首页 > 最新文献

Cleaner Materials最新文献

英文 中文
Optimization of concrete containing wind-turbine wastes following mechanical, environmental and economic indicators 根据机械、环境和经济指标对含有风力涡轮机废料的混凝土进行优化
Pub Date : 2025-05-07 DOI: 10.1016/j.clema.2025.100317
Nerea Hurtado-Alonso , Javier Manso-Morato , Víctor Revilla-Cuesta , Vanesa Ortega-López , Marta Skaf
The decommissioning of wind farms produces two primary waste materials: Recycled Concrete Aggregate (RCA) derived from the foundation concrete, and Raw-Crushed Wind-Turbine Blade (RCWTB) obtained through the crushing and sieving of the blades. Incorporating these materials into concrete enhances sustainability and, in some cases, improves mechanical properties while reducing the final environmental impact and cost compared to conventional concrete. A comprehensive characterization of the mechanical properties of concrete mixtures with varying RCA (0–100%) and RCWTB (0–10%) contents was conducted, these mixes being designed with increased water and admixture contents to compensate for the expected loss of workability caused by the addition of these waste materials. A Life-Cycle Assessment (LCA) and cost evaluation were also performed. The optimization of these mixtures was addressed using the Response Surface Method (RSM). The optimization process revealed that intermediate combinations of RCA (50%) and RCWTB (5%) yielded maximum flexural-tensile properties. However, achieving optimal performance proved more challenging when simultaneous optimization included compressive strength and deformability properties, such as modulus of elasticity and Poisson’s coefficient. For these properties, the optimal mix incorporated 88% RCA and 0% RCWTB. The RSM analysis demonstrated the feasibility of incorporating both RCA and RCWTB into concrete mixtures, mainly intended to work under bending stresses, but it also highlighted the complexities of achieving optimal performance when all mechanical properties were simultaneously considered. This research underscores the potential for these recycled materials to contribute to more sustainable concrete production while addressing the trade-offs in mechanical performance optimization.
风电场的退役产生两种主要废物:从基础混凝土中提取的再生混凝土骨料(RCA)和通过叶片破碎和筛分获得的原始破碎风力涡轮机叶片(RCWTB)。与传统混凝土相比,将这些材料加入混凝土中可以增强可持续性,在某些情况下,可以改善机械性能,同时减少最终的环境影响和成本。对不同RCA(0-100%)和RCWTB(0-10%)含量的混凝土混合料的力学性能进行了全面表征,这些混合料在设计时增加了水和外加剂的含量,以补偿由于添加这些废物而造成的可加工性的预期损失。生命周期评估(LCA)和成本评估也进行了。利用响应面法(RSM)对这些混合物进行了优化。优化过程表明,RCA(50%)和RCWTB(5%)的中间组合获得了最大的弯曲拉伸性能。然而,当同时优化抗压强度和变形性能(如弹性模量和泊松系数)时,实现最佳性能更具挑战性。对于这些性能,最佳的混合物中含有88%的RCA和0%的RCWTB。RSM分析证明了将RCA和RCWTB同时加入混凝土混合物的可行性,主要用于在弯曲应力下工作,但它也强调了在同时考虑所有机械性能时实现最佳性能的复杂性。这项研究强调了这些回收材料的潜力,有助于更可持续的混凝土生产,同时解决了机械性能优化方面的权衡。
{"title":"Optimization of concrete containing wind-turbine wastes following mechanical, environmental and economic indicators","authors":"Nerea Hurtado-Alonso ,&nbsp;Javier Manso-Morato ,&nbsp;Víctor Revilla-Cuesta ,&nbsp;Vanesa Ortega-López ,&nbsp;Marta Skaf","doi":"10.1016/j.clema.2025.100317","DOIUrl":"10.1016/j.clema.2025.100317","url":null,"abstract":"<div><div>The decommissioning of wind farms produces two primary waste materials: Recycled Concrete Aggregate (RCA) derived from the foundation concrete, and Raw-Crushed Wind-Turbine Blade (RCWTB) obtained through the crushing and sieving of the blades. Incorporating these materials into concrete enhances sustainability and, in some cases, improves mechanical properties while reducing the final environmental impact and cost compared to conventional concrete. A comprehensive characterization of the mechanical properties of concrete mixtures with varying RCA (0–100%) and RCWTB (0–10%) contents was conducted, these mixes being designed with increased water and admixture contents to compensate for the expected loss of workability caused by the addition of these waste materials. A Life-Cycle Assessment (LCA) and cost evaluation were also performed. The optimization of these mixtures was addressed using the Response Surface Method (RSM). The optimization process revealed that intermediate combinations of RCA (50%) and RCWTB (5%) yielded maximum flexural-tensile properties. However, achieving optimal performance proved more challenging when simultaneous optimization included compressive strength and deformability properties, such as modulus of elasticity and Poisson’s coefficient. For these properties, the optimal mix incorporated 88% RCA and 0% RCWTB. The RSM analysis demonstrated the feasibility of incorporating both RCA and RCWTB into concrete mixtures, mainly intended to work under bending stresses, but it also highlighted the complexities of achieving optimal performance when all mechanical properties were simultaneously considered. This research underscores the potential for these recycled materials to contribute to more sustainable concrete production while addressing the trade-offs in mechanical performance optimization.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100317"},"PeriodicalIF":0.0,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143937356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review on the role of reclaimed asphalt pavement materials: Insights into performance and sustainability 系统回顾再生沥青路面材料的作用:对性能和可持续性的见解
Pub Date : 2025-05-05 DOI: 10.1016/j.clema.2025.100316
Mayank Sukhija, Erdem Coleri
Recycling practices have become stringent, essentially to overcome scarcity and higher cost of natural resources such as asphalt binder and mineral aggregates. The desire to conserve these natural resources and achieve sustainability in road construction has paved the way for the application of reclaimed asphalt pavement (RAP) material for paving purposes. This state-of-the-art review intends to provide a comprehensive overview of RAP-inclusive asphalt binders and mixtures based on laboratory and field investigations. The review covers various aspects of RAP utilization, starting with a detailed methodology for characterizing RAP material. This includes the extraction and recovery process, the effectiveness of solvents, and associated risk factors. Understanding these processes is crucial for assessing the suitability of RAP in asphalt mixtures. As per the review, the most commonly used extraction and recovery methods are centrifuge extraction and rotavapor with trichloroethylene and n-propyl bromide solvents. Emphases were given on the extent of change in chemical and morphological properties of asphalt binder with the application of RAP material. In addition, this review addresses the impact of using RAP material on the cost and environmental burdens. Based on the literatures, with the use of RAP, the reduction in cost can range from 5% to 68%, along with 3%-95% lower impact on the environment relative to the no RAP condition. As a whole, the compiled literature underscores the feasibility of using RAP as a major step towards constructing new asphalt pavements with adequate mechanical performance while promoting economic and environmental stewardship.
回收做法已变得严格,主要是为了克服沥青粘合剂和矿物集料等自然资源的稀缺和高成本。保护这些自然资源和实现道路建设的可持续性的愿望为应用再生沥青路面(RAP)材料铺平了道路。这篇最新的综述旨在提供基于实验室和现场调查的RAP-inclusive沥青粘合剂和混合物的全面概述。这篇综述涵盖了RAP利用的各个方面,从描述RAP材料的详细方法开始。这包括提取和回收过程、溶剂的有效性以及相关的风险因素。了解这些过程对于评估RAP在沥青混合料中的适用性至关重要。根据综述,最常用的提取和回收方法是离心提取和三氯乙烯和正丙基溴溶剂的旋转蒸汽法。重点讨论了RAP材料的应用对沥青粘结剂化学性能和形态性能的影响。此外,本综述还讨论了使用RAP材料对成本和环境负担的影响。根据文献,与不使用RAP相比,使用RAP可以降低5% - 68%的成本,对环境的影响降低3%-95%。总体而言,汇编的文献强调了使用RAP作为建造具有适当机械性能的新沥青路面的主要步骤的可行性,同时促进经济和环境管理。
{"title":"A systematic review on the role of reclaimed asphalt pavement materials: Insights into performance and sustainability","authors":"Mayank Sukhija,&nbsp;Erdem Coleri","doi":"10.1016/j.clema.2025.100316","DOIUrl":"10.1016/j.clema.2025.100316","url":null,"abstract":"<div><div>Recycling practices have become stringent, essentially to overcome scarcity and higher cost of natural resources such as asphalt binder and mineral aggregates. The desire to conserve these natural resources and achieve sustainability in road construction has paved the way for the application of reclaimed asphalt pavement (RAP) material for paving purposes. This state-of-the-art review intends to provide a comprehensive overview of RAP-inclusive asphalt binders and mixtures based on laboratory and field investigations. The review covers various aspects of RAP utilization, starting with a detailed methodology for characterizing RAP material. This includes the extraction and recovery process, the effectiveness of solvents, and associated risk factors. Understanding these processes is crucial for assessing the suitability of RAP in asphalt mixtures. As per the review, the most commonly used extraction and recovery methods are centrifuge extraction and rotavapor with trichloroethylene and n-propyl bromide solvents. Emphases were given on the extent of change in chemical and morphological properties of asphalt binder with the application of RAP material. In addition, this review addresses the impact of using RAP material on the cost and environmental burdens. Based on the literatures, with the use of RAP, the reduction in cost can range from 5% to 68%, along with 3%-95% lower impact on the environment relative to the no RAP condition. As a whole, the compiled literature underscores the feasibility of using RAP as a major step towards constructing new asphalt pavements with adequate mechanical performance while promoting economic and environmental stewardship.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100316"},"PeriodicalIF":0.0,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143917522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elaborating the knowledge structure and emerging research in the utilization of metal–organic formwork in engineering applications: A scientometric analysis from 2004 to 2024 阐述金属有机模板在工程应用中的知识结构和新兴研究:2004年至2024年的科学计量分析
Pub Date : 2025-05-04 DOI: 10.1016/j.clema.2025.100314
Mohamed H. Alzard, Reem H. Alzard, Mohamed Abdellah
Metal–organic frameworks (MOFs) have emerged as versatile materials with broad applications in engineering, from energy storage and environmental remediation to biomedical and sensing technologies. This study combines bibliometric analysis with an in-depth review of selected highly cited papers to examine MOF applications across multiple disciplines. The bibliometric analysis highlights significant research trends, including a dominant focus on energy and environmental engineering, a solid international collaboration, and the rapid growth of interdisciplinary applications. The keyword analysis identifies underexplored areas such as biomedicine, sensing, and unconventional uses like smart textiles and agriculture, highlighting potential directions for future research. Selected papers reveal key findings in fields such as energy storage, chemical engineering, and civil engineering. Applications range from enhancing cementitious materials to improving wastewater treatment and advancing battery technologies. Recommendations emphasize scalable synthesis methods, enhanced testing protocols, and interdisciplinary collaboration to address identified gaps. This study provides a roadmap for advancing MOF research and industrial implementation by aligning bibliometric findings with research recommendations. Future efforts should focus on expanding MOF applications, addressing scalability challenges, and integrating novel testing methods to maximize their potential in solving global engineering challenges.
金属有机框架(mof)作为一种多功能材料,在能源存储、环境修复、生物医学和传感技术等工程领域有着广泛的应用。本研究结合了文献计量学分析和对高被引论文的深入回顾,以检查MOF在多个学科中的应用。文献计量分析强调了重要的研究趋势,包括对能源和环境工程的主要关注,坚实的国际合作,以及跨学科应用的快速增长。关键字分析确定了未开发的领域,如生物医学、传感,以及智能纺织品和农业等非常规用途,突出了未来研究的潜在方向。精选的论文揭示了能源存储、化学工程和土木工程等领域的关键发现。应用范围从增强胶凝材料到改善废水处理和推进电池技术。建议强调可扩展的综合方法、增强的测试协议和跨学科合作,以解决已确定的差距。本研究通过将文献计量学研究结果与研究建议相结合,为推进MOF研究和工业实施提供了路线图。未来的工作应该集中在扩展MOF应用,解决可扩展性挑战,并集成新的测试方法,以最大限度地发挥其解决全球工程挑战的潜力。
{"title":"Elaborating the knowledge structure and emerging research in the utilization of metal–organic formwork in engineering applications: A scientometric analysis from 2004 to 2024","authors":"Mohamed H. Alzard,&nbsp;Reem H. Alzard,&nbsp;Mohamed Abdellah","doi":"10.1016/j.clema.2025.100314","DOIUrl":"10.1016/j.clema.2025.100314","url":null,"abstract":"<div><div>Metal–organic frameworks (MOFs) have emerged as versatile materials with broad applications in engineering, from energy storage and environmental remediation to biomedical and sensing technologies. This study combines bibliometric analysis with an in-depth review of selected highly cited papers to examine MOF applications across multiple disciplines. The bibliometric analysis highlights significant research trends, including a dominant focus on energy and environmental engineering, a solid international collaboration, and the rapid growth of interdisciplinary applications. The keyword analysis identifies underexplored areas such as biomedicine, sensing, and unconventional uses like smart textiles and agriculture, highlighting potential directions for future research. Selected papers reveal key findings in fields such as energy storage, chemical engineering, and civil engineering. Applications range from enhancing cementitious materials to improving wastewater treatment and advancing battery technologies. Recommendations emphasize scalable synthesis methods, enhanced testing protocols, and interdisciplinary collaboration to address identified gaps. This study provides a roadmap for advancing MOF research and industrial implementation by aligning bibliometric findings with research recommendations. Future efforts should focus on expanding MOF applications, addressing scalability challenges, and integrating novel testing methods to maximize their potential in solving global engineering challenges.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100314"},"PeriodicalIF":0.0,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143937355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of expansive soil stabilisation using un-calcinated Kaolinite-Based Alkali-Activated binders 未煅烧高岭石碱活化黏合剂稳定膨胀土的效果
Pub Date : 2025-05-01 DOI: 10.1016/j.clema.2025.100315
Mengyuan Zhu , Chin Leo , Qinghua Zeng , Daniel J. Fanna , Jeff Hsi , Reza Karimi , Antonin Fabbri , Samanthika Liyanapathirana , Pan Hu , Hadeel Alzghool
In recent years, alkali-activation and geopolymerisation have emerged as sustainable alternatives for stabilising expansive soils, traditionally treated with lime or cement. While most studies focus on high-temperature-processed materials such as fly ash, slag, and metakaolin, this study investigates the potential of using un-calcinated kaolinite as a precursor to produce an alkali-activated binder (U-KAB) slurry for expansive soil stabilisation. The U-KAB slurry, prepared by mixing un-calcinated kaolinite with NaOH solution, was applied at dosages ranging from 1.6% to 9.6% to a synthetic expansive soil composed of kaolinite, montmorillonite, and quartz. Two phases of experimental testing and characterisation provided valuable insights into its stabilisation potential, highlighting a new pathway for the development of cleaner soil stabilisation binders by avoiding the high energy consumption and carbon emissions associated with thermal calcination. The paper also emphasises the critical importance of carefully monitoring NaOH dosage and allowing for an adequate curing period—incorporating both sealed curing and air-drying—to enhance stabilisation effectiveness. Furthermore, while the results underscore the stabilisation potential of the U-KAB slurry, they also highlight the potential presence of excess unreacted alkali when aiming to achieve well effective dissolution of aluminosilicates at higher dosages. Unreacted alkali can adversely affect the stabilisation process, particularly in causing unsought swelling or negative swelling (consolidation) in the treated soils depending on the curing conditions. This indicates there may be a need in some cases to further optimise U-KAB mix design to mitigate these issues. The goal is to achieve an optimised U-KAB slurry with effective dissolution of the precursor to enhance geopolymerisation while ensuring adequate workability for mixing to stabilise the expansive soil.
近年来,碱活化和地聚合已成为稳定膨胀土的可持续选择,传统上用石灰或水泥处理。虽然大多数研究都集中在高温处理的材料上,如粉煤灰、矿渣和偏高岭土,但本研究探讨了使用未煅烧的高岭土作为前驱体来生产用于膨胀土稳定的碱活化粘结剂(U-KAB)浆料的潜力。U-KAB浆料由未煅烧的高岭石与NaOH溶液混合制成,以1.6% ~ 9.6%的剂量施用于由高岭石、蒙脱石和石英组成的合成膨胀土中。两个阶段的实验测试和表征为其稳定潜力提供了有价值的见解,强调了通过避免与热煅烧相关的高能耗和碳排放来开发更清洁的土壤稳定粘合剂的新途径。该论文还强调了仔细监测NaOH剂量的重要性,并允许适当的固化期,包括密封固化和风干,以提高稳定效果。此外,虽然结果强调了U-KAB浆料的稳定潜力,但它们也强调了在更高剂量下实现铝硅酸盐的有效溶解时,过量未反应碱的潜在存在。未反应的碱会对稳定过程产生不利影响,特别是在处理过的土壤中引起不需要的膨胀或负膨胀(固结),这取决于养护条件。这表明,在某些情况下,可能需要进一步优化U-KAB混合设计,以缓解这些问题。目标是实现优化的U-KAB浆料,有效溶解前驱体,以增强地聚合,同时确保足够的和易性,以稳定膨胀土。
{"title":"Efficacy of expansive soil stabilisation using un-calcinated Kaolinite-Based Alkali-Activated binders","authors":"Mengyuan Zhu ,&nbsp;Chin Leo ,&nbsp;Qinghua Zeng ,&nbsp;Daniel J. Fanna ,&nbsp;Jeff Hsi ,&nbsp;Reza Karimi ,&nbsp;Antonin Fabbri ,&nbsp;Samanthika Liyanapathirana ,&nbsp;Pan Hu ,&nbsp;Hadeel Alzghool","doi":"10.1016/j.clema.2025.100315","DOIUrl":"10.1016/j.clema.2025.100315","url":null,"abstract":"<div><div>In recent years, alkali-activation and geopolymerisation have emerged as sustainable alternatives for stabilising expansive soils, traditionally treated with lime or cement. While most studies focus on high-temperature-processed materials such as fly ash, slag, and metakaolin, this study investigates the potential of using un-calcinated kaolinite as a precursor to produce an alkali-activated binder (U-KAB) slurry for expansive soil stabilisation. The U-KAB slurry, prepared by mixing un-calcinated kaolinite with NaOH solution, was applied at dosages ranging from 1.6% to 9.6% to a synthetic expansive soil composed of kaolinite, montmorillonite, and quartz. Two phases of experimental testing and characterisation provided valuable insights into its stabilisation potential, highlighting a new pathway for the development of cleaner soil stabilisation binders by avoiding the high energy consumption and carbon emissions associated with thermal calcination. The paper also emphasises the critical importance of carefully monitoring NaOH dosage and allowing for an adequate curing period—incorporating both sealed curing and air-drying—to enhance stabilisation effectiveness. Furthermore, while the results underscore the stabilisation potential of the U-KAB slurry, they also highlight the potential presence of excess unreacted alkali when aiming to achieve well effective dissolution of aluminosilicates at higher dosages. Unreacted alkali can adversely affect the stabilisation process, particularly in causing unsought swelling or negative swelling (consolidation) in the treated soils depending on the curing conditions. This indicates there may be a need in some cases to further optimise U-KAB mix design to mitigate these issues. The goal is to achieve an optimised U-KAB slurry with effective dissolution of the precursor to enhance geopolymerisation while ensuring adequate workability for mixing to stabilise the expansive soil.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100315"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorizing urban pruning wastes and recycled polyethylene towards sustainable natural fiber-reinforced polymer composites 将城市修剪废弃物和回收聚乙烯转化为可持续的天然纤维增强聚合物复合材料
Pub Date : 2025-04-29 DOI: 10.1016/j.clema.2025.100313
Dayana Gavilanes , Vladimir Valle , Francisco Quiroz , Francisco Cadena , José I. Iribarren
The current research presents the elaboration of lignocellulosic reinforced polymer composites based on urban pruning wastes (UPW), recycled high-density polyethylene (rHDPE) and water-based acrylic resin. In doing so, UPW fibers were placed in acrylic resin bath. The “embedded” UPW fibers were called EUPW and used as reinforcement. Then, composites were formulated through a 3x2x2 experimental design: EUPW content (5, 10, and 15 wt%), natural fiber size (425 and 1000 µm) and coupling agent presence (none and polyethylene-graft-maleic anhydride). After extrusion and compression molding manufacturing, composites were characterized in terms of FTIR, TGA, and tensile behavior. The FTIR results showed a band at 1700 cm−1 of the composites, representing the acrylate group of acrylic polymer (AP) in EUPW. Additionally, TGA determined that AP provided thermal protection to UPW. Furthermore, it was found that elastic modulus of the composites was increased compared to the neat polymer matrix; however, modulus of elasticity decreased with EUPW addition. According to the statistical analysis, coupling agent effect was the most significant factor on elastic modulus and tensile strength. Finally, the results revealed that combining UPW, acrylic polymer resin, rHDPE and polyethylene-graft-maleic anhydride, composites with relatively positive balanced properties were obtained.
目前研究以城市修剪废弃物(UPW)、再生高密度聚乙烯(rHDPE)和水性丙烯酸树脂为原料制备木质纤维素增强聚合物复合材料。在此过程中,UPW纤维被放置在丙烯酸树脂浴中。“嵌入”的UPW纤维被称为EUPW,用作增强材料。然后,通过3x2x2实验设计配制复合材料:EUPW含量(5、10和15 wt%)、天然纤维尺寸(425和1000µm)和偶联剂(无偶联剂和聚乙烯接枝马来酸酐)。在挤压和压缩成型制造后,对复合材料进行了FTIR、TGA和拉伸性能表征。FTIR结果显示,复合材料在1700 cm−1处有一个条带,代表EUPW中丙烯酸聚合物(AP)的丙烯酸酯基团。此外,TGA确定AP对UPW提供热保护。与纯聚合物基体相比,复合材料的弹性模量有所提高;然而,随着EUPW的加入,弹性模量降低。经统计分析,偶联剂对弹性模量和抗拉强度的影响最为显著。结果表明,UPW与丙烯酸树脂、rHDPE和聚乙烯接枝马来酸酐复合,可获得性能相对正平衡的复合材料。
{"title":"Valorizing urban pruning wastes and recycled polyethylene towards sustainable natural fiber-reinforced polymer composites","authors":"Dayana Gavilanes ,&nbsp;Vladimir Valle ,&nbsp;Francisco Quiroz ,&nbsp;Francisco Cadena ,&nbsp;José I. Iribarren","doi":"10.1016/j.clema.2025.100313","DOIUrl":"10.1016/j.clema.2025.100313","url":null,"abstract":"<div><div>The current research presents the elaboration of lignocellulosic reinforced polymer composites based on urban pruning wastes (UPW), recycled high-density polyethylene (rHDPE) and water-based acrylic resin. In doing so, UPW fibers were placed in acrylic resin bath. The “embedded” UPW fibers were called EUPW and used as reinforcement. Then, composites were formulated through a 3x2x2 experimental design: EUPW content (5, 10, and 15 wt%), natural fiber size (425 and 1000 µm) and coupling agent presence (none and polyethylene-graft-maleic anhydride). After extrusion and compression molding manufacturing, composites were characterized in terms of FTIR, TGA, and tensile behavior. The FTIR results showed a band at 1700 cm<sup>−1</sup> of the composites, representing the acrylate group of acrylic polymer (AP) in EUPW. Additionally, TGA determined that AP provided thermal protection to UPW. Furthermore, it was found that elastic modulus of the composites was increased compared to the neat polymer matrix; however, modulus of elasticity decreased with EUPW addition. According to the statistical analysis, coupling agent effect was the most significant factor on elastic modulus and tensile strength. Finally, the results revealed that combining UPW, acrylic polymer resin, rHDPE and polyethylene-graft-maleic anhydride, composites with relatively positive balanced properties were obtained.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100313"},"PeriodicalIF":0.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143904226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upcycling waste glass bottles as a binder within engineered cementitious composites (ECCs): Experimental investigation and environmental impact assessment 在工程胶凝复合材料(ECCs)中作为粘合剂的废弃玻璃瓶的升级回收:实验调查和环境影响评估
Pub Date : 2025-04-19 DOI: 10.1016/j.clema.2025.100311
Avik Kumar Das , Jiacheng Xiao
Single-use waste glass bottles (WGB) pose significant environmental challenges in urban areas, and this study explores their upcycling into powdered glass (GP) as a supplementary cementitious material (SCM) in engineered cementitious composites (ECCs). Through, systematic investigation of their mechanical performance, durability, early age properties and shrinkage for different levels of GP replacement a sustainable ECC mix (GP-ECC) was developed. GP-ECC demonstrates excellent mechanical and durability performance, including high ductility (∼4%), tensile strength (∼4 MPa), narrow crack widths (∼60 μm), and manageable shrinkage (∼1700 με). Optimal results were observed at 20–30 % GP replacement, where improved particle packing and pozzolanic activity enhanced performance. In contrast, at higher replacement levels (50 %) led to increased porosity and reduced durability due to suppressed hydration. The inclusion of natural seawater further accelerated early hydration and strength gain, though slight compromises were noted in crack control due to ionic interference, overall their performance are comparable to GP-ECC. Microstructural analyses (SEM, XRD) confirmed denser matrices and stronger fiber–matrix bonding at 30 % GP, particularly in seawater-mixed ECCs thereby, confirming the feasibility and high-perfromance of sea based materials (SBM)-GP-ECCs. A novel framework for life cycle analysis (LCA) for ECCs considering regional variations, including transportation emissions and energy mix, thereby reflecting intercity differences. GP-ECC and SBM-GP-ECC mixes achieved notable reductions in CO2 (∼8–10 %) emission and costs other ecological impacts, but such effects is a function of the location outperforming normal concrete and GP-concrete by up to 100x in tensile and durability properties. By systematically evaluating mechanical, rheological, durability, and microstructural properties, this study establishes a robust foundation for future research and practical deployment of GP-marine ECCs derived from waste materials, contributing to circular economy strategies and the development of cleaner, high-performance construction materials.
一次性废弃玻璃瓶(WGB)在城市地区构成了重大的环境挑战,本研究探讨了将其升级为粉末玻璃(GP)作为工程胶凝复合材料(ECCs)的补充胶凝材料(SCM)。通过对其力学性能、耐久性、早期性能和收缩率的系统研究,提出了一种可持续发展的ECC复合材料(GP-ECC)。GP-ECC具有优异的机械性能和耐久性,包括高延展性(~ 4%)、抗拉强度(~ 4 MPa)、窄裂纹宽度(~ 60 μm)和可控收缩率(~ 1700 με)。在20 - 30%的GP替换量下,颗粒填料和火山灰活性的改善提高了性能,效果最佳。相比之下,在较高的替代水平(50%)下,由于抑制水化作用,孔隙度增加,耐久性降低。天然海水的掺入进一步加速了早期水化和强度的增加,尽管由于离子干扰在裂缝控制方面略有妥协,但总体性能与GP-ECC相当。微观结构分析(SEM, XRD)证实,在30% GP时,特别是在海水混合的ECCs中,基质更致密,纤维-基质结合更强,从而证实了海基材料(SBM)-GP-ECCs的可行性和高性能。考虑区域差异(包括交通排放和能源结构)的ECCs生命周期分析(LCA)新框架,从而反映城市间差异。GP-ECC和SBM-GP-ECC混合物显著减少了二氧化碳排放(~ 8 - 10%),并减少了其他生态影响,但这种效果是位置的函数,其拉伸和耐久性性能优于普通混凝土和gp -混凝土高达100倍。通过系统地评估机械、流变、耐久性和微观结构性能,本研究为未来研究和实际应用从废物中提取的GP-marine ECCs奠定了坚实的基础,为循环经济战略和更清洁、高性能建筑材料的发展做出贡献。
{"title":"Upcycling waste glass bottles as a binder within engineered cementitious composites (ECCs): Experimental investigation and environmental impact assessment","authors":"Avik Kumar Das ,&nbsp;Jiacheng Xiao","doi":"10.1016/j.clema.2025.100311","DOIUrl":"10.1016/j.clema.2025.100311","url":null,"abstract":"<div><div>Single-use waste glass bottles (WGB) pose significant environmental challenges in urban areas, and this study explores their upcycling into powdered glass (GP) as a supplementary cementitious material (SCM) in engineered cementitious composites (ECCs). Through, systematic investigation of their mechanical performance, durability, early age properties and shrinkage for different levels of GP replacement a sustainable ECC mix (GP-ECC) was developed. GP-ECC demonstrates excellent mechanical and durability performance, including high ductility (∼4%), tensile strength (∼4 MPa), narrow crack widths (∼60 μm), and manageable shrinkage (∼1700 με). Optimal results were observed at 20–30 % GP replacement, where improved particle packing and pozzolanic activity enhanced performance. In contrast, at higher replacement levels (50 %) led to increased porosity and reduced durability due to suppressed hydration. The inclusion of natural seawater further accelerated early hydration and strength gain, though slight compromises were noted in crack control due to ionic interference, overall their performance are comparable to GP-ECC. Microstructural analyses (SEM, XRD) confirmed denser matrices and stronger fiber–matrix bonding at 30 % GP, particularly in seawater-mixed ECCs thereby, confirming the feasibility and high-perfromance of sea based materials (SBM)-GP-ECCs. A novel framework for life cycle analysis (LCA) for ECCs considering regional variations, including transportation emissions and energy mix, thereby reflecting intercity differences. GP-ECC and SBM-GP-ECC mixes achieved notable reductions in CO2 (∼8–10 %) emission<!--> <!-->and costs<!--> <!-->other ecological impacts, but such effects is a function<!--> <!-->of the location outperforming normal concrete and GP-concrete by up to 100x in tensile and durability properties. By systematically evaluating mechanical, rheological, durability, and microstructural properties, this study establishes a robust foundation for future research and practical deployment of GP-marine ECCs derived from waste materials, contributing to circular economy strategies and the development of cleaner, high-performance construction materials.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100311"},"PeriodicalIF":0.0,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Torsional Recovery test for interlinkage with deformation-recovery measurement metrics of polymer modified bitumen 评估扭转恢复试验与聚合物改性沥青变形恢复测量指标的相互联系
Pub Date : 2025-04-17 DOI: 10.1016/j.clema.2025.100309
Nazmus Sakib , Sabrina Islam , Shahriar Bin Kabir , Shamima Yasmin , Md. Mamun Kaysar , Joy Prakash Chowdhury , Md. Mahbubur Rahman
Elastic recovery of polymer modified bitumen (PMB) is considered an effective parameter to evaluate its capacity to resist permanent deformation through recovering some part of load-related deformation. Conceptually, it is represented as the ratio of recovered strain (measured under zero loading after a fixed duration) to maximum strain (under loading) on a bitumen sample, using various devices and loading types. Recovery tests also indicate the presence of polymer as well as degree of polymerization. Hence, such tests can be useful as rapid quality control and verification tool during field inventory inspections by procuring agencies. Traditional method, that is, ductilometer-based Elastic Recovery (ER-DB) relies on an unwieldy large device, delicate sample preparation process, and variable true strain rate. On the other hand, Multiple Stress Creep Recovery (MSCR) test-based Percent Recovery (%R) utilizes creep-recovery from application of shear-stress on a small bitumen sample for obtaining similar information, but it requires a sophisticated and expensive device. Torsional Recovery (TR), which uses an easily portable, manually operable, quick and inexpensive setup, also relies on shear deformation and angular recovery. In the present study, TR was evaluated for its correlation with these established methods using a total of 15 PMBs, prepared with 5 types of SBS and one base bitumen. The results showed strong linear relationships, with linear regression R2 values exceeding 0.85 in many cases, especially for PMBs made with the same polymer. Notably, TR and ER-DB exhibited R2 more than 0.90, especially within SBS-type specific cases, while global correlation was found to be 0.76. In addition, it was found that TR can be reliably used for preliminary quantification of SBS-dosage with R2 of 0.88. Interestingly, Torsional recovery values show good global correlation with Dynamic Modulus values and associated parameters with R2 0.8. In fact, SBS dosage, Torsional Recovery and Dynamic Modulus parameters also displayed excellent PMB specific correlation and reasonable global correlation. Other factors and correlations also indicate that TR results align well with existing test methods and hence, can be used for preliminary assessment of PMB quality and quantitative presence of polymer, with particular suitability for site deployment.
聚合物改性沥青(PMB)的弹性回复率被认为是评价其通过恢复部分载荷相关变形来抵抗永久变形能力的有效参数。从概念上讲,它表示为沥青样品上使用各种设备和加载类型的恢复应变(在固定时间后零加载下测量)与最大应变(加载下)的比率。回收试验也表明聚合物的存在以及聚合程度。因此,在采购机构进行实地盘存检查时,这种测试可作为快速质量控制和核查工具。传统的基于韧性计的弹性恢复(ER-DB)方法依赖于笨重的大型设备、精细的样品制备工艺和可变的真应变率。另一方面,基于多重应力蠕变恢复(MSCR)测试的百分比恢复(%R)利用剪切应力在小沥青样品上施加的蠕变恢复来获得类似的信息,但它需要一个复杂而昂贵的设备。扭转恢复(TR),使用易于携带,手动操作,快速和廉价的设置,也依赖于剪切变形和角度恢复。在本研究中,用5种SBS和一种基础沥青制备了15种PMBs,评估了TR与这些既定方法的相关性。结果显示出很强的线性关系,线性回归R2值在许多情况下超过0.85,特别是用相同聚合物制成的PMBs。值得注意的是,TR和ER-DB的R2大于0.90,特别是在sbs型特定病例中,而全球相关为0.76。此外,我们发现TR可以可靠地用于sbs用量的初步定量,R2为0.88。有趣的是,扭转恢复值与动态模量值和相关参数具有良好的全局相关性,R2≥0.8。事实上,SBS用量、扭转恢复和动模量参数也表现出良好的PMB特异性相关性和合理的全局相关性。其他因素和相关性也表明,TR结果与现有的测试方法吻合良好,因此可用于PMB质量的初步评估和聚合物的定量存在,特别适合现场部署。
{"title":"Evaluating Torsional Recovery test for interlinkage with deformation-recovery measurement metrics of polymer modified bitumen","authors":"Nazmus Sakib ,&nbsp;Sabrina Islam ,&nbsp;Shahriar Bin Kabir ,&nbsp;Shamima Yasmin ,&nbsp;Md. Mamun Kaysar ,&nbsp;Joy Prakash Chowdhury ,&nbsp;Md. Mahbubur Rahman","doi":"10.1016/j.clema.2025.100309","DOIUrl":"10.1016/j.clema.2025.100309","url":null,"abstract":"<div><div>Elastic recovery of polymer modified bitumen (PMB) is considered an effective parameter to evaluate its capacity to resist permanent deformation through recovering some part of load-related deformation. Conceptually, it is represented as the ratio of recovered strain (measured under zero loading after a fixed duration) to maximum strain (under loading) on a bitumen sample, using various devices and loading types. Recovery tests also indicate the presence of polymer as well as degree of polymerization. Hence, such tests can be useful as rapid quality control and verification tool during field inventory inspections by procuring agencies. Traditional method, that is, ductilometer-based Elastic Recovery (ER-DB) relies on an unwieldy large device, delicate sample preparation process, and variable true strain rate. On the other hand, Multiple Stress Creep Recovery (MSCR) test-based Percent Recovery (%R) utilizes creep-recovery from application of shear-stress on a small bitumen sample for obtaining similar information, but it requires a sophisticated and expensive device. Torsional Recovery (TR), which uses an easily portable, manually operable, quick and inexpensive setup, also relies on shear deformation and angular recovery. In the present study, TR was evaluated for its correlation with these established methods using a total of 15 PMBs, prepared with 5 types of SBS and one base bitumen. The results showed strong linear relationships, with linear regression <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> values exceeding 0.85 in many cases, especially for PMBs made with the same polymer. Notably, TR and ER-DB exhibited <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> more than 0.90, especially within SBS-type specific cases, while global correlation was found to be 0.76. In addition, it was found that TR can be reliably used for preliminary quantification of SBS-dosage with <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.88. Interestingly, Torsional recovery values show good global correlation with Dynamic Modulus values and associated parameters with <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span><math><mrow><mo>≥</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span>. In fact, SBS dosage, Torsional Recovery and Dynamic Modulus parameters also displayed excellent PMB specific correlation and reasonable global correlation. Other factors and correlations also indicate that TR results align well with existing test methods and hence, can be used for preliminary assessment of PMB quality and quantitative presence of polymer, with particular suitability for site deployment.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100309"},"PeriodicalIF":0.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143844655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydraulic concrete durability studies with the addition of two industrial byproducts, stone aggregate filler, and foundry sand: A collaborative solution for three large industries 加入两种工业副产品——石料填料和铸造砂——的水工混凝土耐久性研究:三大工业的协同解决方案
Pub Date : 2025-04-16 DOI: 10.1016/j.clema.2025.100312
Guilliana Agudelo , Carlos A. Palacio , Sergio Neves Monteiro , Henry A. Colorado
This research investigates the use of two industrial byproducts added to hydraulic concrete and their impact on its durability when metakaolin is added. The byproducts used were a stone aggregate filler from the production of asphalt concrete, and foundry sand. The environmental impact of this development is significant as it involves three large industries that collaborated for the study: concrete, metal casting, and aggregate mining, quite economically influential elsewhere but particularly in developing countries. The stone aggregate was obtained after a drying and preheating process of the stone aggregates to produce asphalt, while the foundry sand is obtained after iron smelting. The effectiveness of the additions in mortar bars was tested by the expansion measurements conducted at 25 °C. This study also aims to determine how the additions affect the expansion and the alkali-silica reaction, which could increase the concretés durability. It was found that both byproducts can be classified as type N pozzolans and that achieve an expansion reduction of 32.9 % with the aggregate filler; of 36.84 % with the foundry sand; and of 71 % with the metakaolin. The microstructure of samples was evaluated via XRD and SEM over the samples immersed in NaOH during 18 days, revealing phases such as portlandite, oligoclase, quartz, cordierite, calcite, coesite, biotite, and albite. The SEM showed some of these phases as well as, in addition to the ASR-gel (alkali-silica reaction) as a rosette around aggregates. It was found the ASR gel in all the mortars evaluated. Last, one important outcome is that this investigation was conducted as a University-Industry collaboration, enabling a real green solution for the wastes.
本文研究了在水工混凝土中添加两种工业副产物,以及添加偏高岭土对其耐久性的影响。所使用的副产品是生产沥青混凝土的石骨料填料和铸造砂。这一发展对环境的影响是重大的,因为它涉及为这项研究合作的三个大型工业:混凝土、金属铸造和集料采矿,在其他地方,特别是在发展中国家具有相当大的经济影响。石料经干燥预热制得沥青,而铸造砂则经炼铁制得。通过在25℃下进行的膨胀测试,测试了砂浆棒中添加物的有效性。本研究还旨在确定添加物如何影响膨胀和碱-硅反应,从而提高混凝土的耐久性。结果表明,两副产物均可归为N型火山灰,掺加骨料填料可使膨胀率降低32.9%;占铸造砂的36.84%;偏高岭土占71%在NaOH中浸泡18天,通过XRD和SEM对样品的微观结构进行了分析,发现样品中存在硅酸盐、低晶长石、石英、堇青石、方解石、钙辉石、黑云母和钠长石等相。扫描电镜显示了其中的一些相,以及asr -凝胶(碱-硅反应)在聚集体周围的玫瑰花状结构。在所有评估的砂浆中都发现了ASR凝胶。最后,一个重要的结果是,这项调查是作为大学与工业界合作进行的,为废物提供了真正的绿色解决方案。
{"title":"Hydraulic concrete durability studies with the addition of two industrial byproducts, stone aggregate filler, and foundry sand: A collaborative solution for three large industries","authors":"Guilliana Agudelo ,&nbsp;Carlos A. Palacio ,&nbsp;Sergio Neves Monteiro ,&nbsp;Henry A. Colorado","doi":"10.1016/j.clema.2025.100312","DOIUrl":"10.1016/j.clema.2025.100312","url":null,"abstract":"<div><div>This research investigates the use of two industrial byproducts added to hydraulic concrete and their impact on its durability when metakaolin is added. The byproducts used were a stone aggregate filler from the production of asphalt concrete, and foundry sand. The environmental impact of this development is significant as it involves three large industries that collaborated for the study: concrete, metal casting, and aggregate mining, quite economically influential elsewhere but particularly in developing countries. The stone aggregate was obtained after a drying and preheating process of the stone aggregates to produce asphalt, while the foundry sand is obtained after iron smelting. The effectiveness of the additions in mortar bars was tested by the expansion measurements conducted at 25 °C. This study also aims to determine how the additions affect the expansion and the alkali-silica reaction, which could increase the concretés durability. It was found that both byproducts can be classified as type N pozzolans and that achieve an expansion reduction of 32.9 % with the aggregate filler; of 36.84 % with the foundry sand; and of 71 % with the metakaolin. The microstructure of samples was evaluated via XRD and SEM over the samples immersed in NaOH during 18 days, revealing phases such as portlandite, oligoclase, quartz, cordierite, calcite, coesite, biotite, and albite. The SEM showed some of these phases as well as, in addition to the ASR-gel (alkali-silica reaction) as a rosette around aggregates. It was found the ASR gel in all the mortars evaluated. Last, one important outcome is that this investigation was conducted as a University-Industry collaboration, enabling a real green solution for the wastes.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100312"},"PeriodicalIF":0.0,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on multilayered natural-fibre composite reinforcement in geopolymer concrete 多层天然纤维复合材料在地聚合物混凝土中的应用综述
Pub Date : 2025-04-13 DOI: 10.1016/j.clema.2025.100310
Shyamkumar Mani , Pachaivannan Partheeban , C. Chella Gifta
Amid growing environmental concerns in India regarding the substantial CO2 emissions from Portland cement, accounting for 5 to 8 % of total emissions, the development of Geopolymer concrete (GPC) emerged as a long-term substitute. The study aims to review the research works on geopolymer concrete fortified with diverse elements like GGBFS, nanomaterials, and natural Fibres. The research employs a multidisciplinary methodology, encompassing a comprehensive assessment of previous experimental studies conducted by the investigators to examine the mechanical and structural characteristics, as well as the durability and microstructural aspects, of composite materials used in the production of geopolymer concrete. Materials under investigation include Fly ash, GGBFS, Nanoclay, bamboo, sisal, and hemp fibres. Findings from the literature review reveal that compared to a control mix, the notable improvements in compressive, tensile, and flexural strength by integrating GGBFS and Nanoclay are 15 %, 27 %, and 106 %, respectively. Adding hemp fibres at 5 % volume fraction, Fly ash, and GGBFS amplifies the water absorption capacity by 20 %. Sisal fibre was utilized as reinforcement in glass composites to develop a multilayered sisal-glass composite in polyester matrix optimal configuration (4 glass and 9 sisal layers) demonstrated excellent mechanical properties, including a tensile strength of 57.60 MPa, flexural strength of 36 N/mm2, and 10 % moisture absorption, offering superior performance and cost-effectiveness. The findings highlight the effectiveness of strategic fibre layering in enhancing composite strength and cost efficiency. Natural fibres like hemp, bamboo, and sisal also improve the composites hardness and tensile characteristics. These consequences highlight the possibility of incorporating supplementary materials in geopolymer concrete, offering substantial improvements in mechanical and durability, environmental sustainability, and cost-effective construction solutions.
由于波特兰水泥的二氧化碳排放量占总排放量的5%至8%,印度的环境问题日益严重,因此地聚合物混凝土(GPC)的发展成为一种长期替代品。本研究旨在回顾用GGBFS、纳米材料和天然纤维等不同元素加固地聚合物混凝土的研究工作。该研究采用多学科方法,包括对研究人员先前进行的实验研究的综合评估,以检查用于生产地聚合物混凝土的复合材料的机械和结构特性,以及耐久性和微观结构方面。正在调查的材料包括粉煤灰、GGBFS、纳米粘土、竹子、剑麻和大麻纤维。文献综述的研究结果显示,与对照混合物相比,GGBFS和Nanoclay在抗压、抗拉和抗弯强度方面的显著提高分别为15%、27%和106%。添加5%体积分数的大麻纤维、粉煤灰和GGBFS,吸水能力提高20%。将剑麻纤维作为玻璃复合材料的增强材料,在聚酯基体中开发出多层剑麻-玻璃复合材料的最佳配置(4层玻璃和9层剑麻),具有优异的机械性能,包括抗拉强度为57.60 MPa,抗弯强度为36 N/mm2,吸湿率为10%,具有卓越的性能和成本效益。研究结果强调了战略纤维分层在提高复合材料强度和成本效率方面的有效性。天然纤维如麻、竹、剑麻也能提高复合材料的硬度和拉伸性能。这些结果突出了在地聚合物混凝土中加入补充材料的可能性,在机械和耐用性、环境可持续性和经济高效的建筑解决方案方面提供了实质性的改进。
{"title":"A comprehensive review on multilayered natural-fibre composite reinforcement in geopolymer concrete","authors":"Shyamkumar Mani ,&nbsp;Pachaivannan Partheeban ,&nbsp;C. Chella Gifta","doi":"10.1016/j.clema.2025.100310","DOIUrl":"10.1016/j.clema.2025.100310","url":null,"abstract":"<div><div>Amid growing environmental concerns in India regarding the substantial CO<sub>2</sub> emissions from Portland cement, accounting for 5 to 8 % of total emissions, the development of Geopolymer concrete (GPC) emerged as a long-term substitute. The study aims to review the research works on geopolymer concrete fortified with diverse elements like GGBFS, nanomaterials, and natural Fibres. The research employs a multidisciplinary methodology, encompassing a comprehensive assessment of previous experimental studies conducted by the investigators to examine the mechanical and structural characteristics, as well as the durability and microstructural aspects, of composite materials used in the production of geopolymer concrete. Materials under investigation include Fly ash, GGBFS, Nanoclay, bamboo, sisal, and hemp fibres. Findings from the literature review reveal that compared to a control mix, the notable improvements in compressive, tensile, and flexural strength by integrating GGBFS and Nanoclay are 15 %, 27 %, and 106 %, respectively. Adding hemp fibres at 5 % volume fraction, Fly ash, and GGBFS amplifies the water absorption capacity by 20 %. Sisal fibre was utilized as reinforcement in glass composites to develop a multilayered sisal-glass composite in polyester matrix optimal configuration (4 glass and 9 sisal layers) demonstrated excellent mechanical properties, including a tensile strength of 57.60 MPa, flexural strength of 36 N/mm<sup>2</sup>, and 10 % moisture absorption, offering superior performance and cost-effectiveness. The findings highlight the effectiveness of strategic fibre layering in enhancing composite strength and cost efficiency. Natural fibres like hemp, bamboo, and sisal also improve the composites hardness and tensile characteristics. These consequences highlight the possibility of incorporating supplementary materials in geopolymer concrete, offering substantial improvements in mechanical and durability, environmental sustainability, and cost-effective construction solutions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100310"},"PeriodicalIF":0.0,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143839188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological properties and microscopic characterization of high viscosity asphalt with different warm mixing agents 不同温拌剂对高粘度沥青流变特性及微观表征的影响
Pub Date : 2025-03-31 DOI: 10.1016/j.clema.2025.100308
Dian Huo , Hang Diao , Beian Li , Yuzhu Liang , Tianqing Ling , Wenjing Kuang
The pursuit of low carbon and clean sustainable development in road construction is imperative, and warm mix asphalt technology can help the transition from traditional high carbon emission paving materials to cleaner paving materials, thereby promoting the realization of sustainable development of road materials. The objective of this study is to examine the impact patterns of USP (a novel warm-mix additive) and Sasobit, both as individual entities and in combination, on the rheological and conventional characteristics of high viscosity asphalt. Additionally, the study seeks to delve into the mechanisms of action underlying these two distinct categories of warm-mix additives. The results of the research indicate that both warm-mix additives are effective in reducing temperatures when used alone or in combination. When used alone, USP shows significant advantages in low temperature performance, superior to both conventional hot mix asphalt and Sasobit warm-mix asphalt. The high temperature performance of USP modified asphalt is closely related to its dosage. On the other hand, the use of Sasobit alone can improve the high-temperature performance and creep recovery properties of high viscosity asphalt, but results in a decrease in low-temperature performance. When USP is blended with Sasobit, the resulting asphalt exhibits both good high and low temperature performance, with a significant improvement in aging resistance observed in the 5% USP and 2.5% Sasobit group. In conclusion, in order to ensure that warm-mix additives have a beneficial effect on the properties of high viscosity asphalt, the combined use of multiple warm-mix additives can be considered comprehensively to achieve a balance between low carbon emissions and excellent performance.
道路建设追求低碳、清洁的可持续发展势在必行,温拌沥青技术可以帮助从传统的高碳排放铺装材料向更清洁的铺装材料过渡,从而促进道路材料可持续发展的实现。本研究的目的是研究USP(一种新型热混合添加剂)和Sasobit对高粘度沥青流变学和常规特性的影响模式,无论是单独的实体还是组合。此外,该研究旨在深入研究这两种不同类别的热混合添加剂的作用机制。研究结果表明,两种热混合添加剂单独使用或联合使用均能有效降低温度。单独使用时,USP在低温性能方面具有显著优势,优于常规热拌沥青和Sasobit温拌沥青。USP改性沥青的高温性能与其掺量密切相关。另一方面,单独使用Sasobit可以提高高粘度沥青的高温性能和蠕变恢复性能,但导致低温性能下降。当USP与Sasobit混合时,所得到的沥青具有良好的高低温性能,其中5% USP和2.5% Sasobit组的耐老化性能显著提高。综上所述,为确保热拌添加剂对高粘度沥青的性能产生有利影响,可综合考虑多种热拌添加剂的联合使用,以实现低碳排放与优异性能之间的平衡。
{"title":"Rheological properties and microscopic characterization of high viscosity asphalt with different warm mixing agents","authors":"Dian Huo ,&nbsp;Hang Diao ,&nbsp;Beian Li ,&nbsp;Yuzhu Liang ,&nbsp;Tianqing Ling ,&nbsp;Wenjing Kuang","doi":"10.1016/j.clema.2025.100308","DOIUrl":"10.1016/j.clema.2025.100308","url":null,"abstract":"<div><div>The pursuit of low carbon and clean sustainable development in road construction is imperative, and warm mix asphalt technology can help the transition from traditional high carbon emission paving materials to cleaner paving materials, thereby promoting the realization of sustainable development of road materials. The objective of this study is to examine the impact patterns of USP (a novel warm-mix additive) and Sasobit, both as individual entities and in combination, on the rheological and conventional characteristics of high viscosity asphalt. Additionally, the study seeks to delve into the mechanisms of action underlying these two distinct categories of warm-mix additives. The results of the research indicate that both warm-mix additives are effective in reducing temperatures when used alone or in combination. When used alone, USP shows significant advantages in low temperature performance, superior to both conventional hot mix asphalt and Sasobit warm-mix asphalt. The high temperature performance of USP modified asphalt is closely related to its dosage. On the other hand, the use of Sasobit alone can improve the high-temperature performance and creep recovery properties of high viscosity asphalt, but results in a decrease in low-temperature performance. When USP is blended with Sasobit, the resulting asphalt exhibits both good high and low temperature performance, with a significant improvement in aging resistance observed in the 5% USP and 2.5% Sasobit group. In conclusion, in order to ensure that warm-mix additives have a beneficial effect on the properties of high viscosity asphalt, the combined use of multiple warm-mix additives can be considered comprehensively to achieve a balance between low carbon emissions and excellent performance.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100308"},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143791141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1