Age at first farrowing (AFF) is a reproductive trait with low heritability and high importance in the pig industry. To enhance the statistical power of genome-wide association study (GWAS) and further explore the genetic nature of AFF, we first conducted GWAS meta-analysis using three Yorkshire populations, and then integrated the Pig Genotype-Tissue Expression (PigGTEx) resources to interpret their potential regulatory mechanism. Additionally, we compared the AFF in pig with the age at first birth (AFB) of human using GWAS summary statistics. We detected 18 independent variants in GWAS meta-analysis and 8 genes in gene-based association analysis significantly associated with AFF. By integrating the PigGTEx resource, we conducted transcriptome-wide association study (TWAS) and colocalization analysis on 34 pig tissues. In TWAS, we detected 18 significant gene-tissue pairs, such as DCAF6 in uterus and CREG1 in blood. In colocalization, we found 111 potential candidate tissue-gene pairs, such as GJD4 and LYPLAL1. We found that the homologous gene, CHST10, might be the potential candidate gene between humans in AFB and pigs in AFF. In conclusion, integrating GWAS meta-analysis and PigGTEx resources is a meaningful way to decipher the genetic architecture of complex traits. We found that DCAF6, CREG1, GJD4, and LYPLAL1 are candidate genes with high reliability for AFF in swine. The comparative analysis showed that CHST10 might play a potentially critical role in AFB/AFF across human and pigs.
{"title":"Integrating meta-analysis of genome-wide association study with Pig Genotype-Tissue Expression resources uncovers the genetic architecture for age at first farrowing in pigs","authors":"Qing Lin, Xueyan Feng, Tingting Li, Xiangchun Pan, Shuqi Diao, Yahui Gao, Xiaolong Yuan, Jiaqi Li, Xiangdong Ding, Zhe Zhang","doi":"10.1002/aro2.62","DOIUrl":"10.1002/aro2.62","url":null,"abstract":"<p>Age at first farrowing (AFF) is a reproductive trait with low heritability and high importance in the pig industry. To enhance the statistical power of genome-wide association study (GWAS) and further explore the genetic nature of AFF, we first conducted GWAS meta-analysis using three Yorkshire populations, and then integrated the Pig Genotype-Tissue Expression (PigGTEx) resources to interpret their potential regulatory mechanism. Additionally, we compared the AFF in pig with the age at first birth (AFB) of human using GWAS summary statistics. We detected 18 independent variants in GWAS meta-analysis and 8 genes in gene-based association analysis significantly associated with AFF. By integrating the PigGTEx resource, we conducted transcriptome-wide association study (TWAS) and colocalization analysis on 34 pig tissues. In TWAS, we detected 18 significant gene-tissue pairs, such as <i>DCAF6</i> in uterus and <i>CREG1</i> in blood. In colocalization, we found 111 potential candidate tissue-gene pairs, such as <i>GJD4</i> and <i>LYPLAL1</i>. We found that the homologous gene, <i>CHST10</i>, might be the potential candidate gene between humans in AFB and pigs in AFF. In conclusion, integrating GWAS meta-analysis and PigGTEx resources is a meaningful way to decipher the genetic architecture of complex traits. We found that <i>DCAF6</i>, <i>CREG1, GJD4,</i> and <i>LYPLAL1</i> are candidate genes with high reliability for AFF in swine. The comparative analysis showed that <i>CHST10</i> might play a potentially critical role in AFB/AFF across human and pigs.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 3","pages":"238-249"},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.62","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent decades, the global demand for food has increased rapidly due to population growth and diminishing cultivated land. Aquaculture production has experienced rapid growth in the past 40 years and is recognized as one of the key means of addressing global food demand. However, inland aquaculture faces challenges such as water scarcity and ecological damage, leading to attention increasingly turning to the ocean. According to statistics, two-thirds of China's seafood comes from aquaculture. The reason is that China has focused on shifting from traditional fishing to systematic marine agriculture, with the core concept being the “Marine Ranching,” which views the ocean as a vast ecological management farm. The successful implementation of this concept is crucial for ensuring food security. However, the development of “Marine Ranching” requires interdisciplinary collaboration.
The special issue on “Marine Ranching” included articles that reviewed the trajectory of fish farming in Zimbabwe and provided a new perspective on the integration of aquatic pathology and nutrition for disease prevention and control. Briefly, it is well known that disease is one of the most important limiting factors for aquaculture expansion and productivity. Researchers demonstrated that ferroptosis and iron mineralization are both involved in the death and survival of fish challenged with Pseudomonas plecoglossicida. Additionally, they highlighted the importance of hematological parameters, particularly poikilocytosis, in the diagnosis of diseases in aquaculture. Moreover, antibiotics are frequently utilized in aquaculture to prevent and treat diseases. In the content of this issue, the potential adverse effects of inappropriate oxytetracycline use have garnered significant attention. Consequently, there has been a growing emphasis on researching more ecologically sustainable methods, such as the use of Isalo scorpion cytotoxic peptide stimulation to enhance the disease resistance of fish.
In conclusion, this special issue on “Marine Ranching” provided a platform for global interdisciplinary academic sharing. By drawing on these academic studies, we can continuously refine disease prevention and control measures and promote the healthy development of marine aquaculture. Not only that, sharing academic outcomes will undoubtedly bring greater wisdom and strength to establish a scientific, efficient, and sustainable blue granary production system.
{"title":"The development of “Marine Ranching” requires global interdisciplinary collaboration and academic sharing","authors":"Lin Feng, Weidan Jiang, Pei Wu, Hongju Liu","doi":"10.1002/aro2.64","DOIUrl":"10.1002/aro2.64","url":null,"abstract":"<p>In recent decades, the global demand for food has increased rapidly due to population growth and diminishing cultivated land. Aquaculture production has experienced rapid growth in the past 40 years and is recognized as one of the key means of addressing global food demand. However, inland aquaculture faces challenges such as water scarcity and ecological damage, leading to attention increasingly turning to the ocean. According to statistics, two-thirds of China's seafood comes from aquaculture. The reason is that China has focused on shifting from traditional fishing to systematic marine agriculture, with the core concept being the “Marine Ranching,” which views the ocean as a vast ecological management farm. The successful implementation of this concept is crucial for ensuring food security. However, the development of “Marine Ranching” requires interdisciplinary collaboration.</p><p>The special issue on “Marine Ranching” included articles that reviewed the trajectory of fish farming in Zimbabwe and provided a new perspective on the integration of aquatic pathology and nutrition for disease prevention and control. Briefly, it is well known that disease is one of the most important limiting factors for aquaculture expansion and productivity. Researchers demonstrated that ferroptosis and iron mineralization are both involved in the death and survival of fish challenged with <i>Pseudomonas plecoglossicida</i>. Additionally, they highlighted the importance of hematological parameters, particularly poikilocytosis, in the diagnosis of diseases in aquaculture. Moreover, antibiotics are frequently utilized in aquaculture to prevent and treat diseases. In the content of this issue, the potential adverse effects of inappropriate oxytetracycline use have garnered significant attention. Consequently, there has been a growing emphasis on researching more ecologically sustainable methods, such as the use of Isalo scorpion cytotoxic peptide stimulation to enhance the disease resistance of fish.</p><p>In conclusion, this special issue on “Marine Ranching” provided a platform for global interdisciplinary academic sharing. By drawing on these academic studies, we can continuously refine disease prevention and control measures and promote the healthy development of marine aquaculture. Not only that, sharing academic outcomes will undoubtedly bring greater wisdom and strength to establish a scientific, efficient, and sustainable blue granary production system.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"118"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.64","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joyce D’Silva, Hillary Dalton, Natasha K. Boyland, Jacky Turner
There is an increasing amount of scientific research into animal sentience. Many scientists are studying the cognitive, emotional, and communicative capacities of a range of animals. The results of this research have led to a number of legal recognitions of the sentience of a range of animals. In 1997, the European Union (EU) gave legal recognition to the sentience of animals and updated and elevated this recognition in the Treaty of Lisbon. Other countries and states as well as the World Organization for Animal Health (WOAH, formerly OIE) have followed it. Scientists are increasingly acknowledging that sentience and emotion have arisen in a wide range of species. Research now emphasizes that there is an extraordinary variation in how different animal species (such as mammals, birds, fish, or insects) perceive the world and their environment. This paper looks at the sentience of the main farmed land and aquatic animals and the implications of this for how such animals are bred and housed. The paper concludes that intensive farming systems deprive animals of opportunities for positive emotions, such as play, exploration, social interaction, and feeding to satiation, and stops them from satisfying naturally motivated behaviors. To truly respect animal sentience, production systems should be designed with the animal's characteristics and needs in mind. The authors conclude that regenerative, agroecological, or organic farming systems better protect and respect the sentience of animals leading to less suffering and more opportunities for positive experiences.
{"title":"Animal sentience: The science and its implications, with particular reference to farmed animals","authors":"Joyce D’Silva, Hillary Dalton, Natasha K. Boyland, Jacky Turner","doi":"10.1002/aro2.65","DOIUrl":"10.1002/aro2.65","url":null,"abstract":"<p>There is an increasing amount of scientific research into animal sentience. Many scientists are studying the cognitive, emotional, and communicative capacities of a range of animals. The results of this research have led to a number of legal recognitions of the sentience of a range of animals. In 1997, the European Union (EU) gave legal recognition to the sentience of animals and updated and elevated this recognition in the Treaty of Lisbon. Other countries and states as well as the World Organization for Animal Health (WOAH, formerly OIE) have followed it. Scientists are increasingly acknowledging that sentience and emotion have arisen in a wide range of species. Research now emphasizes that there is an extraordinary variation in how different animal species (such as mammals, birds, fish, or insects) perceive the world and their environment. This paper looks at the sentience of the main farmed land and aquatic animals and the implications of this for how such animals are bred and housed. The paper concludes that intensive farming systems deprive animals of opportunities for positive emotions, such as play, exploration, social interaction, and feeding to satiation, and stops them from satisfying naturally motivated behaviors. To truly respect animal sentience, production systems should be designed with the animal's characteristics and needs in mind. The authors conclude that regenerative, agroecological, or organic farming systems better protect and respect the sentience of animals leading to less suffering and more opportunities for positive experiences.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"230-236"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.65","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanlin He, Qiyu Hu, Xiaoqiu Zhou, Pei Wu, Weidan Jiang, Yang Liu, Xiaowan Jin, Hongmei Ren, Lin Feng
To investigate the impact of Isalo scorpion cytotoxic peptide (IsCT) on the immune function of immune organ (head kidney, spleen, and skin) of grass carp (Ctenopharyngodon idella), 540 fish (136.88 ± 0.72 g) were supplied with a different amount of IsCT (0, 0.6, 1.2, 1.8, 2.4, and 3.0 mg/kg diet) through a period of 60 days. Afterward, 24 fish were randomly selected from each group and were inoculated with Aeromonas hydrophila for a period of 6 days. Our findings suggested that appropriate IsCT complementation: (1) attenuated skin morbidity and histopathological structural changes in the head kidney and spleen (p < 0.05), which ensured the structural integrity of the immune organs; (2) increased the activity and expression of immune substances (p < 0.05), which in turn increased the function of the immune organs, promoting immune responses; (3) through the regulation of the Janus kinase/signal transducers and activators of transcription (JAKs/STATs) signaling pathway, the mRNA expression of anti-inflammatory cytokines increased and the mRNA expression of pro-inflammatory cytokines decreased, which in turn increased the function of the immune organs, reducing the inflammatory response (p < 0.05). However, the addition of IsCT did not affect the expression of IL-12p35, STAT2, and STAT3a in the immune organ. Ultimately, this study provided evidence that IsCT enhanced immune function via the JAKs/STATs signaling pathway in the immune organ in grass carp after challenged with Aeromonas hydrophila.
{"title":"Isalo scorpion cytotoxic peptide-strengthened immune function through the JAKs/STATs signaling pathway of the immune organ of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila","authors":"Yuanlin He, Qiyu Hu, Xiaoqiu Zhou, Pei Wu, Weidan Jiang, Yang Liu, Xiaowan Jin, Hongmei Ren, Lin Feng","doi":"10.1002/aro2.59","DOIUrl":"10.1002/aro2.59","url":null,"abstract":"<p>To investigate the impact of Isalo scorpion cytotoxic peptide (IsCT) on the immune function of immune organ (head kidney, spleen, and skin) of grass carp (<i>Ctenopharyngodon idella</i>), 540 fish (136.88 ± 0.72 g) were supplied with a different amount of IsCT (0, 0.6, 1.2, 1.8, 2.4, and 3.0 mg/kg diet) through a period of 60 days. Afterward, 24 fish were randomly selected from each group and were inoculated with <i>Aeromonas hydrophila</i> for a period of 6 days. Our findings suggested that appropriate IsCT complementation: (1) attenuated skin morbidity and histopathological structural changes in the head kidney and spleen (<i>p</i> < 0.05), which ensured the structural integrity of the immune organs; (2) increased the activity and expression of immune substances (<i>p</i> < 0.05), which in turn increased the function of the immune organs, promoting immune responses; (3) through the regulation of the Janus kinase/signal transducers and activators of transcription (JAKs/STATs) signaling pathway, the mRNA expression of anti-inflammatory cytokines increased and the mRNA expression of pro-inflammatory cytokines decreased, which in turn increased the function of the immune organs, reducing the inflammatory response (<i>p</i> < 0.05). However, the addition of IsCT did not affect the expression of IL-12p35, STAT2, and STAT3a in the immune organ. Ultimately, this study provided evidence that IsCT enhanced immune function via the JAKs/STATs signaling pathway in the immune organ in grass carp after challenged with <i>Aeromonas hydrophila</i>.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"121-135"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.59","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yonglin Hua, Haigang Cao, Ying Peng, Jie Liu, Xiao Li, Jianjun Jin, Xine Shi
MicroRNAs (miRNAs) can regulate several physiological processes of cells after transcription, such as cell proliferation, differentiation, and apoptosis. In this study, we found that 500 μM of palmitic acid (PA) could significantly induce the apoptosis of porcine subcutaneous preadipocytes (p < 0.05). The overexpression of miR-429 decreased the apoptotic rate of porcine preadipocytes and inhibited the expression of the proapoptotic gene P53 (p < 0.05). In addition, miR-429 can specifically bind to the 3′ untranslated region of Sox5, and the upregulation of miR-429 downregulated Sox5 expression. However, Sox5 overexpression promoted the apoptosis of porcine preadipocytes (p < 0.01); the co-transfection of miR-429 and pcDNA3.1-Sox5 into preadipocytes could reverse the inhibition of PA-induced apoptosis by miR-429. In conclusion, the present results provide a theoretical basis for elucidating the molecular mechanisms by which miR-429 and Sox5 regulate the apoptosis of porcine subcutaneous preadipocytes.
{"title":"miR-429 inhibits palmitic acid-induced apoptosis of porcine subcutaneous preadipocytes by targeting Sox5","authors":"Yonglin Hua, Haigang Cao, Ying Peng, Jie Liu, Xiao Li, Jianjun Jin, Xine Shi","doi":"10.1002/aro2.60","DOIUrl":"10.1002/aro2.60","url":null,"abstract":"<p>MicroRNAs (miRNAs) can regulate several physiological processes of cells after transcription, such as cell proliferation, differentiation, and apoptosis. In this study, we found that 500 μM of palmitic acid (PA) could significantly induce the apoptosis of porcine subcutaneous preadipocytes (<i>p</i> < 0.05). The overexpression of miR-429 decreased the apoptotic rate of porcine preadipocytes and inhibited the expression of the proapoptotic gene <i>P</i>53 (<i>p</i> < 0.05). In addition, miR-429 can specifically bind to the 3′ untranslated region of <i>Sox</i>5, and the upregulation of miR-429 downregulated <i>Sox</i>5 expression. However, <i>Sox</i>5 overexpression promoted the apoptosis of porcine preadipocytes (<i>p</i> < 0.01); the co-transfection of miR-429 and pcDNA3.1-<i>Sox</i>5 into preadipocytes could reverse the inhibition of PA-induced apoptosis by miR-429. In conclusion, the present results provide a theoretical basis for elucidating the molecular mechanisms by which miR-429 and <i>Sox</i>5 regulate the apoptosis of porcine subcutaneous preadipocytes.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 3","pages":"250-259"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.60","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140695236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Chen, Yingwei Guo, Fei Ge, Han Gao, Jinghang Zhou, Xiaonv Wu, Changsong Qian, Zhiquan Wang, Zezhao Wang, Bo Zhu, Lingyang Xu, Xue Gao, Lupei Zhang, Huijiang Gao, Junya Li
Large-scale genotyping at a low cost is crucial for molecular breeding of livestock. In this study, the Cattle110K capture chip was developed, based on the genotyping by target sequencing system. The chip panel included 112,180 single necleotide polymorphisms (SNPs), from potential functional regions screened by genome-wide associated study, BayesB, expression quantitative trait loci-mapping, ATAC-seq, and reported functional markers. All the SNPs on the panel were distributed evenly on the cattle genome, with more than 99% of the markers having a minor allele frequency greater than 0.05. Assessment results indicated that a total of 1.2 M high-quality SNPs were identified in the 110 K regions, averaging approximately 10 SNPs per target sequence. The genotype consistency for the repetitive samples using the Cattle110K liquid chip was 99.21% while the concordance between the Illumina BovineHD BeadChip and this chip averaged 98.17%. A significant association signal for slaughter weight and carcass length was identified on 37.3–41.5 Mb of chromosome 6, pinpointing the NCAPG-LCORL locus. This locus has previously been associated with meat and carcass traits in cattle. Additionally, novel candidate regions were identified around 3.4 Mb of chromosome 13 and 73.5 Mb of chromosome 8, significantly correlated with hip height and marbling score, respectively. We compared the accuracy of genomic estimated breeding values between the Illumina BovineHD BeadChip and this chip. The results demonstrated that the Cattle110K capture chip had a comparable ability in genomic prediction to the Illumina BovineHD BeadChip. Advances in using the cost-effective liquid capture chip are expected to accelerate the genetic progress of cattle in the coming years.
{"title":"Developing a liquid capture chip to accelerate the genetic progress of cattle","authors":"Yan Chen, Yingwei Guo, Fei Ge, Han Gao, Jinghang Zhou, Xiaonv Wu, Changsong Qian, Zhiquan Wang, Zezhao Wang, Bo Zhu, Lingyang Xu, Xue Gao, Lupei Zhang, Huijiang Gao, Junya Li","doi":"10.1002/aro2.58","DOIUrl":"10.1002/aro2.58","url":null,"abstract":"<p>Large-scale genotyping at a low cost is crucial for molecular breeding of livestock. In this study, the Cattle110K capture chip was developed, based on the genotyping by target sequencing system. The chip panel included 112,180 single necleotide polymorphisms (SNPs), from potential functional regions screened by genome-wide associated study, BayesB, expression quantitative trait loci-mapping, ATAC-seq, and reported functional markers. All the SNPs on the panel were distributed evenly on the cattle genome, with more than 99% of the markers having a minor allele frequency greater than 0.05. Assessment results indicated that a total of 1.2 M high-quality SNPs were identified in the 110 K regions, averaging approximately 10 SNPs per target sequence. The genotype consistency for the repetitive samples using the Cattle110K liquid chip was 99.21% while the concordance between the Illumina BovineHD BeadChip and this chip averaged 98.17%. A significant association signal for slaughter weight and carcass length was identified on 37.3–41.5 Mb of chromosome 6, pinpointing the <i>NCAPG-LCORL</i> locus. This locus has previously been associated with meat and carcass traits in cattle. Additionally, novel candidate regions were identified around 3.4 Mb of chromosome 13 and 73.5 Mb of chromosome 8, significantly correlated with hip height and marbling score, respectively. We compared the accuracy of genomic estimated breeding values between the Illumina BovineHD BeadChip and this chip. The results demonstrated that the Cattle110K capture chip had a comparable ability in genomic prediction to the Illumina BovineHD BeadChip. Advances in using the cost-effective liquid capture chip are expected to accelerate the genetic progress of cattle in the coming years.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"204-216"},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.58","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140367860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zimbabwe is currently rated as one of the top 10 fish producers in Sub-Saharan Africa. Fish farming in Zimbabwe is dominated by the culture of Nile tilapia (Oreochromis niloticus) followed by rainbow trout (Oncorhynchus mykiss). Over 90% of the cultured fish is O. niloticus, which comes from Lake Kariba. Since the first decade of the 21st century, there has been a significant increase in fish production from two tons to eight tons annually. The increase in fish production has been attributed to the government and donor-funded fishery programs. In this review, current practices, opportunities, and challenges for aquaculture in Zimbabwe are highlighted. The current practices include intensive, semi-intensive, and extensive aquaculture systems. Consistent high market demand for fish and numerous water bodies with potential for cage culture are some of the drivers for aquaculture. Despite the industry's significant growth, there are still a number of management and production issues that need to be resolved. Weaknesses in structural issues and operational frameworks in Non-Governmental Organizations, lack of credit facilities, subsidies, limited technology, obfuscated governance, weak fish disease surveillance mechanisms and legal frameworks, and constrained human resources capacity are some of the challenges plaguing fish culture in Zimbabwe. Cogent aquaculture policies, sustainable subsidies, intensive training of human resources and fisheries experts, strengthened disease surveillance, cheaper alternative fish feeds, reliable viable fingerling production, concerted value chain efforts, and exploration of lucrative export markets is a panacea for the fledgling aquaculture industry in Zimbabwe.
{"title":"Complexities and opportunities: A review of the trajectory of fish farming in Zimbabwe","authors":"Nyasha Mabika, Beaven Utete","doi":"10.1002/aro2.57","DOIUrl":"10.1002/aro2.57","url":null,"abstract":"<p>Zimbabwe is currently rated as one of the top 10 fish producers in Sub-Saharan Africa. Fish farming in Zimbabwe is dominated by the culture of Nile tilapia (<i>Oreochromis niloticus</i>) followed by rainbow trout (<i>Oncorhynchus mykiss</i>). Over 90% of the cultured fish is <i>O. niloticus,</i> which comes from Lake Kariba. Since the first decade of the 21<sup>st</sup> century, there has been a significant increase in fish production from two tons to eight tons annually. The increase in fish production has been attributed to the government and donor-funded fishery programs. In this review, current practices, opportunities, and challenges for aquaculture in Zimbabwe are highlighted. The current practices include intensive, semi-intensive, and extensive aquaculture systems. Consistent high market demand for fish and numerous water bodies with potential for cage culture are some of the drivers for aquaculture. Despite the industry's significant growth, there are still a number of management and production issues that need to be resolved. Weaknesses in structural issues and operational frameworks in Non-Governmental Organizations, lack of credit facilities, subsidies, limited technology, obfuscated governance, weak fish disease surveillance mechanisms and legal frameworks, and constrained human resources capacity are some of the challenges plaguing fish culture in Zimbabwe. Cogent aquaculture policies, sustainable subsidies, intensive training of human resources and fisheries experts, strengthened disease surveillance, cheaper alternative fish feeds, reliable viable fingerling production, concerted value chain efforts, and exploration of lucrative export markets is a panacea for the fledgling aquaculture industry in Zimbabwe.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"184-192"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.57","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140378448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujia Sun, Shaoping Weng, Chuanfu Dong, Jianguo He
Pseudomonas plecoglossicida (P. plecoglossicida) is a pathogen in aquaculture that causes considerable economic loss. According to artificial infection experiments, the fish were classified into control group, moribund group, and survival group. Compared to the control group, both the moribund group and the survival group of fish had fewer red blood cells (RBCs) and lower oxygen saturation (SaO2). Furthermore, the fish in the survival group has more RBCs and SaO2 compared to the moribund group. The concentrations of total iron, ferrous iron, ferric iron, and mineralized iron in the fish spleen of the moribund and survival groups were lower compared to those of the control group. Additionally, the concentrations of these iron components in the fish spleen of the survival group were higher than those of the moribund group. The results demonstrated that iron mineralization is involved in the survival of fish challenged with P. plecoglossicida. Compared to the control and survival groups, the fish spleen had several distinguishing features in the moribund group, including less reduced glutathione (GSH), higher mitochondrial complex V activity, more lipid peroxidation, and reactive oxygen species, as well as reduced glutathione peroxidase 4 (gpx4) expression. Moreover, there were intact cell membranes, a normal nucleus size, no chromatin concentration, and disappearance of cristae in the mitochondria of the spleens of the moribund group. The characteristics of spleen cells in the moribund group were consistent with ferroptosis, suggesting that ferroptosis was involved in the death of fish challenged with P. plecoglossicida.
胸膜假单胞菌(P. plecoglossicida)是水产养殖中的一种病原体,会造成巨大的经济损失。根据人工感染实验,将鱼类分为对照组、奄奄一息组和存活组。与对照组相比,奄奄一息组和存活组的鱼红细胞(RBC)都较少,血氧饱和度(SaO2)也较低。此外,与奄奄一息组相比,存活组鱼的红细胞和 SaO2 更多。与对照组相比,濒死组和存活组鱼脾脏中总铁、亚铁、铁和矿化铁的浓度较低。此外,存活组鱼类脾脏中这些铁成分的浓度高于濒死组。研究结果表明,铁矿化参与了鱼类在褶鳃栉水母挑战下的存活。与对照组和存活组相比,奄奄一息组的鱼脾脏有几个显著特点,包括还原型谷胱甘肽(GSH)较少、线粒体复合物 V 活性较高、脂质过氧化物和活性氧较多,以及谷胱甘肽过氧化物酶 4(gpx4)表达减少。此外,奄奄一息组的脾脏细胞膜完整,细胞核大小正常,染色质不浓缩,线粒体嵴消失。奄奄一息组脾脏细胞的特征与铁突变相一致,这表明铁突变参与了鱼类受褶带褶菌感染后的死亡。
{"title":"Ferroptosis and iron mineralization involved in the death and survival of orange-spotted groupers challenged with Pseudomonas plecoglossicida","authors":"Yujia Sun, Shaoping Weng, Chuanfu Dong, Jianguo He","doi":"10.1002/aro2.56","DOIUrl":"10.1002/aro2.56","url":null,"abstract":"<p><i>Pseudomonas plecoglossicida</i> (<i>P. plecoglossicida</i>) is a pathogen in aquaculture that causes considerable economic loss. According to artificial infection experiments, the fish were classified into control group, moribund group, and survival group. Compared to the control group, both the moribund group and the survival group of fish had fewer red blood cells (RBCs) and lower oxygen saturation (SaO<sub>2</sub>). Furthermore, the fish in the survival group has more RBCs and SaO<sub>2</sub> compared to the moribund group. The concentrations of total iron, ferrous iron, ferric iron, and mineralized iron in the fish spleen of the moribund and survival groups were lower compared to those of the control group. Additionally, the concentrations of these iron components in the fish spleen of the survival group were higher than those of the moribund group. The results demonstrated that iron mineralization is involved in the survival of fish challenged with <i>P. plecoglossicida</i>. Compared to the control and survival groups, the fish spleen had several distinguishing features in the moribund group, including less reduced glutathione (GSH), higher mitochondrial complex V activity, more lipid peroxidation, and reactive oxygen species, as well as reduced <i>glutathione peroxidase 4</i> (<i>gpx4</i>) expression. Moreover, there were intact cell membranes, a normal nucleus size, no chromatin concentration, and disappearance of cristae in the mitochondria of the spleens of the moribund group. The characteristics of spleen cells in the moribund group were consistent with ferroptosis, suggesting that ferroptosis was involved in the death of fish challenged with <i>P. plecoglossicida</i>.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"172-183"},"PeriodicalIF":0.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.56","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140210748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nutrition modulates the vulnerability of animals to xenobiotics insults including antibiotics in cultured fish. However, studies exploring the role of low-fat diet (LFD) in modulating adverse effects of antibiotics are currently limited. This study explored the physiological effects of feeding LFD supplemented with oxytetracycline (OTC) in Nile tilapia (Oreochromis niloticus) fingerlings. Thirty Nile tilapia (8.64 ± 0.44 g) were tagged and randomly stocked into three tanks and fed on a control diet (CD, 70 g/kg lipid), LFD (20 g/kg lipid) and the LFD supplemented with 2.00 g/kg diet of OTC (80 mg/kg body weight/day), hereafter LFD + OTC for 9 weeks. The results indicated that the Nile tilapia fed on LFD + OTC reduced growth performance and feed utilization efficiency than those fed on CD and LFD. Moreover, the fish fed on LFD + OTC had lower body composition, nutrients digestibility and mesenteric fat index than those fed on CD and LFD. Feeding the fish with LFD + OTC decreased antioxidant capacity in the liver than those fed on CD and LFD. The Nile tilapia fed on LFD + OTC increased hepatotoxicity than those fed on CD and LFD. Feeding the Nile tilapia on LFD + OTC decreased immunity response in the kidney and liver than those fed on CD and LFD. The LFD + OTC affected nutrients metabolism in the liver and serum than other diets. Taken together, feeding LFD with OTC impairs physiological functions of Nile tilapia by inhibiting growth performance, antioxidant capacity, immunity response and nutrient metabolism.
{"title":"Dietary low-fat content supplemented with oxytetracycline impairs physiological functions in Nile tilapia (Oreochromis niloticus) fingerlings","authors":"Samwel Mchele Limbu","doi":"10.1002/aro2.54","DOIUrl":"10.1002/aro2.54","url":null,"abstract":"<p>Nutrition modulates the vulnerability of animals to xenobiotics insults including antibiotics in cultured fish. However, studies exploring the role of low-fat diet (LFD) in modulating adverse effects of antibiotics are currently limited. This study explored the physiological effects of feeding LFD supplemented with oxytetracycline (OTC) in Nile tilapia (<i>Oreochromis niloticus</i>) fingerlings. Thirty Nile tilapia (8.64 ± 0.44 g) were tagged and randomly stocked into three tanks and fed on a control diet (CD, 70 g/kg lipid), LFD (20 g/kg lipid) and the LFD supplemented with 2.00 g/kg diet of OTC (80 mg/kg body weight/day), hereafter LFD + OTC for 9 weeks. The results indicated that the Nile tilapia fed on LFD + OTC reduced growth performance and feed utilization efficiency than those fed on CD and LFD. Moreover, the fish fed on LFD + OTC had lower body composition, nutrients digestibility and mesenteric fat index than those fed on CD and LFD. Feeding the fish with LFD + OTC decreased antioxidant capacity in the liver than those fed on CD and LFD. The Nile tilapia fed on LFD + OTC increased hepatotoxicity than those fed on CD and LFD. Feeding the Nile tilapia on LFD + OTC decreased immunity response in the kidney and liver than those fed on CD and LFD. The LFD + OTC affected nutrients metabolism in the liver and serum than other diets. Taken together, feeding LFD with OTC impairs physiological functions of Nile tilapia by inhibiting growth performance, antioxidant capacity, immunity response and nutrient metabolism.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"158-171"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.54","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niu Wang, Weidong Zhang, Yi Guo, Fan Zhang, Tongtong Zhang, Xin Wang
As a model of regenerative medicine, hair follicle stem cell (HFSC) plays a determining role in the hair cycle. Emerging evidences showed that long noncoding RNAs regulated the biological function of HFSC. In this current study, we found that lncRNA-000552, standing for “goat secondary HFSC Associated SYNE3 Regulator of HF Cycle” (HFSCARC) expressed higher in anagen than that in telogen of cashmere goat. Through experiments involving nucleocytoplasmic separation and RNA-FISH, we determined that HFSCARC was primarily located in the nucleus of HFSC. To understand the function of HFSCARC, the study performed various assays, including crystal violet staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EdU, and flow cytometry analysis, which collectively revealed that HFSCARC inhibited HFSC proliferation. Additionally, HFSCARC promoted the differentiation of HFSC by investigating the expression of marker genes specific to stem cells and keratinocytes. RNA sequencing analysis was conducted to investigate the global gene expression changes associated with HFSCARC expression. The results showed that HFSCARC altered the expression of genes involved in cell proliferation, hair follicle development, and regulation of bone morphogenetic proteins (BMP) signaling. Furthermore, the study revealed that HFSCARC activated the BMP signaling pathway. Intriguingly, the study found a decreased expression of SYNE3, which was a neighboring gene of HFSCARC. The altered expression of genes associated with transmethylase and demethylase further suggested that HFSCARC might play an important role in regulating the SYNE3 expression. Overall, this study provides valuable insights into the regulatory role of HFSCARC in the biological function of HFSC. These findings contribute to a better understanding of the involvement of noncoding RNAs in the regulation of hair cycle.
{"title":"Role of HFSCARC in hair follicle stem cell proliferation and differentiation in cashmere goat","authors":"Niu Wang, Weidong Zhang, Yi Guo, Fan Zhang, Tongtong Zhang, Xin Wang","doi":"10.1002/aro2.52","DOIUrl":"10.1002/aro2.52","url":null,"abstract":"<p>As a model of regenerative medicine, hair follicle stem cell (HFSC) plays a determining role in the hair cycle. Emerging evidences showed that long noncoding RNAs regulated the biological function of HFSC. In this current study, we found that lncRNA-000552, standing for “goat secondary HFSC Associated SYNE3 Regulator of HF Cycle” (<i>HFSCARC</i>) expressed higher in anagen than that in telogen of cashmere goat. Through experiments involving nucleocytoplasmic separation and RNA-FISH, we determined that <i>HFSCARC</i> was primarily located in the nucleus of HFSC. To understand the function of <i>HFSCARC</i>, the study performed various assays, including crystal violet staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EdU, and flow cytometry analysis, which collectively revealed that <i>HFSCARC</i> inhibited HFSC proliferation. Additionally, <i>HFSCARC</i> promoted the differentiation of HFSC by investigating the expression of marker genes specific to stem cells and keratinocytes. RNA sequencing analysis was conducted to investigate the global gene expression changes associated with <i>HFSCARC</i> expression. The results showed that <i>HFSCARC</i> altered the expression of genes involved in cell proliferation, hair follicle development, and regulation of bone morphogenetic proteins (BMP) signaling. Furthermore, the study revealed that <i>HFSCARC</i> activated the BMP signaling pathway. Intriguingly, the study found a decreased expression of <i>SYNE3</i>, which was a neighboring gene of <i>HFSCARC</i>. The altered expression of genes associated with transmethylase and demethylase further suggested that <i>HFSCARC</i> might play an important role in regulating the <i>SYNE3</i> expression. Overall, this study provides valuable insights into the regulatory role of <i>HFSCARC</i> in the biological function of HFSC. These findings contribute to a better understanding of the involvement of noncoding RNAs in the regulation of hair cycle.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"217-229"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.52","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140408380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}