Hao Liu, Hongjun Zhuang, Ya Wang, Yuen Yee Cheng, Feixiang Chen, Jian Chen, Xinglei Song, Run Zhang, Yanyan Liu, Wenbo Bu
Chronic pain is a major cause of suffering that often accompanies diseases and therapies, affecting approximately 20% of individuals at some point in their lives. However, current treatment modalities, such as anesthetic and antipyretic analgesics, have limitations in terms of efficacy and side effects. Nanomedical technology offers a promising avenue to overcome these challenges and introduce new therapeutic mechanisms. This article reviews the recent research on nanomedicine analgesics, integrating analyses of neuroplasticity changes in neurons and pathways related to the transition from acute to chronic pain. Furthermore, it explores potential future strategies using nanomaterials, aiming to provide a roadmap for new analgesic development and improved clinical pain management. By leveraging nanotechnology, these approaches hold the potential to revolutionize pain treatment by delivering targeted and effective relief while minimizing side effects.
{"title":"Analgesic nanomedicines for the treatment of chronic pain","authors":"Hao Liu, Hongjun Zhuang, Ya Wang, Yuen Yee Cheng, Feixiang Chen, Jian Chen, Xinglei Song, Run Zhang, Yanyan Liu, Wenbo Bu","doi":"10.1002/bmm2.12049","DOIUrl":"10.1002/bmm2.12049","url":null,"abstract":"<p>Chronic pain is a major cause of suffering that often accompanies diseases and therapies, affecting approximately 20% of individuals at some point in their lives. However, current treatment modalities, such as anesthetic and antipyretic analgesics, have limitations in terms of efficacy and side effects. Nanomedical technology offers a promising avenue to overcome these challenges and introduce new therapeutic mechanisms. This article reviews the recent research on nanomedicine analgesics, integrating analyses of neuroplasticity changes in neurons and pathways related to the transition from acute to chronic pain. Furthermore, it explores potential future strategies using nanomaterials, aiming to provide a roadmap for new analgesic development and improved clinical pain management. By leveraging nanotechnology, these approaches hold the potential to revolutionize pain treatment by delivering targeted and effective relief while minimizing side effects.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134973808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most prevalent among nervous system tumors significantly jeopardize patient health. For nerve integrity preservation after tumor removal, continuous intraoperative neurophysiological monitoring (CINM) is indispensable during microsurgery. The paper highlights the articles about the development of a system that employs soft and stretchable organic electronic materials for CINM. This innovative system harnesses soft and stretchable organic electronic materials and deploys conductive polymer electrodes with low impedance and modulus. These electrodes facilitate uninterrupted near-field action potential recording during surgery, resulting in enhanced signal-to-noise ratios and reduced invasiveness. Additionally, the system's multiplexing capabilities enable precise nerve localization, even in the absence of anatomical landmarks.
{"title":"Stretching boundaries in neurophysiological monitoring","authors":"Bo Hou, Xiaogang Liu","doi":"10.1002/bmm2.12054","DOIUrl":"10.1002/bmm2.12054","url":null,"abstract":"<p>The most prevalent among nervous system tumors significantly jeopardize patient health. For nerve integrity preservation after tumor removal, continuous intraoperative neurophysiological monitoring (CINM) is indispensable during microsurgery. The paper highlights the articles about the development of a system that employs soft and stretchable organic electronic materials for CINM. This innovative system harnesses soft and stretchable organic electronic materials and deploys conductive polymer electrodes with low impedance and modulus. These electrodes facilitate uninterrupted near-field action potential recording during surgery, resulting in enhanced signal-to-noise ratios and reduced invasiveness. Additionally, the system's multiplexing capabilities enable precise nerve localization, even in the absence of anatomical landmarks.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135246217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ping Li, Chao Wang, Jiaoyan Qiu, Fangteng Song, Yuzhen Huang, Yunhong Zhang, Kai Zhang, Hao Ji, Yuanhua Sang, Jonny J. Blaker, Yu Zhang, Lin Han
In this article number 10.1002/bmm2.12040, Ping Li, Chao Wang and their co-workers systematically studied the inhibitory effects of zinc oxide nanorods (ZnO NRs) on breast cancer cells. They found that the ZnO NRs inhibited the migration and growth of cell populations, as well as suppressed the secretion of multiple cytokines through a microfluidic platform. Subsequently, they utilized a single-cell chip to explore the cell heterogeneity before and after the inhibition. Based on the different behaviors exhibited by the cells, they reclassified cell clusters and ultimately discovered that ZnO NRs had a weaker inhibitory effect on highly invasive and metastatic cell populations. This offers a reasonable risk analysis for the potential application of ZnO NRs in cancer therapy.