","doi":"10.1109/OJNANO.2025.3550173","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3550173","url":null,"abstract":"Magnetic skyrmion has great potential as information carriers in next-generation logic, neuromorphic computing, and memory devices because of its topological stability, incredibly compact size, and low current consumption required to operate it. In this work, the computational demonstration of a skyrmion controlled by a voltage controlled magnetic anisotropy (VCMA) gradient on a trapezoidal nanotrack is studied for the application of racetrack memory. The trapezoidal nanotrack aids in guiding the skyrmion's motion under the anisotropy gradient by leveraging the edge repulsion force. By utilizing a defect, the proposed device ensures a continuous flow of binary bits ‘0’ and ‘1’ without any accumulation on the racetrack. The higher angle (<italic>θ<sub>high</sub></i>) and higher anisotropy gradient (<italic>ΔK<sub>u</sub><sub>-high</sub></i>) of the trapezoidal nanotrack accelerates the skyrmion owing to higher edge repulsion force and energy gradient force. The maximum speed of 1.27 m/s was achieved by the skyrmion, and the minimum time taken for the skyrmion to reach the detector from the nucleation point was 2.16 ns. The energy used to maintain the electric field is 4.58<italic>fJ</i> per bit operation. This presents a novel approach to manipulate skyrmions under anisotropy gradient (<italic>ΔK<sub>u</sub></i>) on the trapezoidal nanotrack, paving the way for the development of improved skyrmion racetrack memory (sk-RM).","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"44-50"},"PeriodicalIF":1.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934757","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}