首页 > 最新文献

Cleaner Materials最新文献

英文 中文
Review on the characteristic properties of crumb rubber concrete 碾压橡胶混凝土特性综述
Pub Date : 2024-03-17 DOI: 10.1016/j.clema.2024.100237
Sunday U. Azunna , Farah N.A.A. Aziz , Raizal S.M. Rashid , Nabilah B.A. Bakar

The global scientific research circle and government agencies face a number of serious environmental challenges, one of which is the recycling of “End of Life Tires” (ELT). An estimation of one billion tires is expected to end their useful life annually, of which only roughly 50% are recycled at the moment, with the remainder ending up in landfills. Consequently, to solve this gap in the ELT's utilization rate, it is imperative to enhance the current application and furthermore create new applications for recycled tire materials. One of such areas that is currently being investigated is the introduction of waste tire into concrete as partial replacement of natural aggregates in concrete production. Despite its great prospects, it has drawbacks such as lack of proper bonding with the cement matrix and weak rubber intrinsic strength, which make it unsuitable for widespread usage as an aggregate. To get past this obstacle, numerous rubber treatment techniques that enhance the mechanical characteristics of rubber concrete remarkably as well as the bonding properties have been studied by researchers. The impact of rubber percentage replacement, rubber aggregate size and different treatment techniques on various mechanical characteristics of rubber concrete are examined in this review paper. But in order for the concrete industry to embrace it, the researchers need to devise a rubber treatment technique that can tackle the issues of high combustible and the harmful gases that are released from the rubber aggregates when they come in contact with fire.

全球科研界和政府机构面临着一系列严峻的环境挑战,其中之一就是 "报废轮胎"(ELT)的回收利用。据估计,每年将有十亿个轮胎结束其使用寿命,而目前只有大约 50%的轮胎被回收利用,其余的轮胎则被填埋。因此,要解决 ELT 利用率上的这一缺口,就必须加强目前的应用,并进一步为回收轮胎材料创造新的应用。目前正在研究的一个领域是将废轮胎引入混凝土中,作为混凝土生产中天然骨料的部分替代品。尽管废轮胎前景广阔,但它也存在一些缺点,如与水泥基体缺乏适当的粘合力,橡胶内在强度较弱,因此不适合作为骨料广泛使用。为了克服这一障碍,研究人员研究了许多橡胶处理技术,以显著提高橡胶混凝土的机械特性和粘结特性。本综述论文探讨了橡胶替代率、橡胶骨料粒度和不同处理技术对橡胶混凝土各种机械特性的影响。但为了让混凝土行业接受橡胶混凝土,研究人员需要设计一种橡胶处理技术,以解决橡胶骨料的高可燃性和遇火释放有害气体的问题。
{"title":"Review on the characteristic properties of crumb rubber concrete","authors":"Sunday U. Azunna ,&nbsp;Farah N.A.A. Aziz ,&nbsp;Raizal S.M. Rashid ,&nbsp;Nabilah B.A. Bakar","doi":"10.1016/j.clema.2024.100237","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100237","url":null,"abstract":"<div><p>The global scientific research circle and government agencies face a number of serious environmental challenges, one of which is the recycling of “End of Life Tires” (ELT). An estimation of one billion tires is expected to end their useful life annually, of which only roughly 50% are recycled at the moment, with the remainder ending up in landfills. Consequently, to solve this gap in the ELT's utilization rate, it is imperative to enhance the current application and furthermore create new applications for recycled tire materials. One of such areas that is currently being investigated is the introduction of waste tire into concrete as partial replacement of natural aggregates in concrete production. Despite its great prospects, it has drawbacks such as lack of proper bonding with the cement matrix and weak rubber intrinsic strength, which make it unsuitable for widespread usage as an aggregate. To get past this obstacle, numerous rubber treatment techniques that enhance the mechanical characteristics of rubber concrete remarkably as well as the bonding properties have been studied by researchers. The impact of rubber percentage replacement, rubber aggregate size and different treatment techniques on various mechanical characteristics of rubber concrete are examined in this review paper. But in order for the concrete industry to embrace it, the researchers need to devise a rubber treatment technique that can tackle the issues of high combustible and the harmful gases that are released from the rubber aggregates when they come in contact with fire.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"12 ","pages":"Article 100237"},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000212/pdfft?md5=7f968c8364a56c6a3ca01297af8fc685&pid=1-s2.0-S2772397624000212-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of benzaldehyd and dioctyl phthalate modified direct coal liquefaction residue asphalt binder based on rheology and microscopic mechanisms 基于流变学和微观机理的苯甲醛和邻苯二甲酸二辛酯改性直接煤液化残渣沥青粘结剂评估
Pub Date : 2024-03-16 DOI: 10.1016/j.clema.2024.100238
Jie Ji , Tong Ma , Ziyuan Zhang , Meng Ling , Xinqiang Xu , Jianming Wei

This study intends to investigate the influence of benzaldehyde and dioctyl phthalate (DOP) on the rheological properties and microstructure of direct coal liquefaction residue (DCLR) modified asphalt binder. The high and low temperature rheological properties and fatigue properties were obtained by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR) tests were conducted to evaluate the mechanism of property improvement in the DCLR modified asphalt binder. The results showed that the addition of DCLR increased the complex shear modulus G*, rutting factor G*/sin δ and fatigue life Nf of base asphalt binder, significantly improving the high temperature deformation resistance and fatigue resistance of base asphalt binder. This was attributed to the hardening effect resulting from the addition of DCLR, which enhanced the elastic properties, weakened the viscous properties and fluidity of asphalt binder. Additionally, the use of benzaldehyde and DOP reduced the creep stiffness S and lower continuous grading temperature Tc of DCLR modified asphalt binder, which compensated for the shortcomings of low temperature rheological properties of asphalt binder. The SEM images indicated that benzaldehyde and DOP significantly increased the compatibility of DCLR with the base asphalt binder. The FTIR tests showed that the addition of benzaldehyde and DOP introduced the aldehyde and ester groups, which were interacted with more polar functional groups in the asphalt to reduce the resistance to movement between the heavy components in the DCLR modified asphalt binder, which promoted the flow of asphalt and the dispersion of DCLR, and as a result, the benzaldehyde and DOP modified DCLR asphalt binder exhibited satisfied rheological properties.

本研究旨在探讨苯甲醛和邻苯二甲酸二辛酯(DOP)对直接煤液化残渣(DCLR)改性沥青胶结料流变特性和微观结构的影响。通过动态剪切流变仪(DSR)和弯曲梁流变仪(BBR)测试获得了沥青胶结料的高低温流变特性和疲劳特性。通过扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)测试评估了 DCLR 改性沥青胶结料的性能改善机理。结果表明,添加 DCLR 增加了基层沥青胶结料的复剪切模量 G*、车辙系数 G*/sinδ和疲劳寿命 Nf,显著提高了基层沥青胶结料的抗高温变形性能和抗疲劳性能。这归因于添加 DCLR 后产生的硬化效应,它增强了沥青胶结料的弹性性能,削弱了其粘性和流动性。此外,苯甲醛和 DOP 的使用降低了 DCLR 改性沥青胶结料的蠕变刚度 S 和较低的连续级配温度 Tc,弥补了沥青胶结料低温流变性能的不足。扫描电镜图像表明,苯甲醛和 DOP 显著提高了 DCLR 与基质沥青胶结料的相容性。傅立叶变换红外光谱测试表明,苯甲醛和 DOP 的加入引入了醛基和酯基,与沥青中极性较强的官能团相互作用,降低了 DCLR 改性沥青胶结料中重组分之间的运动阻力,促进了沥青的流动和 DCLR 的分散,因此苯甲醛和 DOP 改性 DCLR 沥青胶结料表现出了良好的流变性能。
{"title":"Evaluation of benzaldehyd and dioctyl phthalate modified direct coal liquefaction residue asphalt binder based on rheology and microscopic mechanisms","authors":"Jie Ji ,&nbsp;Tong Ma ,&nbsp;Ziyuan Zhang ,&nbsp;Meng Ling ,&nbsp;Xinqiang Xu ,&nbsp;Jianming Wei","doi":"10.1016/j.clema.2024.100238","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100238","url":null,"abstract":"<div><p>This study intends to investigate the influence of benzaldehyde and dioctyl phthalate (DOP) on the rheological properties and microstructure of direct coal liquefaction residue (DCLR) modified asphalt binder. The high and low temperature rheological properties and fatigue properties were obtained by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR) tests were conducted to evaluate the mechanism of property improvement in the DCLR modified asphalt binder. The results showed that the addition of DCLR increased the complex shear modulus <em>G*</em>, rutting factor <em>G*/</em>sin <span><math><mi>δ</mi></math></span> and fatigue life <em>N<sub>f</sub></em> of base asphalt binder, significantly improving the high temperature deformation resistance and fatigue resistance of base asphalt binder. This was attributed to the hardening effect resulting from the addition of DCLR, which enhanced the elastic properties, weakened the viscous properties and fluidity of asphalt binder. Additionally, the use of benzaldehyde and DOP reduced the creep stiffness <em>S</em> and lower continuous grading temperature <em>Tc</em> of DCLR modified asphalt binder, which compensated for the shortcomings of low temperature rheological properties of asphalt binder. The SEM images indicated that benzaldehyde and DOP significantly increased the compatibility of DCLR with the base asphalt binder. The FTIR tests showed that the addition of benzaldehyde and DOP introduced the aldehyde and ester groups, which were interacted with more polar functional groups in the asphalt to reduce the resistance to movement between the heavy components in the DCLR modified asphalt binder, which promoted the flow of asphalt and the dispersion of DCLR, and as a result, the benzaldehyde and DOP modified DCLR asphalt binder exhibited satisfied rheological properties.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"12 ","pages":"Article 100238"},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000224/pdfft?md5=17f27e9a7de55a5ea6e6b38c2b6170fa&pid=1-s2.0-S2772397624000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140162707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental feasibility and implications in using recycled construction and demolition waste aggregates in road construction based on leaching and life cycle assessment – A state-of-the-art review 基于沥滤和生命周期评估,在道路建设中使用回收的建筑和拆除废料骨料的环境可行性和影响 - 最新综述
Pub Date : 2024-03-15 DOI: 10.1016/j.clema.2024.100239
Zainul Abedin Khan , Umashankar Balunaini , Susanga Costa

Due to rapid population growth and urbanization, construction activities have increased worldwide resulting in generation of enormous volume of construction and demolition (C&D) waste. On one hand, C&D waste is generated during the construction, destruction, and rehabilitation of existing structures. While on the other, the transportation sector consumes large volumes of aggregates for pavement construction and maintenance. The extraction of finite natural aggregates causes potential damage to the environment. Recycled C&D waste, once converted into recycled aggregates, has the potential to be utilized in pavement layers due to its sound quality and composition; also resulting in lowering the landfill loads. This review article critically summarizes the environmental risks regarding chemical composition and leaching behavior of C&D wastes in pavements. Additionally, this review evaluates the environmental impacts of C&D waste aggregate production and application in pavements using life cycle assessment (LCA). Overall, the aim of this study is to investigate the environmental impacts and benefits of C&D waste to enable highway administrations to adopt and promote the use of C&D waste in development of sustainable road infrastructure. In this way, the review article attempts to promote a new era of sustainable road construction and achieve net zero waste goal.

由于人口的快速增长和城市化,世界各地的建筑活动不断增加,产生了大量的建筑和拆除(C&D)废物。一方面,C&D 废物是在现有建筑的建造、破坏和修复过程中产生的。另一方面,交通部门在铺设和维护路面时会消耗大量的集料。开采有限的天然集料可能会对环境造成破坏。回收的 C&D 废弃物一旦转化为再生骨料,由于其良好的质量和成分,有可能被用于铺设路面;同时还能降低垃圾填埋场的负荷。这篇综述文章对路面中 C&D 废物的化学成分和沥滤行为方面的环境风险进行了批判性总结。此外,这篇综述还利用生命周期评估(LCA)评估了 C&D 废弃骨料的生产和在路面中的应用对环境的影响。总之,本研究的目的是调查 C&D 废弃物对环境的影响和益处,以便公路管理部门在发展可持续公路基础设施时采用和推广 C&D 废弃物。因此,这篇综述文章试图推动可持续道路建设的新时代,实现净零废物目标。
{"title":"Environmental feasibility and implications in using recycled construction and demolition waste aggregates in road construction based on leaching and life cycle assessment – A state-of-the-art review","authors":"Zainul Abedin Khan ,&nbsp;Umashankar Balunaini ,&nbsp;Susanga Costa","doi":"10.1016/j.clema.2024.100239","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100239","url":null,"abstract":"<div><p>Due to rapid population growth and urbanization, construction activities have increased worldwide resulting in generation of enormous volume of construction and demolition (C&amp;D) waste. On one hand, C&amp;D waste is generated during the construction, destruction, and rehabilitation of existing structures. While on the other, the transportation sector consumes large volumes of aggregates for pavement construction and maintenance. The extraction of finite natural aggregates causes potential damage to the environment. Recycled C&amp;D waste, once converted into recycled aggregates, has the potential to be utilized in pavement layers due to its sound quality and composition; also resulting in lowering the landfill loads. This review article critically summarizes the environmental risks regarding chemical composition and leaching behavior of C&amp;D wastes in pavements. Additionally, this review evaluates the environmental impacts of C&amp;D waste aggregate production and application in pavements using life cycle assessment (LCA). Overall, the aim of this study is to investigate the environmental impacts and benefits of C&amp;D waste to enable highway administrations to adopt and promote the use of C&amp;D waste in development of sustainable road infrastructure. In this way, the review article<!--> <!-->attempts<!--> <!-->to promote<!--> <!-->a new era of sustainable road construction and achieve net zero waste goal.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"12 ","pages":"Article 100239"},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000236/pdfft?md5=3690eca2d9adccf6995724a4d02dc254&pid=1-s2.0-S2772397624000236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140162708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed laser ablation of polymer-based magnetic nanocomposites for oil spill remediation 脉冲激光烧蚀聚合物基磁性纳米复合材料用于溢油修复
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100235
Tamás Gera , Bence Kondász , Tomi Smausz , Judit Kopniczky , Szabolcs Hodovány , Tibor Ajtai , Piroska Szabó-Révész , Rita Ambrus , Ildikó Csóka , Béla Hopp

Oil spills represent a critical environmental threat, particularly to marine ecosystems, necessitating the development of efficient and eco-friendly remediation technologies. This study explores the application of pulsed laser ablation (PLA) in fabricating polymer-based magnetic nanocomposites, with a focus on polyvinylpyrrolidone, chitosan, and methyl cellulose. These polymers, renowned for their proficiency in adsorbing pollutants from various oils, were combined with magnetite nanoparticles (NPs) in a compressed tablet form. The PLA process facilitated the generation of nanocomposites, which were subsequently collected using an external magnetic field. The chemical composition of these composites was analyzed through Fourier-transform infrared (FTIR) and Raman spectroscopy, while particle sizes were determined using the Leica Image Processing and Analysis System. The study revealed that PLA is a green, single-step, and effective technique for preparing magnetic nanocomposites, producing particles predominantly in the 400 nm–4 µm size range. Furthermore, the application of these composites in oil/water separation demonstrated with separation commencing approximately 1 s after the application of a magnetic field. These findings underscore the potential of PLA in crafting magnetic nanocomposites for the rapid and environmentally sustainable remediation of oil spills.

溢油是一种严重的环境威胁,尤其是对海洋生态系统的威胁,因此有必要开发高效、环保的修复技术。本研究探讨了脉冲激光烧蚀(PLA)在制造聚合物磁性纳米复合材料中的应用,重点是聚乙烯吡咯烷酮、壳聚糖和甲基纤维素。这些聚合物因能吸附各种油类中的污染物而闻名,它们与磁铁矿纳米粒子(NPs)以压缩片剂的形式结合在一起。聚乳酸工艺促进了纳米复合材料的生成,随后利用外部磁场对其进行收集。通过傅立叶变换红外光谱(FTIR)和拉曼光谱分析了这些复合材料的化学成分,同时使用徕卡图像处理和分析系统测定了颗粒尺寸。研究表明,聚乳酸是制备磁性纳米复合材料的一种绿色、单步且有效的技术,其产生的颗粒主要在 400 nm-4 µm 大小范围内。此外,这些复合材料在油/水分离中的应用表明,在施加磁场约 1 秒后就开始分离。这些发现强调了聚乳酸在制作磁性纳米复合材料方面的潜力,可用于快速和环境可持续的石油泄漏修复。
{"title":"Pulsed laser ablation of polymer-based magnetic nanocomposites for oil spill remediation","authors":"Tamás Gera ,&nbsp;Bence Kondász ,&nbsp;Tomi Smausz ,&nbsp;Judit Kopniczky ,&nbsp;Szabolcs Hodovány ,&nbsp;Tibor Ajtai ,&nbsp;Piroska Szabó-Révész ,&nbsp;Rita Ambrus ,&nbsp;Ildikó Csóka ,&nbsp;Béla Hopp","doi":"10.1016/j.clema.2024.100235","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100235","url":null,"abstract":"<div><p>Oil spills represent a critical environmental threat, particularly to marine ecosystems, necessitating the development of efficient and eco-friendly remediation technologies. This study explores the application of pulsed laser ablation (PLA) in fabricating polymer-based magnetic nanocomposites, with a focus on polyvinylpyrrolidone, chitosan, and methyl cellulose. These polymers, renowned for their proficiency in adsorbing pollutants from various oils, were combined with magnetite nanoparticles (NPs) in a compressed tablet form. The PLA process facilitated the generation of nanocomposites, which were subsequently collected using an external magnetic field. The chemical composition of these composites was analyzed through Fourier-transform infrared (FTIR) and Raman spectroscopy, while particle sizes were determined using the Leica Image Processing and Analysis System. The study revealed that PLA is a green, single-step, and effective technique for preparing magnetic nanocomposites, producing particles predominantly in the 400 nm–4 µm size range. Furthermore, the application of these composites in oil/water separation demonstrated with separation commencing approximately 1 s after the application of a magnetic field. These findings underscore the potential of PLA in crafting magnetic nanocomposites for the rapid and environmentally sustainable remediation of oil spills.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100235"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000194/pdfft?md5=008bd0125369db31d3d37863ca5a79a1&pid=1-s2.0-S2772397624000194-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of powders and fine aggregates from the recycling of construction and demolition waste in the 3D printing of Portland-based cementitious materials 在波特兰基水泥基材料的 3D 打印中利用建筑和拆除废物回收利用产生的粉末和细骨料
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100234
Rafael Robayo–Salazar, Armando Vargas, Fabio Martínez, Ruby Mejía de Gutiérrez

This paper analysed the possibility of using recycled powders (<75 µm) and recycling fine aggregates (<1.18 mm) obtained during the crushing and grinding of concrete waste (CoW), ceramic waste (CeW) and red clay brick waste (RCBW) when designing cementitious pastes and mortars for 3D printing. The effects of the type of powder (CoW-powder, CeW-powder and RCBW-powder) and of the liquid/solid (L/S) ratio on the mixture properties in the fresh and hardened states were studied. In the fresh state, the level of flowability (mini-slump), flow index (flow table), buildability and setting time characteristics of the cementitious pastes were evaluated. In addition, the rheological behaviour was analysed through a rotational rheometer. In the hardened state, the compressive strength was determined at 3, 7, 28 and 90 days. The effects of the type of recycled fine aggregate (RFA − CoW, RFA − CeW and RFA − RCBW) were evaluated for mortars with a cement:aggregate ratio of 1:0.5. Based on the results obtained, the most suitable mixtures were selected to carry out 3D printing tests on a laboratory scale. From the 3D printing of beam-type specimens, it was possible to determine the flexural and compressive strengths (28 days) of the selected mixtures. The results obtained validated the possibility of using recycled powders (CoW, CeW and RCBW) to replace 30 % of ordinary Portland cement (OPC) and to incorporate 100 % recycled fine aggregates in the design of cementitious materials (pastes and mortars) for 3D printing. In this regard, the recycled powders and recycled fine aggregates increase the buildability and thixotropy of cementitious mixtures. With an adjustment in the L/S (liquid/solids) ratio, their application in 3D printing becomes feasible. This alternative for the use of powders and fine aggregates from construction and demolition waste (CDW) could be considered a contribution towards the sustainability of the sector and the implementation of a circular economy.

本文分析了在设计用于 3D 打印的水泥浆和砂浆时,使用从混凝土废料(CoW)、陶瓷废料(CeW)和红粘土砖废料(RCBW)的破碎和研磨过程中获得的回收粉末(75 微米)和回收细骨料(1.18 毫米)的可能性。研究了粉末类型(CoW-粉末、CeW-粉末和 RCBW-粉末)和液/固(L/S)比对新鲜和硬化状态下混合物性能的影响。在新鲜状态下,对水泥基浆的流动性(小坍落度)、流动指数(流动表)、施工性和凝结时间特性进行了评估。此外,还通过旋转流变仪分析了流变特性。在硬化状态下,测定了 3、7、28 和 90 天的抗压强度。在水泥与骨料的比例为 1:0.5 的砂浆中,对再生细骨料类型(RFA - CoW、RFA - CeW 和 RFA - RCBW)的影响进行了评估。根据获得的结果,选出了最合适的混合物,在实验室规模上进行 3D 打印试验。通过三维打印梁型试样,可以确定所选混合物的抗折和抗压强度(28 天)。所获得的结果验证了使用回收粉末(CoW、CeW 和 RCBW)替代 30% 的普通波特兰水泥(OPC),以及在设计用于 3D 打印的胶凝材料(浆料和砂浆)时加入 100% 的回收细骨料的可能性。在这方面,再生粉末和再生细骨料可提高水泥基混合物的施工性和触变性。通过调整 L/S(液体/固体)比率,它们在 3D 打印中的应用变得可行。这种利用建筑和拆除废物(CDW)中的粉末和细骨料的替代方法,可被视为对该行业的可持续性和循环经济的实施做出了贡献。
{"title":"Utilization of powders and fine aggregates from the recycling of construction and demolition waste in the 3D printing of Portland-based cementitious materials","authors":"Rafael Robayo–Salazar,&nbsp;Armando Vargas,&nbsp;Fabio Martínez,&nbsp;Ruby Mejía de Gutiérrez","doi":"10.1016/j.clema.2024.100234","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100234","url":null,"abstract":"<div><p>This paper analysed the possibility of using recycled powders (&lt;75 µm) and recycling fine aggregates (&lt;1.18 mm) obtained during the crushing and grinding of concrete waste (CoW), ceramic waste (CeW) and red clay brick waste (RCBW) when designing cementitious pastes and mortars for 3D printing. The effects of the type of powder (CoW-powder, CeW-powder and RCBW-powder) and of the liquid/solid (L/S) ratio on the mixture properties in the fresh and hardened states were studied. In the fresh state, the level of flowability (mini-slump), flow index (flow table), buildability and setting time characteristics of the cementitious pastes were evaluated. In addition, the rheological behaviour was analysed through a rotational rheometer. In the hardened state, the compressive strength was determined at 3, 7, 28 and 90 days. The effects of the type of recycled fine aggregate (RFA − CoW, RFA − CeW and RFA − RCBW) were evaluated for mortars with a cement:aggregate ratio of 1:0.5. Based on the results obtained, the most suitable mixtures were selected to carry out 3D printing tests on a laboratory scale. From the 3D printing of beam-type specimens, it was possible to determine the flexural and compressive strengths (28 days) of the selected mixtures. The results obtained validated the possibility of using recycled powders (CoW, CeW and RCBW) to replace 30 % of ordinary Portland cement (OPC) and to incorporate 100 % recycled fine aggregates in the design of cementitious materials (pastes and mortars) for 3D printing. In this regard, the recycled powders and recycled fine aggregates increase the buildability and thixotropy of cementitious mixtures. With an adjustment in the L/S (liquid/solids) ratio, their application in 3D printing becomes feasible. This alternative for the use of powders and fine aggregates from construction and demolition waste (CDW) could be considered a contribution towards the sustainability of the sector and the implementation of a circular economy.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100234"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000182/pdfft?md5=f659693cc1025f7fbbde563281d18ec1&pid=1-s2.0-S2772397624000182-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environment-COnscious magnesium (ECO-Mg): A review 环境友好型镁(ECO-Mg):综述
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100230
Shahabodin Rafiei , Ali Habibolahzadeh , Björn Wiese

The significance of Mg (alloy) extends to both the mechanical engineering and medical sectors. However, Mg is known for its high reactivity, posing significant challenges to its widespread utilization in large-scale lightweight applications. Research has shown that adding small amounts of reactive elements, such as Ca, can substantially improve the high-temperature oxidation resistance of numerous Mg alloys. This can diminish the reliance on greenhouse gases with high global warming potential, typically used as protective gases during processing. In a similar vein, the patented Environment-COnscious Mg technology offers distinct advantages by utilizing the cost-effective and more stable oxide form of the desired alloying element, notably alkaline earth metals like Ca, instead of their elemental forms, in the alloying of Mg. This development holds considerable importance in mitigating the carbon footprint throughout manufacturing. While the patents for Environment-COnscious production outline a method employing various versatile oxides, practical application has primarily relied on adding calcium oxide, as indicated by the literature. Therefore, this review brings to light the state of the art concerning the interaction between calcium oxide and molten Mg (alloy), and its influence on the technical properties, potential challenges, and areas requiring further investigation in this field. Until now, this issue has not been discussed from a critical and holistic approach.

镁(合金)在机械工程和医疗领域都具有重要意义。然而,镁以其高反应性著称,这对其在大规模轻质应用中的广泛使用构成了重大挑战。研究表明,添加少量反应性元素(如钙)可大幅提高多种镁合金的高温抗氧化性。这可以减少对全球升温潜能值较高的温室气体的依赖,这些气体通常在加工过程中用作保护气体。同样,获得专利的环保镁技术在镁的合金化过程中,利用所需的合金元素,特别是碱土金属(如钙)的成本效益高且更稳定的氧化物形式,而不是其元素形式,具有明显的优势。这项技术的开发对于减少整个生产过程中的碳足迹具有相当重要的意义。虽然环境友好型生产专利概述了采用各种多功能氧化物的方法,但如文献所示,实际应用主要依赖于添加氧化钙。因此,本综述将介绍氧化钙与熔融镁(合金)之间的相互作用及其对技术特性的影响、潜在的挑战以及该领域需要进一步研究的领域。到目前为止,还没有人从批判性和整体性的角度对这一问题进行过讨论。
{"title":"Environment-COnscious magnesium (ECO-Mg): A review","authors":"Shahabodin Rafiei ,&nbsp;Ali Habibolahzadeh ,&nbsp;Björn Wiese","doi":"10.1016/j.clema.2024.100230","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100230","url":null,"abstract":"<div><p>The significance of Mg (alloy) extends to both the mechanical engineering and medical sectors. However, Mg is known for its high reactivity, posing significant challenges to its widespread utilization in large-scale lightweight applications. Research has shown that adding small amounts of reactive elements, such as Ca, can substantially improve the high-temperature oxidation resistance of numerous Mg alloys. This can diminish the reliance on greenhouse gases with high global warming potential, typically used as protective gases during processing. In a similar vein, the patented Environment-COnscious Mg technology offers distinct advantages by utilizing the cost-effective and more stable oxide form of the desired alloying element, notably alkaline earth metals like Ca, instead of their elemental forms, in the alloying of Mg. This development holds considerable importance in mitigating the carbon footprint throughout manufacturing. While the patents for Environment-COnscious production outline a method employing various versatile oxides, practical application has primarily relied on adding calcium oxide, as indicated by the literature. Therefore, this review brings to light the state of the art concerning the interaction between calcium oxide and molten Mg (alloy), and its influence on the technical properties, potential challenges, and areas requiring further investigation in this field. Until now, this issue has not been discussed from a critical and holistic approach.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100230"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000145/pdfft?md5=adc7940e8ab12976f6f52d385ce035c6&pid=1-s2.0-S2772397624000145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encouraging sustainable consumption: Investigating consumer inclination to purchase products made from mango wastes 鼓励可持续消费:调查消费者购买用芒果废料制成的产品的倾向
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100232
Neeranuch Maitree , Phaninee Naruetharadhol , Sasichakorn Wongsaichia

Given the current growth in consumer environmental concerns, this study assessed green customers’ consumption value for mango waste-based vegan leather bags. The consumer values and market choices theories guided semi-structured interviews and grounded theory-based induction data gathering and analysis. The project provides lasting answers and theoretical insights for vegan leather bags and mango waste management. The five main values are functional, social, emotional, conditional, and epistemic. Ten consumption-related topics emerged. Vegan leather bags were valued for their durability and multifunctionality by green shoppers. The data also show that social media, family, and peers impact sustainable product selections. For sustainable vegan leather purses created from mango waste, beautiful design and customization, green behavior, convenience, and environmental and green experience were the emotional and conditional values. Green customers’ openness to experience and green information can drive them to buy sustainable vegan leather bags, the study revealed.

鉴于当前消费者对环境问题的日益关注,本研究评估了绿色消费者对基于芒果废料的素食皮包的消费价值。消费者价值和市场选择理论指导了半结构式访谈和基于基础理论的归纳数据收集和分析。该项目为素食皮包和芒果废物管理提供了持久的答案和理论启示。五大价值分别是功能价值、社会价值、情感价值、条件价值和认识价值。出现了十个与消费相关的主题。素食皮包因其耐用性和多功能性而受到绿色购物者的青睐。数据还显示,社交媒体、家庭和同伴也会影响可持续产品的选择。对于用芒果废料制作的可持续纯素皮包,美观的设计和定制、绿色行为、便利性以及环保和绿色体验是情感价值和条件价值。研究显示,绿色顾客对体验和绿色信息的开放态度会促使他们购买可持续纯素皮包。
{"title":"Encouraging sustainable consumption: Investigating consumer inclination to purchase products made from mango wastes","authors":"Neeranuch Maitree ,&nbsp;Phaninee Naruetharadhol ,&nbsp;Sasichakorn Wongsaichia","doi":"10.1016/j.clema.2024.100232","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100232","url":null,"abstract":"<div><p>Given the current growth in consumer environmental concerns, this study assessed green customers’ consumption value for mango waste-based vegan leather bags. The consumer values and market choices theories guided semi-structured interviews and grounded theory-based induction data gathering and analysis. The project provides lasting answers and theoretical insights for vegan leather bags and mango waste management. The five main values are functional, social, emotional, conditional, and epistemic. Ten consumption-related topics emerged. Vegan leather bags were valued for their durability and multifunctionality by green shoppers. The data also show that social media, family, and peers impact sustainable product selections. For sustainable vegan leather purses created from mango waste, beautiful design and customization, green behavior, convenience, and environmental and green experience were the emotional and conditional values. Green customers’ openness to experience and green information can drive them to buy sustainable vegan leather bags, the study revealed.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100232"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000169/pdfft?md5=7347e24d11ccfdc894e684ffcc16105d&pid=1-s2.0-S2772397624000169-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zeolite-Y-catalyst production from locally sourced Meta-kaolin: Computer-Aided scale-up process design and economic analysis with Monte-Carlo-Simulation 利用本地 Meta-kaolin 生产沸石-Y 催化剂:计算机辅助放大工艺设计和蒙特卡洛模拟经济分析
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100233
Emmanue Olusola Oke , Kazeem Kolapo Salam , Titilayo Deborah Oluwole , Aru Eze Okere , Nnabodo Darlington , Kehinde Ayoola Babatunde , Yahya Umar , Suliyat Omolara Ibrahim

Production of zeolite-Y catalyst from natural substrate has been a research trend in the scientific community. Published articles revealed that zeolite-Y recovery from locally sourced metakaolin is confined to laboratory practice. Scale-up process design and its economic feasibility for zeolite-Y catalyst recovery are rarely found in the scientific bibliography. Therefore, this study presented conceptual scale-up process design, base-case techno-economics and Monte-Carlo simulation of zeolite Y recovery from Nigerian metakaoline. ASPEN Base Case Simulation (ABCS), scale-up design and economics were accomplished using inherent design and costing algorithms in ASPEN Batch Process Developer (ABPD) V10. Process economic parameters: Net Present Value (NPV), Internal Rate of Return (IRR), Return on Investment (ROI) and Payback Time (PBT), were modelled and optimized using Design Expert V13 software; while zeolite Unit Production Cost (UPC), Annual Production Cost (APC), Total Capital Investment (TCI) and interest/discount rate were considered as model inputs. Monte-Carlo Simulation (MCS) in Crystal Ball Oracle software was used to perform the sensitivity and uncertainty analyses. The base-case techno-economic results of process design of 600,000 kg/year zeolite production gave batch size 5000 kg/batch with 104 batches/year, batch time (4149 min), TCI ($15,930,306), APC ($147,145), NPV ($41,983,375), ROI (38.13 %) and PBT (2.14 years). The coefficient of determination (R2) of the economic models were 0.9978, 0.9989 and 0.9986 for NPV, ROI and IRR respectively. The optimum economic variables that maximized synthesis of 5000 kg/batch zeolite Y are UPC ($11.68), APC ($100,033) and TPC ($15,930,200). MCS uncertainty for NPV, IRR and ROI are negligible. Therefore, this study demonstrated that scale-up zeolite-Y production from the local substrate is economically feasible.

利用天然基质生产沸石-Y 催化剂一直是科学界的研究趋势。已发表的文章显示,从本地来源的偏高岭土中回收沸石-Y 仅局限于实验室实践。沸石-Y 催化剂回收的放大工艺设计及其经济可行性在科学文献中很少见。因此,本研究介绍了从尼日利亚偏高岭土中回收沸石 Y 的概念性放大工艺设计、基础案例技术经济学和蒙特卡洛模拟。利用 ASPEN Batch Process Developer (ABPD) V10 中固有的设计和成本计算算法,完成了 ASPEN Base Case Simulation (ABCS)、放大设计和经济学分析。工艺经济参数使用 Design Expert V13 软件对净现值 (NPV)、内部收益率 (IRR)、投资回报率 (ROI) 和投资回收期 (PBT) 进行建模和优化;同时将沸石单位生产成本 (UPC)、年生产成本 (APC)、总资本投资 (TCI) 和利息/贴现率作为模型输入。Crystal Ball Oracle 软件中的蒙特卡洛模拟(MCS)用于进行敏感性和不确定性分析。年产 600,000 公斤沸石的工艺设计的基础案例技术经济结果为:批量 5000 公斤/批,104 批/年,批次时间(4149 分钟),TCI(15,930,306 美元),APC(147,145 美元),NPV(41,983,375 美元),投资回报率(38.13%)和 PBT(2.14 年)。经济模型的净现值、投资回报率和内部收益率的决定系数(R2)分别为 0.9978、0.9989 和 0.9986。能最大化合成 5000 公斤/批次沸石 Y 的最佳经济变量是 UPC(11.68 美元)、APC(100,033 美元)和 TPC(15,930,200 美元)。净现值、内部收益率和投资回报率的 MCS 不确定性可忽略不计。因此,本研究表明,利用当地基质扩大沸石-Y 的生产规模在经济上是可行的。
{"title":"Zeolite-Y-catalyst production from locally sourced Meta-kaolin: Computer-Aided scale-up process design and economic analysis with Monte-Carlo-Simulation","authors":"Emmanue Olusola Oke ,&nbsp;Kazeem Kolapo Salam ,&nbsp;Titilayo Deborah Oluwole ,&nbsp;Aru Eze Okere ,&nbsp;Nnabodo Darlington ,&nbsp;Kehinde Ayoola Babatunde ,&nbsp;Yahya Umar ,&nbsp;Suliyat Omolara Ibrahim","doi":"10.1016/j.clema.2024.100233","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100233","url":null,"abstract":"<div><p>Production of zeolite-Y catalyst from natural substrate has been a research trend in the scientific community. Published articles revealed that zeolite-Y recovery from locally sourced metakaolin is confined to laboratory practice. Scale-up process design and its economic feasibility for zeolite-Y catalyst recovery are rarely found in the scientific bibliography. Therefore, this study presented conceptual scale-up process design, base-case techno-economics and Monte-Carlo simulation of zeolite Y recovery from Nigerian metakaoline. ASPEN Base Case Simulation (ABCS), scale-up design and economics were accomplished using inherent design and costing algorithms in ASPEN Batch Process Developer (ABPD) V10. Process economic parameters: Net Present Value (NPV), Internal Rate of Return (IRR), Return on Investment (ROI) and Payback Time (PBT), were modelled and optimized using Design Expert V13 software; while zeolite Unit Production Cost (UPC), Annual Production Cost (APC), Total Capital Investment (TCI) and interest/discount rate were considered as model inputs. Monte-Carlo Simulation (MCS) in Crystal Ball Oracle software was used to perform the sensitivity and uncertainty analyses. The base-case techno-economic results of process design of 600,000 kg/year zeolite production gave batch size 5000 kg/batch with 104 batches/year, batch time (4149 min), TCI ($15,930,306), APC ($147,145), NPV ($41,983,375), ROI (38.13 %) and PBT (2.14 years). The coefficient of determination (R<sup>2</sup>) of the economic models were 0.9978, 0.9989 and 0.9986 for NPV, ROI and IRR respectively. The optimum economic variables that maximized synthesis of 5000 kg/batch zeolite Y are UPC ($11.68), APC ($100,033) and TPC ($15,930,200). MCS uncertainty for NPV, IRR and ROI are negligible. Therefore, this study demonstrated that scale-up zeolite-Y production from the local substrate is economically feasible.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100233"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000170/pdfft?md5=7e2fea20500faec5b67e336e311e1a1c&pid=1-s2.0-S2772397624000170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supervised data-driven approach to predict split tensile and flexural strength of concrete with marble waste powder 采用有监督的数据驱动方法预测大理石废粉混凝土的劈裂拉伸和弯曲强度
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100231
Pala Ravikanth , T. Jothi Saravanan , K.I. Syed Ahmed Kabeer

The utilization of marble waste powder (MWP) as a supplementary cementitious material in concrete, serving as a replacement for cement, holds the potential to enhance split tensile strength (STS) and flexural strength (FS), alongside offering environmental advantages. However, it is crucial to determine the optimal dosage of MWP, ensuring meticulous mix design and testing procedures to maximize the concrete's strength and overall performance. This research endeavor seeks to investigate a supervised data-driven approach for predicting STS and FS in concrete composites incorporating MWP, along with other cementitious materials such as silica fume (SF), granite powder (GP), and fly ash (FA), and their influence on the STS and FS of MWP-incorporated concrete. Ten distinct machine learning (ML) algorithms, including multivariate linear regression (MVLR), support vector regression (SVR), artificial neural networks (ANN), decision tree regressor (DT), random forest regressor (RF), adaptive boosting regressor (AdB), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), extreme gradient boosting (XGB), and cat boost, are employed to assess the predictive capabilities of these models for FS and STS datasets. Statistical metrics like correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of each ML algorithm. To enhance model efficiency, hyperparameter tuning and a 5-fold cross-validation technique are implemented. Among the ML algorithms tested, the cat boost algorithm demonstrates superior performance in predicting STS, while the ANN algorithm excels in predicting FS. Additionally, SHAP dependency plots are utilized to ascertain the feature importance in the best-performing models. The analysis reveals that features such as curing age, water, and cement play a more significant role in predicting STS, whereas attributes like cement, concrete type, and sand hold greater importance in predicting FS.

利用大理石废粉(MWP)作为混凝土中的辅助胶凝材料,替代水泥,具有提高劈裂拉伸强度(STS)和抗折强度(FS)的潜力,同时还具有环保优势。然而,关键是要确定 MWP 的最佳用量,确保精心的混合设计和测试程序,以最大限度地提高混凝土的强度和整体性能。本研究旨在探索一种数据驱动的监督方法,用于预测掺入 MWP 以及硅灰(SF)、花岗岩粉末(GP)和粉煤灰(FA)等其他胶凝材料的混凝土复合材料的 STS 和 FS,以及它们对掺入 MWP 的混凝土 STS 和 FS 的影响。十种不同的机器学习(ML)算法,包括多元线性回归(MVLR)、支持向量回归(SVR)、人工神经网络(ANN)、决策树回归(DT)、随机森林回归(RF)、采用了自适应增强回归器(AdB)、轻梯度增强机(LGBM)、梯度增强回归器(GBR)、极梯度增强(XGB)和猫增强(cat boost),以评估这些模型对 FS 和 STS 数据集的预测能力。相关系数 (R2)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE) 等统计指标被用来评估每种 ML 算法的性能。为了提高模型效率,还采用了超参数调整和 5 倍交叉验证技术。在测试的 ML 算法中,cat boost 算法在预测 STS 方面表现出色,而 ANN 算法在预测 FS 方面表现出色。此外,还利用 SHAP 依赖图来确定特征在表现最佳的模型中的重要性。分析结果表明,养护龄期、水和水泥等特征在预测 STS 时发挥了更重要的作用,而水泥、混凝土类型和砂等属性在预测 FS 时则具有更大的重要性。
{"title":"Supervised data-driven approach to predict split tensile and flexural strength of concrete with marble waste powder","authors":"Pala Ravikanth ,&nbsp;T. Jothi Saravanan ,&nbsp;K.I. Syed Ahmed Kabeer","doi":"10.1016/j.clema.2024.100231","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100231","url":null,"abstract":"<div><p>The utilization of marble waste powder (MWP) as a supplementary cementitious material in concrete, serving as a replacement for cement, holds the potential to enhance split tensile strength (STS) and flexural strength (FS), alongside offering environmental advantages. However, it is crucial to determine the optimal dosage of MWP, ensuring meticulous mix design and testing procedures to maximize the concrete's strength and overall performance. This research endeavor seeks to investigate a supervised data-driven approach for predicting STS and FS in concrete composites incorporating MWP, along with other cementitious materials such as silica fume (SF), granite powder (GP), and fly ash (FA), and their influence on the STS and FS of MWP-incorporated concrete. Ten distinct machine learning (ML) algorithms, including multivariate linear regression (MVLR), support vector regression (SVR), artificial neural networks (ANN), decision tree regressor (DT), random forest regressor (RF), adaptive boosting regressor (AdB), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), extreme gradient boosting (XGB), and cat boost, are employed to assess the predictive capabilities of these models for FS and STS datasets. Statistical metrics like correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of each ML algorithm. To enhance model efficiency, hyperparameter tuning and a 5-fold cross-validation technique are implemented. Among the ML algorithms tested, the cat boost algorithm demonstrates superior performance in predicting STS, while the ANN algorithm excels in predicting FS. Additionally, SHAP dependency plots are utilized to ascertain the feature importance in the best-performing models. The analysis reveals that features such as curing age, water, and cement play a more significant role in predicting STS, whereas attributes like cement, concrete type, and sand hold greater importance in predicting FS.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100231"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000157/pdfft?md5=8bef5ff20528fd55063b900c6d714f5c&pid=1-s2.0-S2772397624000157-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable selection of microwave absorbing materials: A green evaluation under interval-valued intuitionistic fuzzy environment 微波吸收材料的可持续选择:区间值直观模糊环境下的绿色评估
Pub Date : 2024-03-01 DOI: 10.1016/j.clema.2024.100236
M. Saeed , R. Sami Ul Haq , S. Ahmed , F. Siddiqui , N. Mateen , K.A. Ahmed , J.B. Yi , Dragan Pamučar

Environmentally friendly technology is being used by industries all over the world, and engineers in the manufacturing and materials industry are embracing sustainable business models. In this paradigm, materials are processed using economically and environmentally sound methods. The use of microwave-absorbing materials (MAMs) in low-altitude observatory aircraft and the rise in electromagnetic pollution have brought them to light. The main aim of this study is to select an ideal MAM with excellent physical, electromagnetic, chemical, and thermal properties, which also fulfills sustainability aspects based on expert judgments. In this regard, we have proposed a new hybrid framework consisting of Modified Digital Logic (MDL), a subjective weighting method in combination with the measurement of alternatives and ranking according to compromise solution (MARCOS) under an interval-valued intuitionistic fuzzy (IVIF) environment to select an optimum MAM. Furthermore, this research work contributes to streamlining the selection process by consolidating the plethora of work available in the literature on the synthesis and characterization of MAMs. A database is created for 160 potential candidate materials in C, S, X, and Ku bands for carbon-based materials, including carbon nanotubes (CNT), graphene, reduced graphene oxide (rGO), carbon fibers, and biomass-derived materials. These materials are then passed through successive screening stages to shortlist 14 materials, which are ranked subsequently over a set of 15 crisp and ambiguous criteria. This comprehensive study simultaneously caters to quantitative and qualitative information extracted from experimental work, material resource packs, or expert evaluations. The findings highlight CNT/Fe (20 wt%, E) (Al1) as the most suitable candidate for MAM application with outstanding electromagnetic properties. Finally, the results are compared with extant approaches to check the reliability of the proposed framework. In addition, sensitivity analysis is carried out to establish the feasibility and robustness of the obtained results.

全球各行各业都在使用环保技术,制造和材料行业的工程师们也在采用可持续发展的商业模式。在这种模式下,材料的加工采用既经济又环保的方法。微波吸收材料(MAMs)在低空观测飞机中的使用以及电磁污染的加剧使人们开始关注它们。本研究的主要目的是根据专家的判断,选择一种具有优异的物理、电磁、化学和热性能,同时又符合可持续发展要求的理想微波吸收材料。为此,我们提出了一种新的混合框架,该框架由修正数字逻辑(MDL)、主观加权法、备选方案测量法以及根据区间值直观模糊(IVIF)环境下的折中方案排序(MARCOS)组成,用于选择最佳 MAM。此外,这项研究工作还整合了文献中有关 MAMs 综合和特征描述的大量工作,为简化选择过程做出了贡献。为碳基材料(包括碳纳米管 (CNT)、石墨烯、还原氧化石墨烯 (rGO)、碳纤维和生物质衍生材料)在 C、S、X 和 Ku 波段的 160 种潜在候选材料创建了一个数据库。这些材料经过层层筛选,最终列出了 14 种材料,然后根据 15 项明确而模糊的标准对这些材料进行排序。这项综合研究同时兼顾了从实验工作、材料资源包或专家评估中提取的定量和定性信息。研究结果表明,CNT/Fe(20 wt%,E)(Al1)是最适合 MAM 应用的候选材料,具有出色的电磁特性。最后,研究结果与现有方法进行了比较,以检验建议框架的可靠性。此外,还进行了敏感性分析,以确定所得结果的可行性和稳健性。
{"title":"Sustainable selection of microwave absorbing materials: A green evaluation under interval-valued intuitionistic fuzzy environment","authors":"M. Saeed ,&nbsp;R. Sami Ul Haq ,&nbsp;S. Ahmed ,&nbsp;F. Siddiqui ,&nbsp;N. Mateen ,&nbsp;K.A. Ahmed ,&nbsp;J.B. Yi ,&nbsp;Dragan Pamučar","doi":"10.1016/j.clema.2024.100236","DOIUrl":"https://doi.org/10.1016/j.clema.2024.100236","url":null,"abstract":"<div><p>Environmentally friendly technology is being used by industries all over the world, and engineers in the manufacturing and materials industry are embracing sustainable business models. In this paradigm, materials are processed using economically and environmentally sound methods. The use of microwave-absorbing materials (MAMs) in low-altitude observatory aircraft and the rise in electromagnetic pollution have brought them to light. The main aim of this study is to select an ideal MAM with excellent physical, electromagnetic, chemical, and thermal properties, which also fulfills sustainability aspects based on expert judgments. In this regard, we have proposed a new hybrid framework consisting of Modified Digital Logic (MDL), a subjective weighting method in combination with the measurement of alternatives and ranking according to compromise solution (MARCOS) under an interval-valued intuitionistic fuzzy (IVIF) environment to select an optimum MAM. Furthermore, this research work contributes to streamlining the selection process by consolidating the plethora of work available in the literature on the synthesis and characterization of MAMs. A database is created for 160 potential candidate materials in C, S, X, and Ku bands for carbon-based materials, including carbon nanotubes (CNT), graphene, reduced graphene oxide (rGO), carbon fibers, and biomass-derived materials. These materials are then passed through successive screening stages to shortlist 14 materials, which are ranked subsequently over a set of 15 crisp and ambiguous criteria. This comprehensive study simultaneously caters to quantitative and qualitative information extracted from experimental work, material resource packs, or expert evaluations. The findings highlight CNT/Fe (20 wt%, E) (Al1) as the most suitable candidate for MAM application with outstanding electromagnetic properties. Finally, the results are compared with extant approaches to check the reliability of the proposed framework. In addition, sensitivity analysis is carried out to establish the feasibility and robustness of the obtained results.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100236"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000200/pdfft?md5=be5dadfb7ff42c9bdf1144a982cebd98&pid=1-s2.0-S2772397624000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1