首页 > 最新文献

Advanced Sensor Research最新文献

英文 中文
Effects of Ultrasound for Bio-Applications 超声波对生物应用的影响
Pub Date : 2024-04-17 DOI: 10.1002/adsr.202300199
Likai Yuan, Qianqian Li, Zhen Li

Ultrasound (US), as a non-invasive mechanical wave, has served as a visual tool for medical diagnosis and therapy for echolocation effect, cavitation effect, thermal effect, and generation of reactive oxygen species (ROS) with the aid of sonosensitizers. This review summarizes the history, effects, and biomedical applications of US, and US-assisted cancer therapy is highlighted. The rational combination of US with near-infrared afterglow nanoparticles, anti-tumor prodrugs, and stimuli-responsive nanocarriers, demonstrates the great promise for bioimaging, cancer therapy, and drug delivery, promoting US-related technology in biomedical diagnosis and therapeutics.

超声波(US)作为一种非侵入性机械波,在回声定位效应、空化效应、热效应以及借助声敏化剂产生活性氧(ROS)等方面,已成为医疗诊断和治疗的可视化工具。这篇综述总结了 US 的历史、效果和生物医学应用,并重点介绍了 US 辅助癌症治疗。将 US 与近红外余辉纳米粒子、抗肿瘤原药和刺激响应纳米载体合理结合,显示了 US 在生物成像、癌症治疗和药物输送方面的巨大前景,促进了 US 相关技术在生物医学诊断和治疗中的应用。
{"title":"Effects of Ultrasound for Bio-Applications","authors":"Likai Yuan,&nbsp;Qianqian Li,&nbsp;Zhen Li","doi":"10.1002/adsr.202300199","DOIUrl":"10.1002/adsr.202300199","url":null,"abstract":"<p>Ultrasound (US), as a non-invasive mechanical wave, has served as a visual tool for medical diagnosis and therapy for echolocation effect, cavitation effect, thermal effect, and generation of reactive oxygen species (ROS) with the aid of sonosensitizers. This review summarizes the history, effects, and biomedical applications of US, and US-assisted cancer therapy is highlighted. The rational combination of US with near-infrared afterglow nanoparticles, anti-tumor prodrugs, and stimuli-responsive nanocarriers, demonstrates the great promise for bioimaging, cancer therapy, and drug delivery, promoting US-related technology in biomedical diagnosis and therapeutics.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bio-Inspired Artificial Tactile Sensing System Based on Optical Microfiber and Enhanced by Neural Network 基于光学微纤维并通过神经网络增强的生物启发式人工触觉传感系统
Pub Date : 2024-04-17 DOI: 10.1002/adsr.202300157
Junjie Weng, Siyang Xiao, Yang Yu, Jianfa Zhang, Jian Chen, Dongying Wang, Zhencheng Wang, Jianqiao Liang, Hansi Ma, Junbo Yang, Tianwu Wang, Zhenrong Zhang

Human tactile perception involves the activation of mechanoreceptors located within the skin in response to external stimuli, along with the organization and processing within the brain. However, human sensations may be subject to the issues related to some physiological factors (such as skin injury or neurasthenia), resulting in inability to quantify tactile information. To address this challenge, a novel bio-inspired artificial tactile (BAT) sensing system enabled by the integration of optical microfiber (OM) with full-connected neural network (FCNN) in this paper is demonstrated, inspired by human physiological characteristics and tactile mechanisms. In this system, the BAT sensor mimics human skin, where the OM serves as the mechanoreceptor for sensing tactile stimuli, while the FCNN functions as a simulated human brain to train and extract the signal characteristics for intelligent object recognition. The experimental results indicate that the proposed BAT sensor can sensitively respond to both the contact force (static tactile stimuli), as well as the vibrotactile events (dynamic tactile stimuli) for the recognition of regular textures. Furthermore, by integrating the trained FCNN, the BAT sensing system accurately identifies various intricate surface textures with an exceptional accuracy of 95.7%, highlighting its potential in next-generation human-machine interaction and advanced robotics.

人类的触觉感知包括位于皮肤内的机械感受器对外界刺激的激活,以及大脑的组织和处理。然而,人类的感觉可能会受到一些生理因素(如皮肤损伤或神经衰弱)的影响,导致无法量化触觉信息。为了应对这一挑战,本文展示了一种新型生物启发人工触觉(BAT)传感系统,该系统由光学微纤维(OM)与全连接神经网络(FCNN)集成而成,其灵感来源于人体生理特征和触觉机制。在该系统中,BAT 传感器模拟人体皮肤,其中 OM 充当机械感受器,用于感知触觉刺激,而 FCNN 则充当模拟人脑,用于训练和提取信号特征,从而实现智能物体识别。实验结果表明,所提出的 BAT 传感器能够灵敏地响应接触力(静态触觉刺激)和振动触觉事件(动态触觉刺激),从而识别规则纹理。此外,通过集成训练有素的 FCNN,BAT 传感系统能准确识别各种复杂的表面纹理,准确率高达 95.7%,这凸显了其在下一代人机交互和先进机器人技术中的潜力。
{"title":"A Bio-Inspired Artificial Tactile Sensing System Based on Optical Microfiber and Enhanced by Neural Network","authors":"Junjie Weng,&nbsp;Siyang Xiao,&nbsp;Yang Yu,&nbsp;Jianfa Zhang,&nbsp;Jian Chen,&nbsp;Dongying Wang,&nbsp;Zhencheng Wang,&nbsp;Jianqiao Liang,&nbsp;Hansi Ma,&nbsp;Junbo Yang,&nbsp;Tianwu Wang,&nbsp;Zhenrong Zhang","doi":"10.1002/adsr.202300157","DOIUrl":"10.1002/adsr.202300157","url":null,"abstract":"<p>Human tactile perception involves the activation of mechanoreceptors located within the skin in response to external stimuli, along with the organization and processing within the brain. However, human sensations may be subject to the issues related to some physiological factors (such as skin injury or neurasthenia), resulting in inability to quantify tactile information. To address this challenge, a novel bio-inspired artificial tactile (BAT) sensing system enabled by the integration of optical microfiber (OM) with full-connected neural network (FCNN) in this paper is demonstrated, inspired by human physiological characteristics and tactile mechanisms. In this system, the BAT sensor mimics human skin, where the OM serves as the mechanoreceptor for sensing tactile stimuli, while the FCNN functions as a simulated human brain to train and extract the signal characteristics for intelligent object recognition. The experimental results indicate that the proposed BAT sensor can sensitively respond to both the contact force (static tactile stimuli), as well as the vibrotactile events (dynamic tactile stimuli) for the recognition of regular textures. Furthermore, by integrating the trained FCNN, the BAT sensing system accurately identifies various intricate surface textures with an exceptional accuracy of 95.7%, highlighting its potential in next-generation human-machine interaction and advanced robotics.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Microwave Photonic Sensors Based on Microresonators 基于微谐振器的集成微波光子传感器
Pub Date : 2024-04-17 DOI: 10.1002/adsr.202300145
Xiaoyi Tian, Liwei Li, Linh Nguyen, Xiaoke Yi

Sensors stand as pivotal cornerstones of technology, driving progress across a spectrum of industries through their ability to precisely capture and interpret an extensive array of physical phenomena. Among these advancements, microwave photonic (MWP) sensing has emerged as a new sensing technique, elevating sensing speed and resolution for practical applications. Integrated MWP sensors exhibit unparalleled capabilities in ultra-sensitive, label-free nanoscale detection, offering the potential to synergize with advanced integration techniques for a compact footprint and versatile designs. This paper reviews and summarizes the development and recent advances in integrated MWP sensing, focusing on the schemes based on microresonators. The diverse array of existing schemes is systematically categorized, elucidating their operational principles and performance demonstration. Furthermore, the assistance of machine learning and deep learning in integrated MWP sensors is explored, highlighting the potential of intelligent sensing paradigms. Finally, current challenges and opportunities aimed at further advancing MWP sensors are discussed.

传感器是技术的重要基石,通过其精确捕捉和解释大量物理现象的能力,推动着各行各业的进步。在这些进步中,微波光子(MWP)传感已成为一种新的传感技术,提高了实际应用中的传感速度和分辨率。集成式 MWP 传感器在超灵敏、无标记纳米级检测方面具有无与伦比的能力,可与先进的集成技术协同作用,实现紧凑的占地面积和多功能设计。本文回顾并总结了集成式 MWP 传感技术的发展和最新进展,重点是基于微谐振器的方案。本文对现有的各种方案进行了系统分类,阐明了它们的工作原理和性能演示。此外,还探讨了机器学习和深度学习对集成式 MWP 传感器的帮助,突出了智能传感范例的潜力。最后,还讨论了当前的挑战和机遇,旨在进一步推动 MWP 传感器的发展。
{"title":"Integrated Microwave Photonic Sensors Based on Microresonators","authors":"Xiaoyi Tian,&nbsp;Liwei Li,&nbsp;Linh Nguyen,&nbsp;Xiaoke Yi","doi":"10.1002/adsr.202300145","DOIUrl":"10.1002/adsr.202300145","url":null,"abstract":"<p>Sensors stand as pivotal cornerstones of technology, driving progress across a spectrum of industries through their ability to precisely capture and interpret an extensive array of physical phenomena. Among these advancements, microwave photonic (MWP) sensing has emerged as a new sensing technique, elevating sensing speed and resolution for practical applications. Integrated MWP sensors exhibit unparalleled capabilities in ultra-sensitive, label-free nanoscale detection, offering the potential to synergize with advanced integration techniques for a compact footprint and versatile designs. This paper reviews and summarizes the development and recent advances in integrated MWP sensing, focusing on the schemes based on microresonators. The diverse array of existing schemes is systematically categorized, elucidating their operational principles and performance demonstration. Furthermore, the assistance of machine learning and deep learning in integrated MWP sensors is explored, highlighting the potential of intelligent sensing paradigms. Finally, current challenges and opportunities aimed at further advancing MWP sensors are discussed.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instantaneous Viral Detection of SARS-CoV-2 and Beyond using Electromagnetic Sensing (Adv. Sensor Res. 4/2024) 利用电磁传感技术即时检测 SARS-CoV-2 及其他病毒(传感器研究进展 4/2024)
Pub Date : 2024-04-11 DOI: 10.1002/adsr.202470013
Rayan Al Sayed Ali, Nader Shafi, Fatima Asadallah, Rachel Njeim, Habib Al Kalamouni, Hassan Zaraket, Rouwaida Kanj, Assaad Eid, Joseph Costantine, Youssef Tawk

SARS-CoV-2 Sensing and Detection

In article 2300135, Youssef Tawk and co-workers introduce an advanced portable device that leverages electromagnetic waves and data analytics to instantaneously detect and differentiate between the SARS-CoV-2 virus and different respiratory viruses. It employs a radio frequency (RF) circuit to electromagnetically identify virus signatures in diluted nasopharyngeal swabs with a detection accuracy of 94%, a sensitivity of 95%, and a specificity of 97.5%.

SARS-CoV-2 感测和检测在第 2300135 号文章中,Youssef Tawk 及其合作者介绍了一种先进的便携式设备,该设备利用电磁波和数据分析技术即时检测和区分 SARS-CoV-2 病毒和不同的呼吸道病毒。它采用射频 (RF) 电路以电磁方式识别稀释鼻咽拭子中的病毒特征,检测准确率达 94%,灵敏度达 95%,特异性达 97.5%。
{"title":"Instantaneous Viral Detection of SARS-CoV-2 and Beyond using Electromagnetic Sensing (Adv. Sensor Res. 4/2024)","authors":"Rayan Al Sayed Ali,&nbsp;Nader Shafi,&nbsp;Fatima Asadallah,&nbsp;Rachel Njeim,&nbsp;Habib Al Kalamouni,&nbsp;Hassan Zaraket,&nbsp;Rouwaida Kanj,&nbsp;Assaad Eid,&nbsp;Joseph Costantine,&nbsp;Youssef Tawk","doi":"10.1002/adsr.202470013","DOIUrl":"https://doi.org/10.1002/adsr.202470013","url":null,"abstract":"<p><b>SARS-CoV-2 Sensing and Detection</b></p><p>In article 2300135, Youssef Tawk and co-workers introduce an advanced portable device that leverages electromagnetic waves and data analytics to instantaneously detect and differentiate between the SARS-CoV-2 virus and different respiratory viruses. It employs a radio frequency (RF) circuit to electromagnetically identify virus signatures in diluted nasopharyngeal swabs with a detection accuracy of 94%, a sensitivity of 95%, and a specificity of 97.5%.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead (Adv. Sensor Res. 4/2024) 桅杆头(传感器推进决议 4/2024)
Pub Date : 2024-04-11 DOI: 10.1002/adsr.202470014
{"title":"Masthead (Adv. Sensor Res. 4/2024)","authors":"","doi":"10.1002/adsr.202470014","DOIUrl":"https://doi.org/10.1002/adsr.202470014","url":null,"abstract":"","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Flexible, Wearable, Humidity-Resistant and Self-Powered Sensor Fabricated by Chitosan-Critic Acid Film and its Applications in Human Motion Monitoring and Energy Harvesting (Adv. Sensor Res. 4/2024) 由壳聚糖-硬脂酸薄膜制成的柔性、可穿戴、防潮和自供电传感器及其在人体运动监测和能量收集中的应用(传感器研究进展 4/2024)
Pub Date : 2024-04-11 DOI: 10.1002/adsr.202470012
Xing Zhang, Yanran Ma, Yongfa Wang, Li Li, Peihong Wang, Chunchang Wang

Triboelectric Nanogenerator

In article 2300129, Peihong Wang, Chunchang Wang, and co-workers show that the addition of citric and glycerol enhances water resistance, improves the softness of the chitosan-based film, results in low electronegativity and higher triboelectricity of chitosan-based film. Self-powered tactile sensor based on the TENG exhibits sensitive response to pressure and bending as well as humidity resistance, giving the sensor tremendous promise for a wide range of human motion monitoring and energy harvesting.

三电纳米发电机在第 2300129 号文章中,Peihong Wang、Chunchang Wang 及合作者展示了柠檬酸和甘油的添加增强了壳聚糖薄膜的耐水性,提高了其柔软性,使壳聚糖薄膜的电负性更低,三电性更高。基于 TENG 的自供电触觉传感器表现出对压力和弯曲的灵敏响应以及耐湿性,这为传感器广泛应用于人体运动监测和能量收集带来了巨大希望。
{"title":"A Flexible, Wearable, Humidity-Resistant and Self-Powered Sensor Fabricated by Chitosan-Critic Acid Film and its Applications in Human Motion Monitoring and Energy Harvesting (Adv. Sensor Res. 4/2024)","authors":"Xing Zhang,&nbsp;Yanran Ma,&nbsp;Yongfa Wang,&nbsp;Li Li,&nbsp;Peihong Wang,&nbsp;Chunchang Wang","doi":"10.1002/adsr.202470012","DOIUrl":"https://doi.org/10.1002/adsr.202470012","url":null,"abstract":"<p><b>Triboelectric Nanogenerator</b></p><p>In article 2300129, Peihong Wang, Chunchang Wang, and co-workers show that the addition of citric and glycerol enhances water resistance, improves the softness of the chitosan-based film, results in low electronegativity and higher triboelectricity of chitosan-based film. Self-powered tactile sensor based on the TENG exhibits sensitive response to pressure and bending as well as humidity resistance, giving the sensor tremendous promise for a wide range of human motion monitoring and energy harvesting.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing Electrochemical Sensing Fundamentals for Health Applications (Adv. Sensor Res. 4/2024) 分析用于健康应用的电化学传感基本原理(传感器研究进展 4/2024)
Pub Date : 2024-04-11 DOI: 10.1002/adsr.202470015
Maksud M. Alam, Victor Mitea, Matiar M. R. Howlader, Ponnambalam Ravi Selvaganapathy, M. Jamal Deen

Electrochemical Biosensing

Electrochemical biosensing is a rapidly growing field within global healthcare research. In article 2300100, Matiar M. R. Howlader and co-workers provide a comprehensive review of the underlying principles and technological advancements in electrochemical sensing for health monitoring applications.

电化学生物传感电化学生物传感是全球医疗保健研究中一个快速发展的领域。在文章 2300100 中,Matiar M. R. Howlader 及其合作者全面回顾了用于健康监测应用的电化学传感的基本原理和技术进展。
{"title":"Analyzing Electrochemical Sensing Fundamentals for Health Applications (Adv. Sensor Res. 4/2024)","authors":"Maksud M. Alam,&nbsp;Victor Mitea,&nbsp;Matiar M. R. Howlader,&nbsp;Ponnambalam Ravi Selvaganapathy,&nbsp;M. Jamal Deen","doi":"10.1002/adsr.202470015","DOIUrl":"https://doi.org/10.1002/adsr.202470015","url":null,"abstract":"<p><b>Electrochemical Biosensing</b></p><p>Electrochemical biosensing is a rapidly growing field within global healthcare research. In article 2300100, Matiar M. R. Howlader and co-workers provide a comprehensive review of the underlying principles and technological advancements in electrochemical sensing for health monitoring applications.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning-Assisted Sensitive 3C-SiC Sensor for Long-Term Monitoring of Physical Respiration 深度学习辅助灵敏 3C-SiC 传感器用于长期监测生理呼吸
Pub Date : 2024-04-05 DOI: 10.1002/adsr.202300159
Thi Lap Tran, Duy Van Nguyen, Hung Nguyen, Thi Phuoc Van Nguyen, Pingan Song, Ravinesh C Deo, Clint Moloney, Viet Dung Dao, Nam-Trung Nguyen, Toan Dinh

In human life, respiration serves as a crucial physiological signal. Continuous real-time respiration monitoring can provide valuable insights for the early detection and management of several respiratory diseases. High-sensitivity, noninvasive, comfortable, and long-term stable respiration devices are highly desirable. In spite of this, existing respiration sensors cannot provide continuous long-term monitoring due to the erosion from moisture, fluctuations in body temperature, and many other environmental factors. This research developed a wearable thermal-based respiration sensor made of cubic silicon carbide (3C-SiC) using a microfabrication process. The results showed that as a result of the Joule heating effect in the robustness 3C-SiC material, the sensor offered high sensitivity with the negative temperature coefficient of resistance of approximately 5,200ppmK-1, an excellent response to respiration and long-term stability monitoring. Furthermore, by incorporating a deep learning model, this fabricated sensor can develop advanced capabilities to distinguish between the four distinct breath patterns: slow, normal, fast, and deep breathing, and provide an impressive classification accuracy rate of ≈ 99.7%. The results of this research represent a significant step in developing wearable respiration sensors for personal healthcare systems.

在人类生活中,呼吸是一个重要的生理信号。连续实时的呼吸监测可为多种呼吸系统疾病的早期检测和治疗提供有价值的信息。高灵敏度、无创、舒适和长期稳定的呼吸设备非常受欢迎。尽管如此,由于湿度、体温波动和许多其他环境因素的侵蚀,现有的呼吸传感器无法提供连续的长期监测。这项研究利用微加工工艺开发了一种由立方碳化硅(3C-SiC)制成的可穿戴热式呼吸传感器。结果表明,由于坚固的 3C-SiC 材料中存在焦耳加热效应,该传感器具有高灵敏度,其电阻负温度系数约为 5200ppmK-1,对呼吸和长期稳定性监测具有出色的响应能力。此外,通过结合深度学习模型,该制备的传感器可以开发出先进的功能,以区分四种不同的呼吸模式:缓慢呼吸、正常呼吸、快速呼吸和深呼吸,分类准确率高达 ≈ 99.7%。这项研究成果标志着为个人医疗系统开发可穿戴呼吸传感器迈出了重要一步。
{"title":"Deep Learning-Assisted Sensitive 3C-SiC Sensor for Long-Term Monitoring of Physical Respiration","authors":"Thi Lap Tran,&nbsp;Duy Van Nguyen,&nbsp;Hung Nguyen,&nbsp;Thi Phuoc Van Nguyen,&nbsp;Pingan Song,&nbsp;Ravinesh C Deo,&nbsp;Clint Moloney,&nbsp;Viet Dung Dao,&nbsp;Nam-Trung Nguyen,&nbsp;Toan Dinh","doi":"10.1002/adsr.202300159","DOIUrl":"10.1002/adsr.202300159","url":null,"abstract":"<p>In human life, respiration serves as a crucial physiological signal. Continuous real-time respiration monitoring can provide valuable insights for the early detection and management of several respiratory diseases. High-sensitivity, noninvasive, comfortable, and long-term stable respiration devices are highly desirable. In spite of this, existing respiration sensors cannot provide continuous long-term monitoring due to the erosion from moisture, fluctuations in body temperature, and many other environmental factors. This research developed a wearable thermal-based respiration sensor made of cubic silicon carbide (3C-SiC) using a microfabrication process. The results showed that as a result of the Joule heating effect in the robustness 3C-SiC material, the sensor offered high sensitivity with the negative temperature coefficient of resistance of approximately 5,200ppmK<sup>-1</sup>, an excellent response to respiration and long-term stability monitoring. Furthermore, by incorporating a deep learning model, this fabricated sensor can develop advanced capabilities to distinguish between the four distinct breath patterns: slow, normal, fast, and deep breathing, and provide an impressive classification accuracy rate of ≈ 99.7%. The results of this research represent a significant step in developing wearable respiration sensors for personal healthcare systems.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140739706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection 开发带有软铰链的桐木图案可伸缩触觉传感器阵列,实现高灵敏度力检测
Pub Date : 2024-04-03 DOI: 10.1002/adsr.202400012
Chenhao Mao, Jie Jin, Deqing Mei, Yancheng Wang

Flexible and stretchable tactile sensors are attracted in the fields of soft robotics, wearable electronics, and healthcare monitoring. The sensing performance of tactile sensors is commonly affected by external deformations like stretching, bending, and twisting, thus they may fail to function on deformable object surfaces. This paper presents a stretchable tactile sensor array using kirigami-patterned structural design and soft hinges to reduce the influences of deformation. The kirigami pattern of sensor array is parametrically studied to achieve the required expansion patterns. Laser engraving is employed to modify the micropillars on the force-sensitive rubber surface to increase the sensitivity. Characterization tests show that the sensor array has high sensitivity (≈1.49 × 10−1 kPa−1) for force sensing, and the stretching and bending deformation have almost negligible effects on sensing performance. Under 40% stretching or 180° bending conditions, the measured resistance changes (ΔR/R0) is ≈0.03 and 0.06, respectively. To demonstrate the capability of developed sensor array, it is mounted on an expandable balloon surface for force detection. The recorded signals changed less than 1.5% during expanding process while rapidly rose under applied force, which indicated that the sensor array has the potential to effectively function on complex and deforming surfaces.

柔性和可拉伸触觉传感器在软机器人、可穿戴电子设备和医疗保健监测领域备受青睐。触觉传感器的传感性能通常会受到拉伸、弯曲和扭曲等外部变形的影响,因此可能无法在可变形物体表面发挥作用。本文介绍了一种可拉伸的触觉传感器阵列,该阵列采用了叽里呱啦图案结构设计和软铰链,以减少变形的影响。本文对传感器阵列的 "叽里格米 "图案进行了参数化研究,以获得所需的伸缩图案。采用激光雕刻技术修改力敏橡胶表面的微柱,以提高灵敏度。特性测试表明,传感器阵列具有很高的力传感灵敏度(≈1.49 × 10-1 kPa-1),拉伸和弯曲变形对传感性能的影响几乎可以忽略不计。在拉伸 40% 或弯曲 180° 的条件下,测得的电阻变化(ΔR/R0)分别≈0.03 和 0.06。为证明所开发传感器阵列的能力,将其安装在可膨胀气球表面进行力检测。在膨胀过程中,记录到的信号变化小于 1.5%,而在外力作用下则迅速上升,这表明传感器阵列具有在复杂变形表面上有效发挥作用的潜力。
{"title":"Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection","authors":"Chenhao Mao,&nbsp;Jie Jin,&nbsp;Deqing Mei,&nbsp;Yancheng Wang","doi":"10.1002/adsr.202400012","DOIUrl":"10.1002/adsr.202400012","url":null,"abstract":"<p>Flexible and stretchable tactile sensors are attracted in the fields of soft robotics, wearable electronics, and healthcare monitoring. The sensing performance of tactile sensors is commonly affected by external deformations like stretching, bending, and twisting, thus they may fail to function on deformable object surfaces. This paper presents a stretchable tactile sensor array using kirigami-patterned structural design and soft hinges to reduce the influences of deformation. The kirigami pattern of sensor array is parametrically studied to achieve the required expansion patterns. Laser engraving is employed to modify the micropillars on the force-sensitive rubber surface to increase the sensitivity. Characterization tests show that the sensor array has high sensitivity (≈1.49 × 10<sup>−1</sup> kPa<sup>−1</sup>) for force sensing, and the stretching and bending deformation have almost negligible effects on sensing performance. Under 40% stretching or 180° bending conditions, the measured resistance changes (Δ<i>R</i>/<i>R</i><sub>0</sub>) is ≈0.03 and 0.06, respectively. To demonstrate the capability of developed sensor array, it is mounted on an expandable balloon surface for force detection. The recorded signals changed less than 1.5% during expanding process while rapidly rose under applied force, which indicated that the sensor array has the potential to effectively function on complex and deforming surfaces.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Isolation and Detection of Breast Cancer Circulating Tumor Cells Using Microfluidic Sequential Trapping Array 利用微流体序贯捕获阵列快速分离和检测乳腺癌循环肿瘤细胞
Pub Date : 2024-04-03 DOI: 10.1002/adsr.202300206
Amin Hassanzadeh-Barforoushi, Simon Chang-Hao Tsao, Audrey Nadalini, David W. Inglis, Yuling Wang

Circulating tumor cells (CTCs) have garnered special attention as promising cancer biomarkers. Phenotypic changes of CTCs reveal invaluable information for oncologists in disease prognosis and adjusting their treatment options. Microfluidic technology has emerged as a promising tool for CTC isolation; however, two major hurdles remain to be solved in employing them in CTC analysis. First, a rapid CTC isolation scheme is needed to allow immediate use of patient samples for point-of-care treatment monitoring. Second, multiplexed and streamlined CTC imaging is needed to facilitate CTC detection. Here, a microfluidic CTC sequential trapping array (STA) is proposed which addresses these hurdles enabling pipette-based CTC isolation and simultaneous profiling of multiple CTC protein expressions. The STA device isolates CTCs based on their size difference from blood cells and increases sample processing throughput through its parallel design configuration. It successfully isolates CTC from a depleted peripheral blood mononuclear cells sample of breast cancer patients with a high recovery rate of 80% and discriminates the number and types of CTCs in breast cancer based on their disease stage. These findings will open a new avenue in clinical translation of CTC profiling technologies. It will be an example for future translational developments in CTC-based cancer management.

循环肿瘤细胞(CTCs)作为一种有前途的癌症生物标记物受到了特别关注。CTC 的表型变化为肿瘤学家预后和调整治疗方案提供了宝贵的信息。微流控技术已成为一种很有前途的 CTC 分离工具,然而,将其用于 CTC 分析仍有两大障碍有待解决。首先,需要一种快速的 CTC 分离方案,以便立即将患者样本用于床旁治疗监测。其次,需要多路复用和简化的 CTC 成像来促进 CTC 检测。本文提出了一种微流体 CTC 连续捕获阵列(STA),它能解决这些障碍,实现基于移液管的 CTC 分离,并同时分析多种 CTC 蛋白表达。STA 设备根据 CTC 与血细胞的大小差异来分离 CTC,并通过并行设计配置来提高样本处理量。它成功地从乳腺癌患者耗竭的外周血单核细胞样本中分离出了 CTC,回收率高达 80%,并能根据乳腺癌的疾病分期来区分 CTC 的数量和类型。这些发现将为 CTC 分析技术的临床转化开辟一条新途径。它将成为未来基于 CTC 的癌症管理转化发展的范例。
{"title":"Rapid Isolation and Detection of Breast Cancer Circulating Tumor Cells Using Microfluidic Sequential Trapping Array","authors":"Amin Hassanzadeh-Barforoushi,&nbsp;Simon Chang-Hao Tsao,&nbsp;Audrey Nadalini,&nbsp;David W. Inglis,&nbsp;Yuling Wang","doi":"10.1002/adsr.202300206","DOIUrl":"10.1002/adsr.202300206","url":null,"abstract":"<p>Circulating tumor cells (CTCs) have garnered special attention as promising cancer biomarkers. Phenotypic changes of CTCs reveal invaluable information for oncologists in disease prognosis and adjusting their treatment options. Microfluidic technology has emerged as a promising tool for CTC isolation; however, two major hurdles remain to be solved in employing them in CTC analysis. First, a rapid CTC isolation scheme is needed to allow immediate use of patient samples for point-of-care treatment monitoring. Second, multiplexed and streamlined CTC imaging is needed to facilitate CTC detection. Here, a microfluidic CTC sequential trapping array (STA) is proposed which addresses these hurdles enabling pipette-based CTC isolation and simultaneous profiling of multiple CTC protein expressions. The STA device isolates CTCs based on their size difference from blood cells and increases sample processing throughput through its parallel design configuration. It successfully isolates CTC from a depleted peripheral blood mononuclear cells sample of breast cancer patients with a high recovery rate of 80% and discriminates the number and types of CTCs in breast cancer based on their disease stage. These findings will open a new avenue in clinical translation of CTC profiling technologies. It will be an example for future translational developments in CTC-based cancer management.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300206","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140746771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Sensor Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1