首页 > 最新文献

Cleaner Materials最新文献

英文 中文
Utilization of powders and fine aggregates from the recycling of construction and demolition waste in the 3D printing of Portland-based cementitious materials 在波特兰基水泥基材料的 3D 打印中利用建筑和拆除废物回收利用产生的粉末和细骨料
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100234
Rafael Robayo–Salazar, Armando Vargas, Fabio Martínez, Ruby Mejía de Gutiérrez

This paper analysed the possibility of using recycled powders (<75 µm) and recycling fine aggregates (<1.18 mm) obtained during the crushing and grinding of concrete waste (CoW), ceramic waste (CeW) and red clay brick waste (RCBW) when designing cementitious pastes and mortars for 3D printing. The effects of the type of powder (CoW-powder, CeW-powder and RCBW-powder) and of the liquid/solid (L/S) ratio on the mixture properties in the fresh and hardened states were studied. In the fresh state, the level of flowability (mini-slump), flow index (flow table), buildability and setting time characteristics of the cementitious pastes were evaluated. In addition, the rheological behaviour was analysed through a rotational rheometer. In the hardened state, the compressive strength was determined at 3, 7, 28 and 90 days. The effects of the type of recycled fine aggregate (RFA − CoW, RFA − CeW and RFA − RCBW) were evaluated for mortars with a cement:aggregate ratio of 1:0.5. Based on the results obtained, the most suitable mixtures were selected to carry out 3D printing tests on a laboratory scale. From the 3D printing of beam-type specimens, it was possible to determine the flexural and compressive strengths (28 days) of the selected mixtures. The results obtained validated the possibility of using recycled powders (CoW, CeW and RCBW) to replace 30 % of ordinary Portland cement (OPC) and to incorporate 100 % recycled fine aggregates in the design of cementitious materials (pastes and mortars) for 3D printing. In this regard, the recycled powders and recycled fine aggregates increase the buildability and thixotropy of cementitious mixtures. With an adjustment in the L/S (liquid/solids) ratio, their application in 3D printing becomes feasible. This alternative for the use of powders and fine aggregates from construction and demolition waste (CDW) could be considered a contribution towards the sustainability of the sector and the implementation of a circular economy.

本文分析了在设计用于 3D 打印的水泥浆和砂浆时,使用从混凝土废料(CoW)、陶瓷废料(CeW)和红粘土砖废料(RCBW)的破碎和研磨过程中获得的回收粉末(75 微米)和回收细骨料(1.18 毫米)的可能性。研究了粉末类型(CoW-粉末、CeW-粉末和 RCBW-粉末)和液/固(L/S)比对新鲜和硬化状态下混合物性能的影响。在新鲜状态下,对水泥基浆的流动性(小坍落度)、流动指数(流动表)、施工性和凝结时间特性进行了评估。此外,还通过旋转流变仪分析了流变特性。在硬化状态下,测定了 3、7、28 和 90 天的抗压强度。在水泥与骨料的比例为 1:0.5 的砂浆中,对再生细骨料类型(RFA - CoW、RFA - CeW 和 RFA - RCBW)的影响进行了评估。根据获得的结果,选出了最合适的混合物,在实验室规模上进行 3D 打印试验。通过三维打印梁型试样,可以确定所选混合物的抗折和抗压强度(28 天)。所获得的结果验证了使用回收粉末(CoW、CeW 和 RCBW)替代 30% 的普通波特兰水泥(OPC),以及在设计用于 3D 打印的胶凝材料(浆料和砂浆)时加入 100% 的回收细骨料的可能性。在这方面,再生粉末和再生细骨料可提高水泥基混合物的施工性和触变性。通过调整 L/S(液体/固体)比率,它们在 3D 打印中的应用变得可行。这种利用建筑和拆除废物(CDW)中的粉末和细骨料的替代方法,可被视为对该行业的可持续性和循环经济的实施做出了贡献。
{"title":"Utilization of powders and fine aggregates from the recycling of construction and demolition waste in the 3D printing of Portland-based cementitious materials","authors":"Rafael Robayo–Salazar,&nbsp;Armando Vargas,&nbsp;Fabio Martínez,&nbsp;Ruby Mejía de Gutiérrez","doi":"10.1016/j.clema.2024.100234","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100234","url":null,"abstract":"<div><p>This paper analysed the possibility of using recycled powders (&lt;75 µm) and recycling fine aggregates (&lt;1.18 mm) obtained during the crushing and grinding of concrete waste (CoW), ceramic waste (CeW) and red clay brick waste (RCBW) when designing cementitious pastes and mortars for 3D printing. The effects of the type of powder (CoW-powder, CeW-powder and RCBW-powder) and of the liquid/solid (L/S) ratio on the mixture properties in the fresh and hardened states were studied. In the fresh state, the level of flowability (mini-slump), flow index (flow table), buildability and setting time characteristics of the cementitious pastes were evaluated. In addition, the rheological behaviour was analysed through a rotational rheometer. In the hardened state, the compressive strength was determined at 3, 7, 28 and 90 days. The effects of the type of recycled fine aggregate (RFA − CoW, RFA − CeW and RFA − RCBW) were evaluated for mortars with a cement:aggregate ratio of 1:0.5. Based on the results obtained, the most suitable mixtures were selected to carry out 3D printing tests on a laboratory scale. From the 3D printing of beam-type specimens, it was possible to determine the flexural and compressive strengths (28 days) of the selected mixtures. The results obtained validated the possibility of using recycled powders (CoW, CeW and RCBW) to replace 30 % of ordinary Portland cement (OPC) and to incorporate 100 % recycled fine aggregates in the design of cementitious materials (pastes and mortars) for 3D printing. In this regard, the recycled powders and recycled fine aggregates increase the buildability and thixotropy of cementitious mixtures. With an adjustment in the L/S (liquid/solids) ratio, their application in 3D printing becomes feasible. This alternative for the use of powders and fine aggregates from construction and demolition waste (CDW) could be considered a contribution towards the sustainability of the sector and the implementation of a circular economy.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100234"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000182/pdfft?md5=f659693cc1025f7fbbde563281d18ec1&pid=1-s2.0-S2772397624000182-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environment-COnscious magnesium (ECO-Mg): A review 环境友好型镁(ECO-Mg):综述
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100230
Shahabodin Rafiei , Ali Habibolahzadeh , Björn Wiese

The significance of Mg (alloy) extends to both the mechanical engineering and medical sectors. However, Mg is known for its high reactivity, posing significant challenges to its widespread utilization in large-scale lightweight applications. Research has shown that adding small amounts of reactive elements, such as Ca, can substantially improve the high-temperature oxidation resistance of numerous Mg alloys. This can diminish the reliance on greenhouse gases with high global warming potential, typically used as protective gases during processing. In a similar vein, the patented Environment-COnscious Mg technology offers distinct advantages by utilizing the cost-effective and more stable oxide form of the desired alloying element, notably alkaline earth metals like Ca, instead of their elemental forms, in the alloying of Mg. This development holds considerable importance in mitigating the carbon footprint throughout manufacturing. While the patents for Environment-COnscious production outline a method employing various versatile oxides, practical application has primarily relied on adding calcium oxide, as indicated by the literature. Therefore, this review brings to light the state of the art concerning the interaction between calcium oxide and molten Mg (alloy), and its influence on the technical properties, potential challenges, and areas requiring further investigation in this field. Until now, this issue has not been discussed from a critical and holistic approach.

镁(合金)在机械工程和医疗领域都具有重要意义。然而,镁以其高反应性著称,这对其在大规模轻质应用中的广泛使用构成了重大挑战。研究表明,添加少量反应性元素(如钙)可大幅提高多种镁合金的高温抗氧化性。这可以减少对全球升温潜能值较高的温室气体的依赖,这些气体通常在加工过程中用作保护气体。同样,获得专利的环保镁技术在镁的合金化过程中,利用所需的合金元素,特别是碱土金属(如钙)的成本效益高且更稳定的氧化物形式,而不是其元素形式,具有明显的优势。这项技术的开发对于减少整个生产过程中的碳足迹具有相当重要的意义。虽然环境友好型生产专利概述了采用各种多功能氧化物的方法,但如文献所示,实际应用主要依赖于添加氧化钙。因此,本综述将介绍氧化钙与熔融镁(合金)之间的相互作用及其对技术特性的影响、潜在的挑战以及该领域需要进一步研究的领域。到目前为止,还没有人从批判性和整体性的角度对这一问题进行过讨论。
{"title":"Environment-COnscious magnesium (ECO-Mg): A review","authors":"Shahabodin Rafiei ,&nbsp;Ali Habibolahzadeh ,&nbsp;Björn Wiese","doi":"10.1016/j.clema.2024.100230","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100230","url":null,"abstract":"<div><p>The significance of Mg (alloy) extends to both the mechanical engineering and medical sectors. However, Mg is known for its high reactivity, posing significant challenges to its widespread utilization in large-scale lightweight applications. Research has shown that adding small amounts of reactive elements, such as Ca, can substantially improve the high-temperature oxidation resistance of numerous Mg alloys. This can diminish the reliance on greenhouse gases with high global warming potential, typically used as protective gases during processing. In a similar vein, the patented Environment-COnscious Mg technology offers distinct advantages by utilizing the cost-effective and more stable oxide form of the desired alloying element, notably alkaline earth metals like Ca, instead of their elemental forms, in the alloying of Mg. This development holds considerable importance in mitigating the carbon footprint throughout manufacturing. While the patents for Environment-COnscious production outline a method employing various versatile oxides, practical application has primarily relied on adding calcium oxide, as indicated by the literature. Therefore, this review brings to light the state of the art concerning the interaction between calcium oxide and molten Mg (alloy), and its influence on the technical properties, potential challenges, and areas requiring further investigation in this field. Until now, this issue has not been discussed from a critical and holistic approach.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100230"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000145/pdfft?md5=adc7940e8ab12976f6f52d385ce035c6&pid=1-s2.0-S2772397624000145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encouraging sustainable consumption: Investigating consumer inclination to purchase products made from mango wastes 鼓励可持续消费:调查消费者购买用芒果废料制成的产品的倾向
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100232
Neeranuch Maitree , Phaninee Naruetharadhol , Sasichakorn Wongsaichia

Given the current growth in consumer environmental concerns, this study assessed green customers’ consumption value for mango waste-based vegan leather bags. The consumer values and market choices theories guided semi-structured interviews and grounded theory-based induction data gathering and analysis. The project provides lasting answers and theoretical insights for vegan leather bags and mango waste management. The five main values are functional, social, emotional, conditional, and epistemic. Ten consumption-related topics emerged. Vegan leather bags were valued for their durability and multifunctionality by green shoppers. The data also show that social media, family, and peers impact sustainable product selections. For sustainable vegan leather purses created from mango waste, beautiful design and customization, green behavior, convenience, and environmental and green experience were the emotional and conditional values. Green customers’ openness to experience and green information can drive them to buy sustainable vegan leather bags, the study revealed.

鉴于当前消费者对环境问题的日益关注,本研究评估了绿色消费者对基于芒果废料的素食皮包的消费价值。消费者价值和市场选择理论指导了半结构式访谈和基于基础理论的归纳数据收集和分析。该项目为素食皮包和芒果废物管理提供了持久的答案和理论启示。五大价值分别是功能价值、社会价值、情感价值、条件价值和认识价值。出现了十个与消费相关的主题。素食皮包因其耐用性和多功能性而受到绿色购物者的青睐。数据还显示,社交媒体、家庭和同伴也会影响可持续产品的选择。对于用芒果废料制作的可持续纯素皮包,美观的设计和定制、绿色行为、便利性以及环保和绿色体验是情感价值和条件价值。研究显示,绿色顾客对体验和绿色信息的开放态度会促使他们购买可持续纯素皮包。
{"title":"Encouraging sustainable consumption: Investigating consumer inclination to purchase products made from mango wastes","authors":"Neeranuch Maitree ,&nbsp;Phaninee Naruetharadhol ,&nbsp;Sasichakorn Wongsaichia","doi":"10.1016/j.clema.2024.100232","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100232","url":null,"abstract":"<div><p>Given the current growth in consumer environmental concerns, this study assessed green customers’ consumption value for mango waste-based vegan leather bags. The consumer values and market choices theories guided semi-structured interviews and grounded theory-based induction data gathering and analysis. The project provides lasting answers and theoretical insights for vegan leather bags and mango waste management. The five main values are functional, social, emotional, conditional, and epistemic. Ten consumption-related topics emerged. Vegan leather bags were valued for their durability and multifunctionality by green shoppers. The data also show that social media, family, and peers impact sustainable product selections. For sustainable vegan leather purses created from mango waste, beautiful design and customization, green behavior, convenience, and environmental and green experience were the emotional and conditional values. Green customers’ openness to experience and green information can drive them to buy sustainable vegan leather bags, the study revealed.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100232"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000169/pdfft?md5=7347e24d11ccfdc894e684ffcc16105d&pid=1-s2.0-S2772397624000169-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zeolite-Y-catalyst production from locally sourced Meta-kaolin: Computer-Aided scale-up process design and economic analysis with Monte-Carlo-Simulation 利用本地 Meta-kaolin 生产沸石-Y 催化剂:计算机辅助放大工艺设计和蒙特卡洛模拟经济分析
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100233
Emmanue Olusola Oke , Kazeem Kolapo Salam , Titilayo Deborah Oluwole , Aru Eze Okere , Nnabodo Darlington , Kehinde Ayoola Babatunde , Yahya Umar , Suliyat Omolara Ibrahim

Production of zeolite-Y catalyst from natural substrate has been a research trend in the scientific community. Published articles revealed that zeolite-Y recovery from locally sourced metakaolin is confined to laboratory practice. Scale-up process design and its economic feasibility for zeolite-Y catalyst recovery are rarely found in the scientific bibliography. Therefore, this study presented conceptual scale-up process design, base-case techno-economics and Monte-Carlo simulation of zeolite Y recovery from Nigerian metakaoline. ASPEN Base Case Simulation (ABCS), scale-up design and economics were accomplished using inherent design and costing algorithms in ASPEN Batch Process Developer (ABPD) V10. Process economic parameters: Net Present Value (NPV), Internal Rate of Return (IRR), Return on Investment (ROI) and Payback Time (PBT), were modelled and optimized using Design Expert V13 software; while zeolite Unit Production Cost (UPC), Annual Production Cost (APC), Total Capital Investment (TCI) and interest/discount rate were considered as model inputs. Monte-Carlo Simulation (MCS) in Crystal Ball Oracle software was used to perform the sensitivity and uncertainty analyses. The base-case techno-economic results of process design of 600,000 kg/year zeolite production gave batch size 5000 kg/batch with 104 batches/year, batch time (4149 min), TCI ($15,930,306), APC ($147,145), NPV ($41,983,375), ROI (38.13 %) and PBT (2.14 years). The coefficient of determination (R2) of the economic models were 0.9978, 0.9989 and 0.9986 for NPV, ROI and IRR respectively. The optimum economic variables that maximized synthesis of 5000 kg/batch zeolite Y are UPC ($11.68), APC ($100,033) and TPC ($15,930,200). MCS uncertainty for NPV, IRR and ROI are negligible. Therefore, this study demonstrated that scale-up zeolite-Y production from the local substrate is economically feasible.

利用天然基质生产沸石-Y 催化剂一直是科学界的研究趋势。已发表的文章显示,从本地来源的偏高岭土中回收沸石-Y 仅局限于实验室实践。沸石-Y 催化剂回收的放大工艺设计及其经济可行性在科学文献中很少见。因此,本研究介绍了从尼日利亚偏高岭土中回收沸石 Y 的概念性放大工艺设计、基础案例技术经济学和蒙特卡洛模拟。利用 ASPEN Batch Process Developer (ABPD) V10 中固有的设计和成本计算算法,完成了 ASPEN Base Case Simulation (ABCS)、放大设计和经济学分析。工艺经济参数使用 Design Expert V13 软件对净现值 (NPV)、内部收益率 (IRR)、投资回报率 (ROI) 和投资回收期 (PBT) 进行建模和优化;同时将沸石单位生产成本 (UPC)、年生产成本 (APC)、总资本投资 (TCI) 和利息/贴现率作为模型输入。Crystal Ball Oracle 软件中的蒙特卡洛模拟(MCS)用于进行敏感性和不确定性分析。年产 600,000 公斤沸石的工艺设计的基础案例技术经济结果为:批量 5000 公斤/批,104 批/年,批次时间(4149 分钟),TCI(15,930,306 美元),APC(147,145 美元),NPV(41,983,375 美元),投资回报率(38.13%)和 PBT(2.14 年)。经济模型的净现值、投资回报率和内部收益率的决定系数(R2)分别为 0.9978、0.9989 和 0.9986。能最大化合成 5000 公斤/批次沸石 Y 的最佳经济变量是 UPC(11.68 美元)、APC(100,033 美元)和 TPC(15,930,200 美元)。净现值、内部收益率和投资回报率的 MCS 不确定性可忽略不计。因此,本研究表明,利用当地基质扩大沸石-Y 的生产规模在经济上是可行的。
{"title":"Zeolite-Y-catalyst production from locally sourced Meta-kaolin: Computer-Aided scale-up process design and economic analysis with Monte-Carlo-Simulation","authors":"Emmanue Olusola Oke ,&nbsp;Kazeem Kolapo Salam ,&nbsp;Titilayo Deborah Oluwole ,&nbsp;Aru Eze Okere ,&nbsp;Nnabodo Darlington ,&nbsp;Kehinde Ayoola Babatunde ,&nbsp;Yahya Umar ,&nbsp;Suliyat Omolara Ibrahim","doi":"10.1016/j.clema.2024.100233","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100233","url":null,"abstract":"<div><p>Production of zeolite-Y catalyst from natural substrate has been a research trend in the scientific community. Published articles revealed that zeolite-Y recovery from locally sourced metakaolin is confined to laboratory practice. Scale-up process design and its economic feasibility for zeolite-Y catalyst recovery are rarely found in the scientific bibliography. Therefore, this study presented conceptual scale-up process design, base-case techno-economics and Monte-Carlo simulation of zeolite Y recovery from Nigerian metakaoline. ASPEN Base Case Simulation (ABCS), scale-up design and economics were accomplished using inherent design and costing algorithms in ASPEN Batch Process Developer (ABPD) V10. Process economic parameters: Net Present Value (NPV), Internal Rate of Return (IRR), Return on Investment (ROI) and Payback Time (PBT), were modelled and optimized using Design Expert V13 software; while zeolite Unit Production Cost (UPC), Annual Production Cost (APC), Total Capital Investment (TCI) and interest/discount rate were considered as model inputs. Monte-Carlo Simulation (MCS) in Crystal Ball Oracle software was used to perform the sensitivity and uncertainty analyses. The base-case techno-economic results of process design of 600,000 kg/year zeolite production gave batch size 5000 kg/batch with 104 batches/year, batch time (4149 min), TCI ($15,930,306), APC ($147,145), NPV ($41,983,375), ROI (38.13 %) and PBT (2.14 years). The coefficient of determination (R<sup>2</sup>) of the economic models were 0.9978, 0.9989 and 0.9986 for NPV, ROI and IRR respectively. The optimum economic variables that maximized synthesis of 5000 kg/batch zeolite Y are UPC ($11.68), APC ($100,033) and TPC ($15,930,200). MCS uncertainty for NPV, IRR and ROI are negligible. Therefore, this study demonstrated that scale-up zeolite-Y production from the local substrate is economically feasible.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100233"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000170/pdfft?md5=7e2fea20500faec5b67e336e311e1a1c&pid=1-s2.0-S2772397624000170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supervised data-driven approach to predict split tensile and flexural strength of concrete with marble waste powder 采用有监督的数据驱动方法预测大理石废粉混凝土的劈裂拉伸和弯曲强度
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100231
Pala Ravikanth , T. Jothi Saravanan , K.I. Syed Ahmed Kabeer

The utilization of marble waste powder (MWP) as a supplementary cementitious material in concrete, serving as a replacement for cement, holds the potential to enhance split tensile strength (STS) and flexural strength (FS), alongside offering environmental advantages. However, it is crucial to determine the optimal dosage of MWP, ensuring meticulous mix design and testing procedures to maximize the concrete's strength and overall performance. This research endeavor seeks to investigate a supervised data-driven approach for predicting STS and FS in concrete composites incorporating MWP, along with other cementitious materials such as silica fume (SF), granite powder (GP), and fly ash (FA), and their influence on the STS and FS of MWP-incorporated concrete. Ten distinct machine learning (ML) algorithms, including multivariate linear regression (MVLR), support vector regression (SVR), artificial neural networks (ANN), decision tree regressor (DT), random forest regressor (RF), adaptive boosting regressor (AdB), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), extreme gradient boosting (XGB), and cat boost, are employed to assess the predictive capabilities of these models for FS and STS datasets. Statistical metrics like correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of each ML algorithm. To enhance model efficiency, hyperparameter tuning and a 5-fold cross-validation technique are implemented. Among the ML algorithms tested, the cat boost algorithm demonstrates superior performance in predicting STS, while the ANN algorithm excels in predicting FS. Additionally, SHAP dependency plots are utilized to ascertain the feature importance in the best-performing models. The analysis reveals that features such as curing age, water, and cement play a more significant role in predicting STS, whereas attributes like cement, concrete type, and sand hold greater importance in predicting FS.

利用大理石废粉(MWP)作为混凝土中的辅助胶凝材料,替代水泥,具有提高劈裂拉伸强度(STS)和抗折强度(FS)的潜力,同时还具有环保优势。然而,关键是要确定 MWP 的最佳用量,确保精心的混合设计和测试程序,以最大限度地提高混凝土的强度和整体性能。本研究旨在探索一种数据驱动的监督方法,用于预测掺入 MWP 以及硅灰(SF)、花岗岩粉末(GP)和粉煤灰(FA)等其他胶凝材料的混凝土复合材料的 STS 和 FS,以及它们对掺入 MWP 的混凝土 STS 和 FS 的影响。十种不同的机器学习(ML)算法,包括多元线性回归(MVLR)、支持向量回归(SVR)、人工神经网络(ANN)、决策树回归(DT)、随机森林回归(RF)、采用了自适应增强回归器(AdB)、轻梯度增强机(LGBM)、梯度增强回归器(GBR)、极梯度增强(XGB)和猫增强(cat boost),以评估这些模型对 FS 和 STS 数据集的预测能力。相关系数 (R2)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE) 等统计指标被用来评估每种 ML 算法的性能。为了提高模型效率,还采用了超参数调整和 5 倍交叉验证技术。在测试的 ML 算法中,cat boost 算法在预测 STS 方面表现出色,而 ANN 算法在预测 FS 方面表现出色。此外,还利用 SHAP 依赖图来确定特征在表现最佳的模型中的重要性。分析结果表明,养护龄期、水和水泥等特征在预测 STS 时发挥了更重要的作用,而水泥、混凝土类型和砂等属性在预测 FS 时则具有更大的重要性。
{"title":"Supervised data-driven approach to predict split tensile and flexural strength of concrete with marble waste powder","authors":"Pala Ravikanth ,&nbsp;T. Jothi Saravanan ,&nbsp;K.I. Syed Ahmed Kabeer","doi":"10.1016/j.clema.2024.100231","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100231","url":null,"abstract":"<div><p>The utilization of marble waste powder (MWP) as a supplementary cementitious material in concrete, serving as a replacement for cement, holds the potential to enhance split tensile strength (STS) and flexural strength (FS), alongside offering environmental advantages. However, it is crucial to determine the optimal dosage of MWP, ensuring meticulous mix design and testing procedures to maximize the concrete's strength and overall performance. This research endeavor seeks to investigate a supervised data-driven approach for predicting STS and FS in concrete composites incorporating MWP, along with other cementitious materials such as silica fume (SF), granite powder (GP), and fly ash (FA), and their influence on the STS and FS of MWP-incorporated concrete. Ten distinct machine learning (ML) algorithms, including multivariate linear regression (MVLR), support vector regression (SVR), artificial neural networks (ANN), decision tree regressor (DT), random forest regressor (RF), adaptive boosting regressor (AdB), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), extreme gradient boosting (XGB), and cat boost, are employed to assess the predictive capabilities of these models for FS and STS datasets. Statistical metrics like correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of each ML algorithm. To enhance model efficiency, hyperparameter tuning and a 5-fold cross-validation technique are implemented. Among the ML algorithms tested, the cat boost algorithm demonstrates superior performance in predicting STS, while the ANN algorithm excels in predicting FS. Additionally, SHAP dependency plots are utilized to ascertain the feature importance in the best-performing models. The analysis reveals that features such as curing age, water, and cement play a more significant role in predicting STS, whereas attributes like cement, concrete type, and sand hold greater importance in predicting FS.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100231"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000157/pdfft?md5=8bef5ff20528fd55063b900c6d714f5c&pid=1-s2.0-S2772397624000157-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable selection of microwave absorbing materials: A green evaluation under interval-valued intuitionistic fuzzy environment 微波吸收材料的可持续选择:区间值直观模糊环境下的绿色评估
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100236
M. Saeed , R. Sami Ul Haq , S. Ahmed , F. Siddiqui , N. Mateen , K.A. Ahmed , J.B. Yi , Dragan Pamučar

Environmentally friendly technology is being used by industries all over the world, and engineers in the manufacturing and materials industry are embracing sustainable business models. In this paradigm, materials are processed using economically and environmentally sound methods. The use of microwave-absorbing materials (MAMs) in low-altitude observatory aircraft and the rise in electromagnetic pollution have brought them to light. The main aim of this study is to select an ideal MAM with excellent physical, electromagnetic, chemical, and thermal properties, which also fulfills sustainability aspects based on expert judgments. In this regard, we have proposed a new hybrid framework consisting of Modified Digital Logic (MDL), a subjective weighting method in combination with the measurement of alternatives and ranking according to compromise solution (MARCOS) under an interval-valued intuitionistic fuzzy (IVIF) environment to select an optimum MAM. Furthermore, this research work contributes to streamlining the selection process by consolidating the plethora of work available in the literature on the synthesis and characterization of MAMs. A database is created for 160 potential candidate materials in C, S, X, and Ku bands for carbon-based materials, including carbon nanotubes (CNT), graphene, reduced graphene oxide (rGO), carbon fibers, and biomass-derived materials. These materials are then passed through successive screening stages to shortlist 14 materials, which are ranked subsequently over a set of 15 crisp and ambiguous criteria. This comprehensive study simultaneously caters to quantitative and qualitative information extracted from experimental work, material resource packs, or expert evaluations. The findings highlight CNT/Fe (20 wt%, E) (Al1) as the most suitable candidate for MAM application with outstanding electromagnetic properties. Finally, the results are compared with extant approaches to check the reliability of the proposed framework. In addition, sensitivity analysis is carried out to establish the feasibility and robustness of the obtained results.

全球各行各业都在使用环保技术,制造和材料行业的工程师们也在采用可持续发展的商业模式。在这种模式下,材料的加工采用既经济又环保的方法。微波吸收材料(MAMs)在低空观测飞机中的使用以及电磁污染的加剧使人们开始关注它们。本研究的主要目的是根据专家的判断,选择一种具有优异的物理、电磁、化学和热性能,同时又符合可持续发展要求的理想微波吸收材料。为此,我们提出了一种新的混合框架,该框架由修正数字逻辑(MDL)、主观加权法、备选方案测量法以及根据区间值直观模糊(IVIF)环境下的折中方案排序(MARCOS)组成,用于选择最佳 MAM。此外,这项研究工作还整合了文献中有关 MAMs 综合和特征描述的大量工作,为简化选择过程做出了贡献。为碳基材料(包括碳纳米管 (CNT)、石墨烯、还原氧化石墨烯 (rGO)、碳纤维和生物质衍生材料)在 C、S、X 和 Ku 波段的 160 种潜在候选材料创建了一个数据库。这些材料经过层层筛选,最终列出了 14 种材料,然后根据 15 项明确而模糊的标准对这些材料进行排序。这项综合研究同时兼顾了从实验工作、材料资源包或专家评估中提取的定量和定性信息。研究结果表明,CNT/Fe(20 wt%,E)(Al1)是最适合 MAM 应用的候选材料,具有出色的电磁特性。最后,研究结果与现有方法进行了比较,以检验建议框架的可靠性。此外,还进行了敏感性分析,以确定所得结果的可行性和稳健性。
{"title":"Sustainable selection of microwave absorbing materials: A green evaluation under interval-valued intuitionistic fuzzy environment","authors":"M. Saeed ,&nbsp;R. Sami Ul Haq ,&nbsp;S. Ahmed ,&nbsp;F. Siddiqui ,&nbsp;N. Mateen ,&nbsp;K.A. Ahmed ,&nbsp;J.B. Yi ,&nbsp;Dragan Pamučar","doi":"10.1016/j.clema.2024.100236","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100236","url":null,"abstract":"<div><p>Environmentally friendly technology is being used by industries all over the world, and engineers in the manufacturing and materials industry are embracing sustainable business models. In this paradigm, materials are processed using economically and environmentally sound methods. The use of microwave-absorbing materials (MAMs) in low-altitude observatory aircraft and the rise in electromagnetic pollution have brought them to light. The main aim of this study is to select an ideal MAM with excellent physical, electromagnetic, chemical, and thermal properties, which also fulfills sustainability aspects based on expert judgments. In this regard, we have proposed a new hybrid framework consisting of Modified Digital Logic (MDL), a subjective weighting method in combination with the measurement of alternatives and ranking according to compromise solution (MARCOS) under an interval-valued intuitionistic fuzzy (IVIF) environment to select an optimum MAM. Furthermore, this research work contributes to streamlining the selection process by consolidating the plethora of work available in the literature on the synthesis and characterization of MAMs. A database is created for 160 potential candidate materials in C, S, X, and Ku bands for carbon-based materials, including carbon nanotubes (CNT), graphene, reduced graphene oxide (rGO), carbon fibers, and biomass-derived materials. These materials are then passed through successive screening stages to shortlist 14 materials, which are ranked subsequently over a set of 15 crisp and ambiguous criteria. This comprehensive study simultaneously caters to quantitative and qualitative information extracted from experimental work, material resource packs, or expert evaluations. The findings highlight CNT/Fe (20 wt%, E) (Al1) as the most suitable candidate for MAM application with outstanding electromagnetic properties. Finally, the results are compared with extant approaches to check the reliability of the proposed framework. In addition, sensitivity analysis is carried out to establish the feasibility and robustness of the obtained results.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100236"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000200/pdfft?md5=be5dadfb7ff42c9bdf1144a982cebd98&pid=1-s2.0-S2772397624000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable silico-aluminous refractory wastes as an alternative raw material for hydraulic binder for foundry industry 将可持续的硅铝质耐火废料作为铸造业液压粘结剂的替代原料
Pub Date : 2024-02-15 DOI: 10.1016/j.clema.2024.100228
Maria de Lourdes dos Santos Schackow , Adilson Schackow , Karoline Bastos Mundstock , Marilena Valadares Folgueras

The foundry industry is responsible for consuming large quantities of lining materials and generating significant amounts of waste. Silico-aluminous linings are used in the production of cast iron due to their compatibility with molten metal and slag. However, after use, these materials are typically disposed of in industrial landfills, creating an environmental liability. This study demonstrated a feasible alternative approach to repurpose silico-aluminous refractory wastes from induction furnaces and casting ladles from the foundry industry to develop new materials for refractory hydraulic binders for lining (refractory patch). The wastes were characterized using X-ray Diffraction, X-ray Fluorescence Spectrometry, Thermal Analysis, Scanning Electron Microscopy, and particle size distribution. The behavior of the lining wastes was found to be compatible with the proposed application, despite the expected contamination. There is potential for cost savings of at least 25 % and promoting a culture of recycling.

铸造业消耗大量衬里材料,并产生大量废物。硅铝内衬因其与熔融金属和熔渣的相容性而被用于铸铁生产。然而,这些材料在使用后通常会被丢弃到工业垃圾填埋场,造成环境污染。本研究展示了一种可行的替代方法,即重新利用铸造业感应炉和浇铸钢包中的硅铝质耐火废料,来开发新的耐火衬里液压粘结剂(耐火修补剂)材料。利用 X 射线衍射、X 射线荧光光谱、热分析、扫描电子显微镜和粒度分布对这些废料进行了表征。尽管存在预期的污染,但发现衬里废料的行为与拟议的应用相匹配。该项目有可能节约至少 25% 的成本,并促进回收文化的发展。
{"title":"Sustainable silico-aluminous refractory wastes as an alternative raw material for hydraulic binder for foundry industry","authors":"Maria de Lourdes dos Santos Schackow ,&nbsp;Adilson Schackow ,&nbsp;Karoline Bastos Mundstock ,&nbsp;Marilena Valadares Folgueras","doi":"10.1016/j.clema.2024.100228","DOIUrl":"10.1016/j.clema.2024.100228","url":null,"abstract":"<div><p>The foundry industry is responsible for consuming large quantities of lining materials and generating significant amounts of waste. Silico-aluminous linings are used in the production of cast iron due to their compatibility with molten metal and slag. However, after use, these materials are typically disposed of in industrial landfills, creating an environmental liability. This study demonstrated a feasible alternative approach to repurpose silico-aluminous refractory wastes from induction furnaces and casting ladles from the foundry industry to develop new materials for refractory hydraulic binders for lining (refractory patch). The wastes were characterized using X-ray Diffraction, X-ray Fluorescence Spectrometry, Thermal Analysis, Scanning Electron Microscopy, and particle size distribution. The behavior of the lining wastes was found to be compatible with the proposed application, despite the expected contamination. There is potential for cost savings of at least 25 % and promoting a culture of recycling.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100228"},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000121/pdfft?md5=768d44af1c2f7865afda6254df7c3450&pid=1-s2.0-S2772397624000121-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139815150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the novel white coconut oil-based metalworking fluid using nano particles for minimum surface roughness and tool tip temperature 使用纳米颗粒改进新型白椰子油基金属加工液,使表面粗糙度和刀尖温度降至最低
Pub Date : 2024-02-15 DOI: 10.1016/j.clema.2024.100227
G.I.P. Perera, T.S. Wegala

At present, nearly 85 % all of the requirement for MWFs are satisfied by the use of mixtures of petroleum by-products and synthetic substances with supplementary additives to enhance their properties. The demand for easily biodegradable, environmental friendly MWFs is a current requirement. COCOTP, a novel biodegradable MWF based on white (refined) coconut oil, developed by authors, had previously shown promising tribological properties for machining mild steel (MS) and stainless steel (SS) when used with the flooding method, but had fallen short of the performance of commercially available, non-biodegradable alternatives with MQL. Therefore in the current investigation, nano-particles were added to improve the performance of novel COCOTP MWF to use it with MQL conditions. Two nanomaterials nano-graphite and nano-Al2O3 were separately added to the base fluid in different concentrations as a monodispersed suspension. These nano enhanced fluids (NEFs) were subsequently used in straight turning experiments of two work materials AISI304 and SS400. Both the nano-enhanced fluids show convincing improvements over both COCOTP and mineral-oil based fluids in terms of surface roughness of the specimens regardless of the material being turned. However when machining SS 400, NEFs perform better only in lower speeds in terms of temperature. SS400 has a much higher thermal conductivity than AISI304 means that the quantity of residual heat remaining at the point of material removal which can be absorbed by the cutting fluid is lower in SS400. During machining SS400 under MQL lubrication 9.8 %, 26.8 % and 24 % reduction of surface roughness values (with respect to soluble oil) and during machining AISI304 55.3 %, 73.7 % and 70.4 % reduction of surface roughness values were obtained at 1175 rpm with COCOTP, NEF A and NEF G respectively. Based on the experimental results, the best-performing nano-enhanced fluids under MQL are 0.3 % (w/w) Al2O3 and 0.3 % (w/w) graphite.

目前,近 85% 的无机泡沫塑料都是通过使用石油副产品和合成物质的混合物,并添加辅助添加剂来提高其性能。目前,人们需要易于生物降解、对环境友好的 MWF。COCOTP 是由作者开发的一种基于白色(精炼)椰子油的新型可生物降解 MWF,之前在使用淹没法加工低碳钢(MS)和不锈钢(SS)时显示出良好的摩擦学特性,但在使用 MQL 时,其性能不及市售的不可生物降解替代品。因此,在当前的研究中,添加了纳米颗粒来改善新型 COCOTP MWF 的性能,以便在 MQL 条件下使用。两种纳米材料纳米石墨和纳米 Al2O3 分别以单分散悬浮液的形式添加到不同浓度的基液中。这些纳米增强流体(NEF)随后被用于 AISI304 和 SS400 两种工件材料的直车实验。与 COCOTP 和矿物油基液体相比,这两种纳米增强液体在试样表面粗糙度方面都有令人信服的改善,而与被车削的材料无关。不过,在加工 SS 400 时,纳米强化液只有在低速加工时才会在温度方面表现更好。SS400 的导热性比 AISI304 高得多,这意味着在 SS400 中,可被切削液吸收的材料去除点残余热量较低。在 MQL 润滑条件下加工 SS400 时,使用 COCOTP、NEF A 和 NEF G,表面粗糙度值分别降低了 9.8%、26.8% 和 24%(与可溶性油相比);在加工 AISI304 时,使用 COCOTP、NEF A 和 NEF G,表面粗糙度值分别降低了 55.3%、73.7% 和 70.4%(转速为 1175 rpm)。根据实验结果,在 MQL 条件下,性能最好的纳米增强液体是 0.3 %(重量/重量)Al2O3 和 0.3 %(重量/重量)石墨。
{"title":"Improving the novel white coconut oil-based metalworking fluid using nano particles for minimum surface roughness and tool tip temperature","authors":"G.I.P. Perera,&nbsp;T.S. Wegala","doi":"10.1016/j.clema.2024.100227","DOIUrl":"10.1016/j.clema.2024.100227","url":null,"abstract":"<div><p>At present, nearly 85 % all of the requirement for MWFs are satisfied by the use of mixtures of petroleum by-products and synthetic substances with supplementary additives to enhance their properties. The demand for easily biodegradable, environmental friendly MWFs is a current requirement. COCOTP, a novel biodegradable MWF based on white (refined) coconut oil, developed by authors, had previously shown promising tribological properties for machining mild steel (MS) and stainless steel (SS) when used with the flooding method, but had fallen short of the performance of commercially available, non-biodegradable alternatives with MQL. Therefore in the current investigation, nano-particles were added to improve the performance of novel COCOTP MWF to use it with MQL conditions. Two nanomaterials nano-graphite and nano-Al<sub>2</sub>O<sub>3</sub> were separately added to the base fluid in different concentrations as a monodispersed suspension. These nano enhanced fluids (NEFs) were subsequently used in straight turning experiments of two work materials AISI304 and SS400. Both the nano-enhanced fluids show convincing improvements over both COCOTP and mineral-oil based fluids in terms of surface roughness of the specimens regardless of the material being turned. However when machining SS 400, NEFs perform better only in lower speeds in terms of temperature. SS400 has a much higher thermal conductivity than AISI304 means that the quantity of residual heat remaining at the point of material removal which can be absorbed by the cutting fluid is lower in SS400. During machining SS400 under MQL lubrication 9.8 %, 26.8 % and 24 % reduction of surface roughness values (with respect to soluble oil) and during machining AISI304 55.3 %, 73.7 % and 70.4 % reduction of surface roughness values were obtained at 1175 rpm with COCOTP, NEF A and NEF G respectively. Based on the experimental results, the best-performing nano-enhanced fluids under MQL are 0.3 % (w/w) Al<sub>2</sub>O<sub>3</sub> and 0.3 % (w/w) graphite.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100227"},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277239762400011X/pdfft?md5=c0ffc0135ff91388d3c532f8971df833&pid=1-s2.0-S277239762400011X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139892608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental feasibility study of using eco- and user-friendly mechanochemically activated slag/fly ash geopolymer for soil stabilization 用于稳定土壤的生态和用户友好型机械化学活化炉渣/粉煤灰土工聚合物的实验可行性研究
Pub Date : 2024-02-15 DOI: 10.1016/j.clema.2024.100226
Mukhtar Hamid Abed , Firas Hamid Abed , Seyed Alireza Zareei , Israa Sabbar Abbas , Hanifi Canakci , Nahidh H. Kurdi , Alireza Emami

This study focuses on the development of eco and user-friendly mechanochemically-activated geopolymeric stabilizers, surpassing the limitations inherent in traditional geopolymerization methods. A comparative analysis was undertaken with conventionally activated geopolymer stabilizers to establish benchmarks for effectiveness in soil stabilization applications. Additionally, the research delves into the impact of granulated blast-furnace slag (GGBS) content on the mechanical and durability properties of stabilized soil samples. In addition, the investigation focuses on the influence of the activation method on soil effectiveness and strength post-exposure to sulfate attack. The durability performance is rigorously assessed through the immersion of specimens in a 1 % magnesium sulfate (MgSO4) solution for 60 and 120 days. The comprehensive evaluation includes visual appearance, mass changes, Ultrasonic Pulse Velocity (UPV), Unconfined Compressive Strength (UCS), and Fourier-Transform Infrared (FTIR) spectra of geopolymer-stabilized soil specimens. The results showed that before the exposure to the MgSO4 solution, the UCS of mechanochemically activated geopolymer (MAG) samples was higher (12–45 %) than that of conventionally activated geopolymer (CAG)-stabilized soil. Furthermore, the strength of the geopolymer-stabilized soil improved by 114 %, 247 %, and 361 %, at 50, 75, and 100 % GGBS content, respectively. On the other hand, after exposure to the MgSO4 solution, the results showed that the mechanochemically activated geopolymer-stabilized soil has better resistance to sulfate erosion than the conventionally activated geopolymer-stabilized soil. The residual UCS for MAG and CAG samples were 93 % and 89 % when exposed to 1 % magnesium sulfate solution for 60 days, whereas they declined to 70 % and 58 %, respectively, after 120 days of immersion.

本研究的重点是开发环保、方便使用的机械化学活化土工聚合物稳定剂,以超越传统土工聚合方法固有的局限性。研究人员对传统活化土工聚合物稳定剂进行了比较分析,以确定其在土壤稳定应用中的有效性基准。此外,研究还深入探讨了粒化高炉矿渣(GGBS)含量对稳定土壤样本的机械和耐久性能的影响。此外,研究还重点关注了活化方法对暴露于硫酸盐侵蚀后土壤有效性和强度的影响。通过将试样浸泡在 1% 的硫酸镁(MgSO4)溶液中 60 天和 120 天,对耐久性能进行了严格评估。综合评估包括土工聚合物稳定土试样的外观、质量变化、超声波脉冲速度(UPV)、非收缩压缩强度(UCS)和傅立叶变换红外光谱(FTIR)。结果表明,在暴露于 MgSO4 溶液之前,机械化学活化土工聚合物 (MAG) 样品的 UCS 比传统活化土工聚合物 (CAG) 稳定土壤的 UCS 高(12-45%)。此外,土工聚合物稳定土壤的强度在 GGBS 含量为 50%、75% 和 100% 时分别提高了 114%、247% 和 361%。另一方面,在暴露于 MgSO4 溶液后,结果表明机械化学活化的土工聚合物稳定土比传统活化的土工聚合物稳定土具有更好的抗硫酸盐侵蚀能力。MAG 样品和 CAG 样品在 1% 的硫酸镁溶液中浸泡 60 天后,UCS 的残留量分别为 93% 和 89%,而在浸泡 120 天后,UCS 的残留量分别降至 70% 和 58%。
{"title":"Experimental feasibility study of using eco- and user-friendly mechanochemically activated slag/fly ash geopolymer for soil stabilization","authors":"Mukhtar Hamid Abed ,&nbsp;Firas Hamid Abed ,&nbsp;Seyed Alireza Zareei ,&nbsp;Israa Sabbar Abbas ,&nbsp;Hanifi Canakci ,&nbsp;Nahidh H. Kurdi ,&nbsp;Alireza Emami","doi":"10.1016/j.clema.2024.100226","DOIUrl":"10.1016/j.clema.2024.100226","url":null,"abstract":"<div><p>This study focuses on the development of eco and user-friendly mechanochemically-activated geopolymeric stabilizers, surpassing the limitations inherent in traditional geopolymerization methods. A comparative analysis was undertaken with conventionally activated geopolymer stabilizers to establish benchmarks for effectiveness in soil stabilization applications. Additionally, the research delves into the impact of granulated blast-furnace slag (GGBS) content on the mechanical and durability properties of stabilized soil samples. In addition, the investigation focuses on the influence of the activation method on soil effectiveness and strength post-exposure to sulfate attack. The durability performance is rigorously assessed through the immersion of specimens in a 1 % magnesium sulfate (MgSO<sub>4</sub>) solution for 60 and 120 days. The comprehensive evaluation includes visual appearance, mass changes, Ultrasonic Pulse Velocity (UPV), Unconfined Compressive Strength (UCS), and Fourier-Transform Infrared (FTIR) spectra of geopolymer-stabilized soil specimens. The results showed that before the exposure to the MgSO<sub>4</sub> solution, the UCS of mechanochemically activated geopolymer (MAG) samples was higher (12–45 %) than that of conventionally activated geopolymer (CAG)-stabilized soil. Furthermore, the strength of the geopolymer-stabilized soil improved by 114 %, 247 %, and 361 %, at 50, 75, and 100 % GGBS content, respectively. On the other hand, after exposure to the MgSO<sub>4</sub> solution, the results showed that the mechanochemically activated geopolymer-stabilized soil has better resistance to sulfate erosion than the conventionally activated geopolymer-stabilized soil. The residual UCS for MAG and CAG samples were 93 % and 89 % when exposed to 1 % magnesium sulfate solution for 60 days, whereas they declined to 70 % and 58 %, respectively, after 120 days of immersion.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100226"},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000108/pdfft?md5=a8a6d481806b639c0510cb9549414a7c&pid=1-s2.0-S2772397624000108-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139825111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemo-physical mechanisms of high-strength cement composites with suprastructure of graphene quantum dots 具有石墨烯量子点超微结构的高强度水泥复合材料的化学物理机制
Pub Date : 2024-02-14 DOI: 10.1016/j.clema.2024.100229
Thwe Thwe Win , Lapyote Prasittisopin , Rungkiat Nganglumpoon , Piriya Pinthong , Suthasinee Watmanee , Weerachon Tolek , Joongjai Panpranot

Recently, there has been considerable interest in utilizing various forms of graphene derivatives for producing high-strength concrete. Among these derivatives are superstructure of graphene quantum dots (GQDs), particularly in their assemblies of carbon dots, which is innovative in cement. This research investigates the impact of graphene derivatives known as supra-GQDs on the mechanical properties and microstructure analysis of cement composites, compared with the control mixture and GQDs solution. The results found that supra-GQDs exhibit enhanced mechanical characteristics. The composite containing 1.2 % supra-GQDs had higher compressive and flexural strengths than the control by 40 % and 108 %, respectively. The study also identified a microstructural bridging mechanism involving the seeding and crystal growth of the C-S-H phase, leading to refined pore structure and less nano-, meso-, and micro-pores. The measured total pore volume reduced by 30 % when compared to GQDs solution. This investigation provides novel insight into the potential of utilizing supra-GQDs in cement composites, opening promising possibilities for high-performance concrete in the construction industry.

最近,人们对利用各种形式的石墨烯衍生物生产高强度混凝土产生了浓厚的兴趣。在这些衍生物中,石墨烯量子点(GQDs)的超结构,尤其是碳点的组装,在水泥中具有创新性。与对照混合物和 GQDs 溶液相比,本研究调查了被称为 supra-GQDs 的石墨烯衍生物对水泥复合材料机械性能和微观结构分析的影响。结果发现,supra-GQDs 表现出更强的机械特性。含有 1.2 % supra-GQDs 的复合材料的抗压强度和抗折强度分别比对照组高出 40 % 和 108 %。研究还发现了一种微结构桥接机制,涉及 C-S-H 相的播种和晶体生长,从而使孔隙结构更加精细,纳米孔、中孔和微孔更少。与 GQDs 溶液相比,测得的总孔隙体积减少了 30%。这项研究为在水泥复合材料中利用超 GQDs 的潜力提供了新的见解,为建筑行业中的高性能混凝土开辟了广阔的前景。
{"title":"Chemo-physical mechanisms of high-strength cement composites with suprastructure of graphene quantum dots","authors":"Thwe Thwe Win ,&nbsp;Lapyote Prasittisopin ,&nbsp;Rungkiat Nganglumpoon ,&nbsp;Piriya Pinthong ,&nbsp;Suthasinee Watmanee ,&nbsp;Weerachon Tolek ,&nbsp;Joongjai Panpranot","doi":"10.1016/j.clema.2024.100229","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100229","url":null,"abstract":"<div><p>Recently, there has been considerable interest in utilizing various forms of graphene derivatives for producing high-strength concrete. Among these derivatives are superstructure of graphene quantum dots (GQDs), particularly in their assemblies of carbon dots, which is innovative in cement. This research investigates the impact of graphene derivatives known as supra-GQDs on the mechanical properties and microstructure analysis of cement composites, compared with the control mixture and GQDs solution. The results found that supra-GQDs exhibit enhanced mechanical characteristics. The composite containing 1.2 % supra-GQDs had higher compressive and flexural strengths than the control by 40 % and 108 %, respectively. The study also identified a microstructural bridging mechanism involving the seeding and crystal growth of the C-S-H phase, leading to refined pore structure and less nano-, meso-, and micro-pores. The measured total pore volume reduced by 30 % when compared to GQDs solution. This investigation provides novel insight into the potential of utilizing supra-GQDs in cement composites, opening promising possibilities for high-performance concrete in the construction industry.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100229"},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000133/pdfft?md5=d5e49aa3534874ee5e7b52d2e9378fda&pid=1-s2.0-S2772397624000133-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1