Colorectal cancer is one of the most common cancers, and current treatment options include surgery, chemotherapy, and radiation therapy. Most patients undergo surgery, which often requires extensive resection of the colon to prevent recurrence and metastasis of residual malignant tumor cells, leading to postoperative pain and discomfort in daily routines. Although versatile therapeutic patches have been developed to induce tumor apoptosis, achieving both great adhesiveness on the mucus layers of the colon tissue and anti-cell/tissue adhesion to other surrounding organs remains a challenge. Herein, we report a Janus polysaccharide film comprising two polymers: mussel-inspired catechol-conjugated chitosan (Chi-C) with muco-adhesiveness, and alginate (Alg) with anti-adhesion property. The Chi-C and Alg polymers form a stably entangled bilayer film via electrostatic interactions. The Janus film shows a strong tissue adhesive strength of ∼10 kPa for the Chi-C layer and weak strength of ∼1 kPa for the Alg layer. Particularly, the Janus film encapsulating an anti-cancer drug exhibits a directional release profile to the tumor site, which is effective for triggering tumor death in in vivo colorectal tumor resection model. Ultimately, such anti-cancer material strategies using bilayered structures are promising for advanced tumor therapy.
Physicians encounter significant challenges in dealing with large diaphragmatic defects in both pediatric and adult populations. Diaphragmatic hernias, such as Morgagni, Bochdalek, and Hiatus hernias, can result in congenital lesions that are often undiagnosed until the appearance of symptoms (bleeding, anemia, and acid reflux). Therefore, substantial potential exists for developing tissue-engineered constructs as novel therapeutic options in clinics. Recent research indicates promising mid-term performance for both natural and synthetic materials. However, studies exploring their application in diaphragm regeneration are limited and remain in the early research stages. Additionally, further investigation is required to address the constraints in human tissue supply for clinical implementation. This article comprehensively reviews the role of biomaterials in diaphragmatic tissue repair and regeneration. It emphasizes biomaterials, including biomimetic polymers used in technological solutions. This summary will enable researchers to critically assess the capability of existing natural biomaterials as essential tissue-engineered patches for clinical use.
The soft-hard tissue interface of the human periodontium is responsible for periodontal homeostasis and is essential for normal oral activities. This soft-hard tissue interface is formed by the direct insertion of fibrous ligaments into the bone tissue. It differs from the unique four-layer structure of the fibrocartilage interface. This interface is formed by a combination of physical, chemical, and biological factors. The physiological functions of this interface are regulated by different signaling pathways. The unique structure of this soft-hard tissue interface has inspired scientists to construct biomimetic gradient structures. These biomimetic systems include nanofiber scaffolds, cell sheets, and hydrogels. Exploring methods to repair this soft-hard tissue interface can help solve clinically unresolved problems. The present review examines the structure of the soft-hard tissue interface of the periodontium and the factors that influence the development of this interface. Relevant regulatory pathways and biomimetic reconstruction methods are also presented to provide ideas for future research on interfacial tissue engineering.
Although immunotherapy has revolutionized cancer therapy by providing efficient tumor growth suppression, long-term protection from recurrence as well as minimized side effects, the low response rate significantly limits the clinical application of immunotherapy in board types of solid tumors. In order to improve the therapeutic efficacy, conventional therapies including radiotherapy, chemotherapy, phototherapy and chemodynamic therapy are employed to combine with immunotherapy to elicit stronger antitumor immune responses. Polymer nanomedicines are frequently utilized in synergistic immunotherapy and other therapies owing to their tunable physiochemical properties, high drug loading capacity, ease of modification and low toxicity. With elaborate design and tailored properties, polymer nanomedicines can significantly enhance antitumor efficacy by enhancing tumor specificity, priming immune cells and amplifying immune responses in tumors. However, until now, there is no review solely dedicated to the comprehensive development of polymer-based platforms for combinational immunotherapy of cancers. Herein, this paper summarizes latest advances in the design, fabrication and application of polymer nanomedicines in combinational immunotherapy and traditional antitumor strategies including radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy and other therapies. An outlook on the trajectory and potential challenges of polymer nanomedicines in bridging the gap between immunotherapy and conventional therapies is also discussed.
Two-dimensional (2D) nanomaterials, known for their unique atomic arrangements and exceptional physicochemical properties, have garnered significant attention in biomedical applications, particularly in the realms of immunotherapy for tissue engineering and tumor therapy. These applications necessitate a thorough assessment of the potential influence of 2D nanomaterials on immune cells. Notably, the mononuclear phagocyte system (MPS) cells, which play pivotal roles in both innate and adaptive immunity, are essential for maintaining organismal homeostasis. MPS cells with phagocytic capability contribute to the prevention of foreign body invasion and the elimination of dead or senescent cells. Furthermore, MPS cells, including macrophages and dendritic cells, serve as vital bridges between innate and adaptive immune responses. Therefore, understanding the nano-bio interactions between 2D nanomaterials and MPS cells is imperative. These nano-bio interactions including cellular uptake, cytocompatibility, and immunological impact are invaluable for the purposeful design of 2D nanomaterials. Herein, we provide an overview of the latest advancements in understanding the nano-bio interactions between 2D nanomaterials and MPS cells, and discuss the current challenges and future prospects of employing 2D nanomaterials in the field of nanomedicine.
Hexagonal boron nitride (h-BN) nanomaterials are a rising star in the field of biomedicine. This review presents an overview of the progress in h-BN nanomaterials for biological applications. It begins with a general introduction of the structural characteristics of h-BN, followed by the brief introduction of its physical and chemical properties, including thermal, band and mechanical properties, chemical reactivity, biodegradability and biocompatibility, then emphasizes on the recent progress in the biomedical applications including drug delivery, boron neutron capture therapy (BNCT), bioimaging and nanozyme, and ends with the challenges and perspectives related to the biomedical applications. The advantages of BN nanomaterials used for biomedical applications were analyzed, and their problems were also discussed, inspiring the future rational designs of the BN nanomedicines.
Multiphasic scaffolds with tailored gradient features hold significant promise for tissue regeneration applications. Herein, this work reports the transformation of two-dimensional (2D) layered fiber mats into three-dimensional (3D) multiphasic scaffolds using a ‘solids-of-revolution’ inspired gas-foaming expansion technology. These scaffolds feature precise control over fiber alignment, pore size, and regional structure. Manipulating nanofiber mat layers and Pluronic F127 concentrations allows further customization of pore size and fiber alignment within different scaffold regions. The cellular response to multiphasic scaffolds demonstrates that the number of cells migrated and proliferated onto the scaffolds is mainly dependent on the pore size rather than fiber alignment. In vivo subcutaneous implantation of multiphasic scaffolds to rats reveals substantial cell infiltration, neo tissue formation, collagen deposition, and new vessel formation within scaffolds, greatly surpassing the capabilities of traditional nanofiber mats. Histological examination indicates the importance of optimizing pore size and fiber alignment for the promotion of cell infiltration and tissue regeneration. Overall, these scaffolds have potential applications in tissue modeling, studying tissue-tissue interactions, interface tissue engineering, and high-throughput screening for optimized tissue regeneration.
While most nanomedicines primarily aim to stimulate the immune system against infections or tumors, there is a growing demand for inducing immune tolerance under certain conditions, such as allergic and autoimmune diseases. Researchers have explored nanotechnology-based strategies to induce immune tolerance in a targeted and specific manner. One approach involves the use of nanoparticles (NPs) to encapsulate immunosuppressive drugs and/or antigens to educate naïve T cells and promote the generation of antigen-specific regulatory T cells that inhibit immune responses. However, this approach has certain limitations. The hydrophobicity of proteins or peptides restricts the degree to which they can be encapsulated in NPs, which in turn, affects their loading efficiency and treatment efficacy. With the emergence of mRNA lipid nanoparticle (LNP) platforms, there is the possibility of overcoming the limitations of protein and peptide encapsulation. To date, mRNA LNP systems have been shown to provide organ, cellular, and subcellular targeting for the induction of immune tolerance. This method of drug delivery is flexible and scalable that can be customized for a specific patient, resulting in an effective means of administering relevant proteins or epitopes to induce antigen-specific immune tolerance. With continued research and development, this technology could offer a safer and more effective alternative to current therapies, ultimately improving the quality of life of patients worldwide.
In article number 10.1002/bmm2.12047, Ka Ram Kim and Woon-Hong Yeo have comprehensively summarized the recent advances in developing various sensors for enhanced monitoring of cellular physiological properties and metabolites with environmental conditions. This image shows the intracellular and extracellular environments that need to be monitored during cell culture processes.