首页 > 最新文献

Cleaner Materials最新文献

英文 中文
Self-cleaning stone Façades using TiO2 Microwave-Synthesised Coatings
Pub Date : 2025-01-11 DOI: 10.1016/j.clema.2025.100294
David Henriques Bento , Maria Leonor Matias , Maria Magalhães , Catarina Quitério , Ana Pimentel , Dora Sousa , Pedro Amaral , Carlos Galhano , Elvira Fortunato , Rodrigo Martins , Daniela Nunes
This study explores the development and characterization of self-cleaning coatings using titanium dioxide (TiO2) nanoparticles for natural stone façades, particularly limestone. An energy-efficient, eco-friendly, fast (30 min), and low temperature (110 °C) microwave-assisted solvothermal method is reported for synthesising TiO2 nanoparticles. These nanoparticles were integrated into coatings that were further applied to limestone substrates via spray-coating, maintaining the stone’s appearance while enhancing its self-cleaning properties. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), UV–VIS spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis were used to fully characterize the nanopowder. The anatase phase of TiO2 nanoparticles and a band gap energy of about 3.24 eV were confirmed. SEM and STEM observations revealed that the nanopowder is formed by spherical particles with very fine nanocrystals highly agglomerated, however ensuing a high specific surface area of 199 m2/g. The self-cleaning properties of the coated limestone were assessed using static contact angle measurements. The results showed a significant enhancement in hydrophilicity, with the static contact angle of the coated limestone substrate reducing to nearly zero even without UV exposure, indicating complete wettability. The coating was also subjected to adhesion tests, confirming the presence of TiO2 nanoparticles even after multiple cycles. The photocatalytic activity of the developed coating was evaluated using rhodamine B and methyl orange as model pollutants under solar radiation. The coating effectively degraded both model pollutants, and the photocatalytic cycling tests revealed a stable performance after multiple cycles. This research provides a promising approach for creating sustainable and low-maintenance building materials, contributing to preserving natural stone façades and reducing environmental impact in the construction industry.
{"title":"Self-cleaning stone Façades using TiO2 Microwave-Synthesised Coatings","authors":"David Henriques Bento ,&nbsp;Maria Leonor Matias ,&nbsp;Maria Magalhães ,&nbsp;Catarina Quitério ,&nbsp;Ana Pimentel ,&nbsp;Dora Sousa ,&nbsp;Pedro Amaral ,&nbsp;Carlos Galhano ,&nbsp;Elvira Fortunato ,&nbsp;Rodrigo Martins ,&nbsp;Daniela Nunes","doi":"10.1016/j.clema.2025.100294","DOIUrl":"10.1016/j.clema.2025.100294","url":null,"abstract":"<div><div>This study explores the development and characterization of self-cleaning coatings using titanium dioxide (TiO<sub>2</sub>) nanoparticles for natural stone façades, particularly limestone. An energy-efficient, eco-friendly, fast (30 min), and low temperature (110 °C) microwave-assisted solvothermal method is reported for synthesising TiO<sub>2</sub> nanoparticles. These nanoparticles were integrated into coatings that were further applied to limestone substrates via spray-coating, maintaining the stone’s appearance while enhancing its self-cleaning properties. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), UV–VIS spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis were used to fully characterize the nanopowder. The anatase phase of TiO<sub>2</sub> nanoparticles and a band gap energy of about 3.24 eV were confirmed. SEM and STEM observations revealed that the nanopowder is formed by spherical particles with very fine nanocrystals highly agglomerated, however ensuing a high specific surface area of 199 m<sup>2</sup>/g. The self-cleaning properties of the coated limestone were assessed using static contact angle measurements. The results showed a significant enhancement in hydrophilicity, with the static contact angle of the coated limestone substrate reducing to nearly zero even without UV exposure, indicating complete wettability. The coating was also subjected to adhesion tests, confirming the presence of TiO<sub>2</sub> nanoparticles even after multiple cycles. The photocatalytic activity of the developed coating was evaluated using rhodamine B and methyl orange as model pollutants under solar radiation. The coating effectively degraded both model pollutants, and the photocatalytic cycling tests revealed a stable performance after multiple cycles. This research provides a promising approach for creating sustainable and low-maintenance building materials, contributing to preserving natural stone façades and reducing environmental impact in the construction industry.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100294"},"PeriodicalIF":0.0,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fiber-reinforced geopolymers made with recycled aggregates for screed flooring and repair applications
Pub Date : 2025-01-08 DOI: 10.1016/j.clema.2025.100293
Joud Hwalla , Hilal El-Hassan , Joseph J. Assaad , Tamer El-Maaddawy
The increase in greenhouse gas emissions from cement production, along with limited landfill capacity for construction waste, has driven research into finding sustainable alternatives to replace cement and natural aggregates. While cement replacement with geopolymeric binders in mortar and concrete has been proven feasible, replacing natural aggregates with recycled counterparts has led to performance losses. To offset this drawback, different additives, including fibers, have been incorporated into such construction materials. This study evaluates the feasibility of using steel fiber (SF)-reinforced geopolymer (GP) composites incorporating recycled fine aggregates (RFA) for screed flooring and repair applications. GP mixes were prepared with RFA mass substitution up to 100 %, alongside SF volume of 0.5 % and 1 %. Flow values of 125 ± 25 mm were attained within 35 to 70 min. The 7-day compressive strength of GP composites reached 74.0 % to 96.2 % of their 28-day values. RFA substitution reduced compressive strength, elastic modulus, tensile strength, pull-off bond strength, and energy absorption and increased impact indentation and abrasion mass loss by up to 56, 69, 60, 23, 68, 266, and 2025 %, respectively. Conversely, SF addition improved most of these properties except for compressive and pull-off bond strength, which slightly decreased. GP composites made with 0 %, 25 %, and 50 % RFA satisfied the strength requirements for use in structural repair, while those with higher RFA replacement were suitable for non-structural use. Based on BS 8204, GP mixes were categorized as Category A screed flooring except the plain mix made with 100 % RFA, which was categorized as Category B.
{"title":"Fiber-reinforced geopolymers made with recycled aggregates for screed flooring and repair applications","authors":"Joud Hwalla ,&nbsp;Hilal El-Hassan ,&nbsp;Joseph J. Assaad ,&nbsp;Tamer El-Maaddawy","doi":"10.1016/j.clema.2025.100293","DOIUrl":"10.1016/j.clema.2025.100293","url":null,"abstract":"<div><div>The increase in greenhouse gas emissions from cement production, along with limited landfill capacity for construction waste, has driven research into finding sustainable alternatives to replace cement and natural aggregates. While cement replacement with geopolymeric binders in mortar and concrete has been proven feasible, replacing natural aggregates with recycled counterparts has led to performance losses. To offset this drawback, different additives, including fibers, have been incorporated into such construction materials. This study evaluates the feasibility of using steel fiber (SF)-reinforced geopolymer (GP) composites incorporating recycled fine aggregates (RFA) for screed flooring and repair applications. GP mixes were prepared with RFA mass substitution up to 100 %, alongside SF volume of 0.5 % and 1 %. Flow values of 125 ± 25 mm were attained within 35 to 70 min. The 7-day compressive strength of GP composites reached 74.0 % to 96.2 % of their 28-day values. RFA substitution reduced compressive strength, elastic modulus, tensile strength, pull-off bond strength, and energy absorption and increased impact indentation and abrasion mass loss by up to 56, 69, 60, 23, 68, 266, and 2025 %, respectively. Conversely, SF addition improved most of these properties except for compressive and pull-off bond strength, which slightly decreased. GP composites made with 0 %, 25 %, and 50 % RFA satisfied the strength requirements for use in structural repair, while those with higher RFA replacement were suitable for non-structural use. Based on BS 8204, GP mixes were categorized as Category A screed flooring except the plain mix made with 100 % RFA, which was categorized as Category B.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100293"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concrete carbon mixing – A systematic review on the processes and their effects on the material performance
Pub Date : 2025-01-05 DOI: 10.1016/j.clema.2025.100292
Marco Davolio, Giovanni Muciaccia, Liberato Ferrara
The need for concrete industry to meet the climate neutrality target raised the attention towards carbon capture and utilization (CCU) technologies. Among the various solutions, cementitious materials can benefit from enforced carbonation, a thermodynamically stable reaction that permanently sequesters carbon dioxide into cement compounds. A possible enforced carbonation process is concrete carbon mixing, which involves the addition of pumping systems into concrete production lines to inject carbon dioxide into the material while in a fresh state. Various studies attempted to improve the efficiency of the process and to increase the quantity of fixed carbon dioxide. The current literature was systematically analysed to provide an overview of process parameters, possible injection systems, and properties of carbonated cementitious products. The studies were classified according to the injection stage: carbonation of the mixing water, carbonation of the cement slurry, or injection during concrete mixing with all the components. Concrete carbon mixing has proven to be promising for carbon dioxide sequestration through enforced carbonation, as the injection process enhanced the properties of the final product in most instances. In addition, other relevant aspects of carbon dioxide sequestration processes were discussed. Firstly, the methods and formulations to determine the CO2 uptake were presented together with cross-comparison studies. Moreover, the methodological aspects of life cycle assessment (LCA) applied to concrete carbon mixing processes were discussed, showing the lack of systematic studies. In conclusion, simplified evaluations demonstrated the economic viability of carbon dioxide injection in fresh concrete, supporting future industrial deployment and discussing the challenges for the upscaling.
{"title":"Concrete carbon mixing – A systematic review on the processes and their effects on the material performance","authors":"Marco Davolio,&nbsp;Giovanni Muciaccia,&nbsp;Liberato Ferrara","doi":"10.1016/j.clema.2025.100292","DOIUrl":"10.1016/j.clema.2025.100292","url":null,"abstract":"<div><div>The need for concrete industry to meet the climate neutrality target raised the attention towards carbon capture and utilization (CCU) technologies. Among the various solutions, cementitious materials can benefit from enforced carbonation, a thermodynamically stable reaction that permanently sequesters carbon dioxide into cement compounds. A possible enforced carbonation process is concrete carbon mixing, which involves the addition of pumping systems into concrete production lines to inject carbon dioxide into the material while in a fresh state. Various studies attempted to improve the efficiency of the process and to increase the quantity of fixed carbon dioxide. The current literature was systematically analysed to provide an overview of process parameters, possible injection systems, and properties of carbonated cementitious products. The studies were classified according to the injection stage: carbonation of the mixing water, carbonation of the cement slurry, or injection during concrete mixing with all the components. Concrete carbon mixing has proven to be promising for carbon dioxide sequestration through enforced carbonation, as the injection process enhanced the properties of the final product in most instances. In addition, other relevant aspects of carbon dioxide sequestration processes were discussed. Firstly, the methods and formulations to determine the CO<sub>2</sub> uptake were presented together with cross-comparison studies. Moreover, the methodological aspects of life cycle assessment (LCA) applied to concrete carbon mixing processes were discussed, showing the lack of systematic studies. In conclusion, simplified evaluations demonstrated the economic viability of carbon dioxide injection in fresh concrete, supporting future industrial deployment and discussing the challenges for the upscaling.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100292"},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing double-layer rubber composites for eco-friendly laminates: A thermal-mechanical characterization
Pub Date : 2024-12-25 DOI: 10.1016/j.clema.2024.100290
Thanwit Naemsai , Chatree Homkhiew , Theerawat Petdee , Chainarong Srivabut
This study investigated the optimal design of double-layer rubber composites for eco-friendly laminates. A comprehensive methodology was used, combining material selection, manufacturing processes, and structural optimization to create composites with improved conductivity, strength, durability, and environmental sustainability. The Box-Behnken design methodology was utilized to optimize the formulation of these composites, yielding an optimal solution characterized by a desirability score of 0.714. This optimal formulation consists of a blowing agent content of 12 parts per hundred rubber (phr), wood sawdust content of 80 phr, and a processing temperature of 110 °C. The projected performance characteristics for this optimal composite formulation include a thermal conductivity of 0.023 watts per meter-kelvin (W/mK), a peeling force of 0.728 kN, a puncture force of 97.84 N, and a shearing force of 0.344 kN. Furthermore, an analysis of dimensionless parameters identified a favorable thickness ratio of 0.5 for the double-layer laminate wall panels, which corresponds to a total thickness of 10 mm. This finding is consistent with the principles of green building, facilitating resource efficiency. By adopting a holistic design approach, this study demonstrates a viable strategy for developing high-performance and sustainable double-layer rubber composites tailored for eco-friendly laminates, thus contributing to advancements in green building solutions.
{"title":"Optimizing double-layer rubber composites for eco-friendly laminates: A thermal-mechanical characterization","authors":"Thanwit Naemsai ,&nbsp;Chatree Homkhiew ,&nbsp;Theerawat Petdee ,&nbsp;Chainarong Srivabut","doi":"10.1016/j.clema.2024.100290","DOIUrl":"10.1016/j.clema.2024.100290","url":null,"abstract":"<div><div>This study investigated the optimal design of double-layer rubber composites for eco-friendly laminates. A comprehensive methodology was used, combining material selection, manufacturing processes, and structural optimization to create composites with improved conductivity, strength, durability, and environmental sustainability. The Box-Behnken design methodology was utilized to optimize the formulation of these composites, yielding an optimal solution characterized by a desirability score of 0.714. This optimal formulation consists of a blowing agent content of 12 parts per hundred rubber (phr), wood sawdust content of 80 phr, and a processing temperature of 110 °C. The projected performance characteristics for this optimal composite formulation include a thermal conductivity of 0.023 watts per meter-kelvin (W/mK), a peeling force of 0.728 kN, a puncture force of 97.84 N, and a shearing force of 0.344 kN. Furthermore, an analysis of dimensionless parameters identified a favorable thickness ratio of 0.5 for the double-layer laminate wall panels, which corresponds to a total thickness of 10 mm. This finding is consistent with the principles of green building, facilitating resource efficiency. By adopting a holistic design approach, this study demonstrates a viable strategy for developing high-performance and sustainable double-layer rubber composites tailored for eco-friendly laminates, thus contributing to advancements in green building solutions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100290"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waste plastic management: Recycling and the environmental health nexus
Pub Date : 2024-12-25 DOI: 10.1016/j.clema.2024.100291
Sodiq Adeyeye Nafiu , Musa O. Azeez , Khaled M. AlAqad , Taofiq Abdulraheem Olarewaju , Emmanuel Amuntse Yerima , Abdulkadir Tanimu
The increasing production of plastic materials and their subsequent disposal as waste have necessitated the development of effective waste management strategies. Among various approaches, the recycling of plastic waste has gained significant attention as an environmentally friendly alternative to landfilling and incineration. This manuscript explores the different methods of plastic recycling and their associated environmental and health impacts. Despite its economic advantages, mechanical recycling poses environmental and health risks, particularly due to the release of microplastics. These microplastics can contaminate the environment and enter the human body through inhalation and ingestion, leading to potential health hazards. Thus, strategies for mitigating microplastic pollution, including advanced sorting technologies and the implementation of IoT and RFID systems for efficient waste management were discussed. Furthermore, the environmental impacts of chemical recycling processes, especially concerning toxic chemical additives and greenhouse gas emissions, are examined. The findings highlight the need for improved waste management practices and the adoption of mitigation measures to reduce the environmental footprint of plastic waste recycling and promote public health.
{"title":"Waste plastic management: Recycling and the environmental health nexus","authors":"Sodiq Adeyeye Nafiu ,&nbsp;Musa O. Azeez ,&nbsp;Khaled M. AlAqad ,&nbsp;Taofiq Abdulraheem Olarewaju ,&nbsp;Emmanuel Amuntse Yerima ,&nbsp;Abdulkadir Tanimu","doi":"10.1016/j.clema.2024.100291","DOIUrl":"10.1016/j.clema.2024.100291","url":null,"abstract":"<div><div>The increasing production of plastic materials and their subsequent disposal as waste have necessitated the development of effective waste management strategies. Among various approaches, the recycling of plastic waste has gained significant attention as an environmentally friendly alternative to landfilling and incineration. This manuscript explores the different methods of plastic recycling and their associated environmental and health impacts. Despite its economic advantages, mechanical recycling poses environmental and health risks, particularly due to the release of microplastics. These microplastics can contaminate the environment and enter the<!--> <!-->human body through inhalation and ingestion, leading to potential health hazards. Thus, strategies for mitigating microplastic pollution, including advanced sorting technologies and the implementation of IoT and RFID systems for efficient waste management were discussed. Furthermore, the environmental impacts of chemical recycling processes, especially concerning toxic chemical additives and greenhouse gas emissions, are examined. The findings highlight the need for improved waste management practices and the adoption of mitigation measures to reduce the environmental footprint of plastic waste recycling and promote public health.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100291"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycling of mine tailings as supplementary cementitious material: Impact of mine tailings’ mineralogy on hydration behaviour and phase assemblage of Ordinary Portland cement blends
Pub Date : 2024-12-19 DOI: 10.1016/j.clema.2024.100288
Godfrey Mawire , Robbie McDonald , Peter Austin , Abhijit Mukherjee , Lionel Esteban , Navdeep K Dhami
This study investigated the influence of mineral tailings’ mineralogy on hydration behaviour and phase assemblage of cured cement in ternary blends comprising Ordinary Portland cement (OPC), blast furnace slag (BFS) and tailings. The identification and quantification of mineral phases was achieved through Quantitative X-ray diffraction (QXRD) analysis, while the evaluation of mineral thermal stability was conducted using thermogravimetric analysis with mass spectrometry (TGA-MS). Isothermal calorimetry revealed that the tailings influenced the OPC heat flow profile during early-stage hydration, with minerals like dehydroxylated Fe-chlorite and alunite hydraulic properties contributing to the early-stage reaction mechanism. The bulk slow-reacting minerals in the tailings affected both the phase assemblage and the hydration mechanism of OPC by releasing elemental species that could be incorporated in the C-S-H phases. The chemical composition of the C-S-H formed in the blended cement varied and had a low Ca/Si ratio < 1.3, enabling guest elements to be incorporated. Correlative Electron Microscopy Automated Mineralogy (CEM-AM) was utilised to analyse and map the distribution of the secondary C-S-H phases within the paste matrix. The findings give insight into the nature of hydrates formed in a ternary blend with tailings, which directly affect the cured cement’s performance and service life properties.
{"title":"Recycling of mine tailings as supplementary cementitious material: Impact of mine tailings’ mineralogy on hydration behaviour and phase assemblage of Ordinary Portland cement blends","authors":"Godfrey Mawire ,&nbsp;Robbie McDonald ,&nbsp;Peter Austin ,&nbsp;Abhijit Mukherjee ,&nbsp;Lionel Esteban ,&nbsp;Navdeep K Dhami","doi":"10.1016/j.clema.2024.100288","DOIUrl":"10.1016/j.clema.2024.100288","url":null,"abstract":"<div><div>This study investigated the influence of mineral tailings’ mineralogy on hydration behaviour and phase assemblage of cured cement in ternary blends comprising Ordinary Portland cement (OPC), blast furnace slag (BFS) and tailings. The identification and quantification of mineral phases was achieved through Quantitative X-ray diffraction (QXRD) analysis, while the evaluation of mineral thermal stability was conducted using thermogravimetric analysis with mass spectrometry (TGA-MS). Isothermal calorimetry revealed that the tailings influenced the OPC heat flow profile during early-stage hydration, with minerals like dehydroxylated Fe-chlorite and alunite hydraulic properties contributing to the early-stage reaction mechanism. The bulk slow-reacting minerals in the tailings affected both the phase assemblage and the hydration mechanism of OPC by releasing elemental species that could be incorporated in the C-S-H phases. The chemical composition of the C-S-H formed in the blended cement varied and had a low Ca/Si ratio &lt; 1.3, enabling guest elements to be incorporated. Correlative Electron Microscopy Automated Mineralogy (CEM-AM) was utilised to analyse and map the distribution of the secondary C-S-H phases within the paste matrix. The findings give insight into the nature of hydrates formed in a ternary blend with tailings, which directly affect the cured cement’s performance and service life properties.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100288"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and property study of geopolymer composite fireproof coating with PVA fiber and manganese slag
Pub Date : 2024-12-16 DOI: 10.1016/j.clema.2024.100289
Zhenyu Zhou , Chenxi Zeng , Hongqing Wei , Yanhuai Ding
Geopolymers have garnered widespread attention due to their excellent mechanical properties, durability, and fire resistance. In this paper, we have conducted the design of a geopolymer coating, incorporating a specific proportion of solid waste manganese slag and polyvinyl alcohol (PVA) fibers. The geopolymer serves to stabilize the manganese slag, while the PVA fibers enhance the mechanical properties of the coating. The results demonstrate that the composite geopolymer coating becomes dense at high temperatures, exhibiting outstanding fire-resistant characteristics. Furthermore, the coating significantly enhances the mechanical performance of wood specimens, indicating promising application prospects in the field of building material fire protection.
{"title":"Preparation and property study of geopolymer composite fireproof coating with PVA fiber and manganese slag","authors":"Zhenyu Zhou ,&nbsp;Chenxi Zeng ,&nbsp;Hongqing Wei ,&nbsp;Yanhuai Ding","doi":"10.1016/j.clema.2024.100289","DOIUrl":"10.1016/j.clema.2024.100289","url":null,"abstract":"<div><div>Geopolymers have garnered widespread attention due to their excellent mechanical properties, durability, and fire resistance. In this paper, we have conducted the design of a geopolymer coating, incorporating a specific proportion of solid waste manganese slag and polyvinyl alcohol (PVA) fibers. The geopolymer serves to stabilize the manganese slag, while the PVA fibers enhance the mechanical properties of the coating. The results demonstrate that the composite geopolymer coating becomes dense at high temperatures, exhibiting outstanding fire-resistant characteristics. Furthermore, the coating significantly enhances the mechanical performance of wood specimens, indicating promising application prospects in the field of building material fire protection.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100289"},"PeriodicalIF":0.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized biochar from vegetable waste for phosphorus removal from aqueous solution and its potential use as a slow-release fertilizer
Pub Date : 2024-12-16 DOI: 10.1016/j.clema.2024.100287
Rajesh Chanda , Toslim Jahid , Anik Karmokar , Bejoy Hossain , Md. Moktadir , Md. Saiful Islam , Nirupam Aich , Biplob Kumar Biswas
Agricultural runoff of phosphorus leads to the loss of this critical nutrient into the waterbodies and causes environmental problems like eutrophication. To tackle the growing concern, functionalized biochar as an adsorbent provides a sustainable method to capture the phosphorus from wastewater. Additionally, the P-laden biochar as a slow-release fertilizer improves plant nutrient uptake and crop yield. In this work, metal chloride-doped biochar derived from non-edible vegetable waste was prepared and applied as an adsorbent. Zinc chloride-doped biochar (ZBC) showed a better phosphorus adsorption capacity of 47.83 mg/g among the prepared biochar. The desorption study suggested that around 42 % of total adsorbed P was released within 336 h. The growth of mung plants over 70 days was monitored, along with mung bean yield, to assess the effectiveness of P-laden ZBC as a slow-release phosphorus fertilizer. The presented approach of non-edible waste valorization into slow-release fertilizer could contribute to tackling nutrient depletion and achieving a circular economy.
{"title":"Functionalized biochar from vegetable waste for phosphorus removal from aqueous solution and its potential use as a slow-release fertilizer","authors":"Rajesh Chanda ,&nbsp;Toslim Jahid ,&nbsp;Anik Karmokar ,&nbsp;Bejoy Hossain ,&nbsp;Md. Moktadir ,&nbsp;Md. Saiful Islam ,&nbsp;Nirupam Aich ,&nbsp;Biplob Kumar Biswas","doi":"10.1016/j.clema.2024.100287","DOIUrl":"10.1016/j.clema.2024.100287","url":null,"abstract":"<div><div>Agricultural runoff of phosphorus leads to the loss of this critical nutrient into the waterbodies and causes environmental problems like eutrophication. To tackle the growing concern, functionalized biochar as an adsorbent provides a sustainable method to capture the phosphorus from wastewater. Additionally, the P-laden biochar as a slow-release fertilizer improves plant nutrient uptake and crop yield. In this work, metal chloride-doped biochar derived from non-edible vegetable waste was prepared and applied as an adsorbent. Zinc chloride-doped biochar (ZBC) showed a better phosphorus adsorption capacity of 47.83 mg/g among the prepared biochar. The desorption study suggested that around 42 % of total adsorbed P was released within 336 h. The growth of mung plants over 70 days was monitored, along with mung bean yield, to assess the effectiveness of P-laden ZBC as a slow-release phosphorus fertilizer. The presented approach of non-edible waste valorization into slow-release fertilizer could contribute to tackling nutrient depletion and achieving a circular economy.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100287"},"PeriodicalIF":0.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The engineering performance of EICP-modified municipal solid waste incineration bottom ash for road construction
Pub Date : 2024-12-11 DOI: 10.1016/j.clema.2024.100285
Zeng Yuan , Tingjun Wu , Linbing Wang , Yucheng Huang , Qiang Tang
Municipal solid waste incineration bottom ash (MSWIBA) emerges as a potential alternative to natural aggregates due to its similar mineral composition and engineering properties as embanking fillings. However, the instability and environmental pollution risks of MSWIBA limit its large-scale application. This study proposes to employ Enzyme Induced Carbonate Precipitation (EICP) technology to enhance the mechanical properties of MSWIBA and reduce its environmental impact. Initial analyses focused on the basic physicochemical properties and morphological changes of MSWIBA before and after modification. Then the modified MSWIBA exhibited improvements in shear resistance, resilient modulus, and permanent deformation behavior. It was also found that existing resilient modulus and permanent deformation predicting models for soils are applicable to EICP-modified MSWIBA. The column leaching tests were conducted on samples subjected and not subjected to freeze–thaw and dry-wet cycles. The results revealed the modified MSWIBA released reduced heavy metal concentrations in both water and acid leaches. These findings establish a solid theoretical foundation for employing EICP-modified MSWIBA as an embankment fill material, highlighting the potential for wider adoption of this eco-friendly alternative in road constructions.
{"title":"The engineering performance of EICP-modified municipal solid waste incineration bottom ash for road construction","authors":"Zeng Yuan ,&nbsp;Tingjun Wu ,&nbsp;Linbing Wang ,&nbsp;Yucheng Huang ,&nbsp;Qiang Tang","doi":"10.1016/j.clema.2024.100285","DOIUrl":"10.1016/j.clema.2024.100285","url":null,"abstract":"<div><div>Municipal solid waste incineration bottom ash (MSWIBA) emerges as a potential alternative to natural aggregates due to its similar mineral composition and engineering properties as embanking fillings. However, the instability and environmental pollution risks of MSWIBA limit its large-scale application. This study proposes to employ Enzyme Induced Carbonate Precipitation (EICP) technology to enhance the mechanical properties of MSWIBA and reduce its environmental impact. Initial analyses focused on the basic physicochemical properties and morphological changes of MSWIBA before and after modification. Then the modified MSWIBA exhibited improvements in shear resistance, resilient modulus, and permanent deformation behavior. It was also found that existing resilient modulus and permanent deformation predicting models for soils are applicable to EICP-modified MSWIBA. The column leaching tests were conducted on samples subjected and not subjected to freeze–thaw and dry-wet cycles. The results revealed the modified MSWIBA released reduced heavy metal concentrations in both water and acid leaches. These findings establish a solid theoretical foundation for employing EICP-modified MSWIBA as an embankment fill material, highlighting the potential for wider adoption of this eco-friendly alternative in road constructions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100285"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strength, pore and corrosion characteristics of ceramic insulator powder-silica fume based ternary blended mortar
Pub Date : 2024-12-09 DOI: 10.1016/j.clema.2024.100284
Sumrerng Rukzon , Suthon Rungruang , Udomvit Chaisakulkiet , Patcharapol Posi , Prinya Chindaprasirt
This study investigates the compressive strength, porosity, water absorption, chloride penetration, and corrosion resistance of mortar in a ternary blended cementitious system that substitutes Portland Cement Type 1 (PCT) with varying proportions (15%, 20%, 25%, 30%, and 40%) of finely ground ceramic electrical insulator (CE) and silica fume (SF). To enhance the workability of the mortar, a superplasticizer (SP) was used, maintaining a consistent water-to-binder ratio (W/B) of 0.50. SEM-EDS microstructural analysis revealed a homogeneous composition with a high content of calcium silicate hydrate (C-S-H) gel, particularly notable in samples combining CE and SF. The incorporation of 5% to 20% by weight of CE and SF into the cementitious materials resulted in mortars that exhibited superior compressive strength compared to both the control sample and those containing only 10% SF. The use of very fine CE and SF also improved the mortars’ properties in terms of water absorption and chloride penetration. Furthermore, the addition of CE and SF significantly enhanced the mortar’s porosity and increased its corrosion resistance. These findings demonstrate the viability of ground ceramic electrical insulators as a cementitious material and emphasize the environmental benefits of reducing waste and alleviating disposal burdens by repurposing industrial by-products.
{"title":"Strength, pore and corrosion characteristics of ceramic insulator powder-silica fume based ternary blended mortar","authors":"Sumrerng Rukzon ,&nbsp;Suthon Rungruang ,&nbsp;Udomvit Chaisakulkiet ,&nbsp;Patcharapol Posi ,&nbsp;Prinya Chindaprasirt","doi":"10.1016/j.clema.2024.100284","DOIUrl":"10.1016/j.clema.2024.100284","url":null,"abstract":"<div><div>This study investigates the compressive strength, porosity, water absorption, chloride penetration, and corrosion resistance of mortar in a ternary blended cementitious system that substitutes Portland Cement Type 1 (PCT) with varying proportions (15%, 20%, 25%, 30%, and 40%) of finely ground ceramic electrical insulator (CE) and silica fume (SF). To enhance the workability of the mortar, a superplasticizer (SP) was used, maintaining a consistent water-to-binder ratio (W/B) of 0.50. SEM-EDS microstructural analysis revealed a homogeneous composition with a high content of calcium silicate hydrate (C-S-H) gel, particularly notable in samples combining CE and SF. The incorporation of 5% to 20% by weight of CE and SF into the cementitious materials resulted in mortars that exhibited superior compressive strength compared to both the control sample and those containing only 10% SF. The use of very fine CE and SF also improved the mortars’ properties in terms of water absorption and chloride penetration. Furthermore, the addition of CE and SF significantly enhanced the mortar’s porosity and increased its corrosion resistance. These findings demonstrate the viability of ground ceramic electrical insulators as a cementitious material and emphasize the environmental benefits of reducing waste and alleviating disposal burdens by repurposing industrial by-products.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100284"},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1