首页 > 最新文献

Cleaner Materials最新文献

英文 中文
Recycling of mine tailings as supplementary cementitious material: Impact of mine tailings’ mineralogy on hydration behaviour and phase assemblage of Ordinary Portland cement blends
Pub Date : 2024-12-19 DOI: 10.1016/j.clema.2024.100288
Godfrey Mawire , Robbie McDonald , Peter Austin , Abhijit Mukherjee , Lionel Esteban , Navdeep K Dhami
This study investigated the influence of mineral tailings’ mineralogy on hydration behaviour and phase assemblage of cured cement in ternary blends comprising Ordinary Portland cement (OPC), blast furnace slag (BFS) and tailings. The identification and quantification of mineral phases was achieved through Quantitative X-ray diffraction (QXRD) analysis, while the evaluation of mineral thermal stability was conducted using thermogravimetric analysis with mass spectrometry (TGA-MS). Isothermal calorimetry revealed that the tailings influenced the OPC heat flow profile during early-stage hydration, with minerals like dehydroxylated Fe-chlorite and alunite hydraulic properties contributing to the early-stage reaction mechanism. The bulk slow-reacting minerals in the tailings affected both the phase assemblage and the hydration mechanism of OPC by releasing elemental species that could be incorporated in the C-S-H phases. The chemical composition of the C-S-H formed in the blended cement varied and had a low Ca/Si ratio < 1.3, enabling guest elements to be incorporated. Correlative Electron Microscopy Automated Mineralogy (CEM-AM) was utilised to analyse and map the distribution of the secondary C-S-H phases within the paste matrix. The findings give insight into the nature of hydrates formed in a ternary blend with tailings, which directly affect the cured cement’s performance and service life properties.
{"title":"Recycling of mine tailings as supplementary cementitious material: Impact of mine tailings’ mineralogy on hydration behaviour and phase assemblage of Ordinary Portland cement blends","authors":"Godfrey Mawire ,&nbsp;Robbie McDonald ,&nbsp;Peter Austin ,&nbsp;Abhijit Mukherjee ,&nbsp;Lionel Esteban ,&nbsp;Navdeep K Dhami","doi":"10.1016/j.clema.2024.100288","DOIUrl":"10.1016/j.clema.2024.100288","url":null,"abstract":"<div><div>This study investigated the influence of mineral tailings’ mineralogy on hydration behaviour and phase assemblage of cured cement in ternary blends comprising Ordinary Portland cement (OPC), blast furnace slag (BFS) and tailings. The identification and quantification of mineral phases was achieved through Quantitative X-ray diffraction (QXRD) analysis, while the evaluation of mineral thermal stability was conducted using thermogravimetric analysis with mass spectrometry (TGA-MS). Isothermal calorimetry revealed that the tailings influenced the OPC heat flow profile during early-stage hydration, with minerals like dehydroxylated Fe-chlorite and alunite hydraulic properties contributing to the early-stage reaction mechanism. The bulk slow-reacting minerals in the tailings affected both the phase assemblage and the hydration mechanism of OPC by releasing elemental species that could be incorporated in the C-S-H phases. The chemical composition of the C-S-H formed in the blended cement varied and had a low Ca/Si ratio &lt; 1.3, enabling guest elements to be incorporated. Correlative Electron Microscopy Automated Mineralogy (CEM-AM) was utilised to analyse and map the distribution of the secondary C-S-H phases within the paste matrix. The findings give insight into the nature of hydrates formed in a ternary blend with tailings, which directly affect the cured cement’s performance and service life properties.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100288"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and property study of geopolymer composite fireproof coating with PVA fiber and manganese slag
Pub Date : 2024-12-16 DOI: 10.1016/j.clema.2024.100289
Zhenyu Zhou , Chenxi Zeng , Hongqing Wei , Yanhuai Ding
Geopolymers have garnered widespread attention due to their excellent mechanical properties, durability, and fire resistance. In this paper, we have conducted the design of a geopolymer coating, incorporating a specific proportion of solid waste manganese slag and polyvinyl alcohol (PVA) fibers. The geopolymer serves to stabilize the manganese slag, while the PVA fibers enhance the mechanical properties of the coating. The results demonstrate that the composite geopolymer coating becomes dense at high temperatures, exhibiting outstanding fire-resistant characteristics. Furthermore, the coating significantly enhances the mechanical performance of wood specimens, indicating promising application prospects in the field of building material fire protection.
{"title":"Preparation and property study of geopolymer composite fireproof coating with PVA fiber and manganese slag","authors":"Zhenyu Zhou ,&nbsp;Chenxi Zeng ,&nbsp;Hongqing Wei ,&nbsp;Yanhuai Ding","doi":"10.1016/j.clema.2024.100289","DOIUrl":"10.1016/j.clema.2024.100289","url":null,"abstract":"<div><div>Geopolymers have garnered widespread attention due to their excellent mechanical properties, durability, and fire resistance. In this paper, we have conducted the design of a geopolymer coating, incorporating a specific proportion of solid waste manganese slag and polyvinyl alcohol (PVA) fibers. The geopolymer serves to stabilize the manganese slag, while the PVA fibers enhance the mechanical properties of the coating. The results demonstrate that the composite geopolymer coating becomes dense at high temperatures, exhibiting outstanding fire-resistant characteristics. Furthermore, the coating significantly enhances the mechanical performance of wood specimens, indicating promising application prospects in the field of building material fire protection.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100289"},"PeriodicalIF":0.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized biochar from vegetable waste for phosphorus removal from aqueous solution and its potential use as a slow-release fertilizer
Pub Date : 2024-12-16 DOI: 10.1016/j.clema.2024.100287
Rajesh Chanda , Toslim Jahid , Anik Karmokar , Bejoy Hossain , Md. Moktadir , Md. Saiful Islam , Nirupam Aich , Biplob Kumar Biswas
Agricultural runoff of phosphorus leads to the loss of this critical nutrient into the waterbodies and causes environmental problems like eutrophication. To tackle the growing concern, functionalized biochar as an adsorbent provides a sustainable method to capture the phosphorus from wastewater. Additionally, the P-laden biochar as a slow-release fertilizer improves plant nutrient uptake and crop yield. In this work, metal chloride-doped biochar derived from non-edible vegetable waste was prepared and applied as an adsorbent. Zinc chloride-doped biochar (ZBC) showed a better phosphorus adsorption capacity of 47.83 mg/g among the prepared biochar. The desorption study suggested that around 42 % of total adsorbed P was released within 336 h. The growth of mung plants over 70 days was monitored, along with mung bean yield, to assess the effectiveness of P-laden ZBC as a slow-release phosphorus fertilizer. The presented approach of non-edible waste valorization into slow-release fertilizer could contribute to tackling nutrient depletion and achieving a circular economy.
{"title":"Functionalized biochar from vegetable waste for phosphorus removal from aqueous solution and its potential use as a slow-release fertilizer","authors":"Rajesh Chanda ,&nbsp;Toslim Jahid ,&nbsp;Anik Karmokar ,&nbsp;Bejoy Hossain ,&nbsp;Md. Moktadir ,&nbsp;Md. Saiful Islam ,&nbsp;Nirupam Aich ,&nbsp;Biplob Kumar Biswas","doi":"10.1016/j.clema.2024.100287","DOIUrl":"10.1016/j.clema.2024.100287","url":null,"abstract":"<div><div>Agricultural runoff of phosphorus leads to the loss of this critical nutrient into the waterbodies and causes environmental problems like eutrophication. To tackle the growing concern, functionalized biochar as an adsorbent provides a sustainable method to capture the phosphorus from wastewater. Additionally, the P-laden biochar as a slow-release fertilizer improves plant nutrient uptake and crop yield. In this work, metal chloride-doped biochar derived from non-edible vegetable waste was prepared and applied as an adsorbent. Zinc chloride-doped biochar (ZBC) showed a better phosphorus adsorption capacity of 47.83 mg/g among the prepared biochar. The desorption study suggested that around 42 % of total adsorbed P was released within 336 h. The growth of mung plants over 70 days was monitored, along with mung bean yield, to assess the effectiveness of P-laden ZBC as a slow-release phosphorus fertilizer. The presented approach of non-edible waste valorization into slow-release fertilizer could contribute to tackling nutrient depletion and achieving a circular economy.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100287"},"PeriodicalIF":0.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The engineering performance of EICP-modified municipal solid waste incineration bottom ash for road construction
Pub Date : 2024-12-11 DOI: 10.1016/j.clema.2024.100285
Zeng Yuan , Tingjun Wu , Linbing Wang , Yucheng Huang , Qiang Tang
Municipal solid waste incineration bottom ash (MSWIBA) emerges as a potential alternative to natural aggregates due to its similar mineral composition and engineering properties as embanking fillings. However, the instability and environmental pollution risks of MSWIBA limit its large-scale application. This study proposes to employ Enzyme Induced Carbonate Precipitation (EICP) technology to enhance the mechanical properties of MSWIBA and reduce its environmental impact. Initial analyses focused on the basic physicochemical properties and morphological changes of MSWIBA before and after modification. Then the modified MSWIBA exhibited improvements in shear resistance, resilient modulus, and permanent deformation behavior. It was also found that existing resilient modulus and permanent deformation predicting models for soils are applicable to EICP-modified MSWIBA. The column leaching tests were conducted on samples subjected and not subjected to freeze–thaw and dry-wet cycles. The results revealed the modified MSWIBA released reduced heavy metal concentrations in both water and acid leaches. These findings establish a solid theoretical foundation for employing EICP-modified MSWIBA as an embankment fill material, highlighting the potential for wider adoption of this eco-friendly alternative in road constructions.
{"title":"The engineering performance of EICP-modified municipal solid waste incineration bottom ash for road construction","authors":"Zeng Yuan ,&nbsp;Tingjun Wu ,&nbsp;Linbing Wang ,&nbsp;Yucheng Huang ,&nbsp;Qiang Tang","doi":"10.1016/j.clema.2024.100285","DOIUrl":"10.1016/j.clema.2024.100285","url":null,"abstract":"<div><div>Municipal solid waste incineration bottom ash (MSWIBA) emerges as a potential alternative to natural aggregates due to its similar mineral composition and engineering properties as embanking fillings. However, the instability and environmental pollution risks of MSWIBA limit its large-scale application. This study proposes to employ Enzyme Induced Carbonate Precipitation (EICP) technology to enhance the mechanical properties of MSWIBA and reduce its environmental impact. Initial analyses focused on the basic physicochemical properties and morphological changes of MSWIBA before and after modification. Then the modified MSWIBA exhibited improvements in shear resistance, resilient modulus, and permanent deformation behavior. It was also found that existing resilient modulus and permanent deformation predicting models for soils are applicable to EICP-modified MSWIBA. The column leaching tests were conducted on samples subjected and not subjected to freeze–thaw and dry-wet cycles. The results revealed the modified MSWIBA released reduced heavy metal concentrations in both water and acid leaches. These findings establish a solid theoretical foundation for employing EICP-modified MSWIBA as an embankment fill material, highlighting the potential for wider adoption of this eco-friendly alternative in road constructions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100285"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strength, pore and corrosion characteristics of ceramic insulator powder-silica fume based ternary blended mortar
Pub Date : 2024-12-09 DOI: 10.1016/j.clema.2024.100284
Sumrerng Rukzon , Suthon Rungruang , Udomvit Chaisakulkiet , Patcharapol Posi , Prinya Chindaprasirt
This study investigates the compressive strength, porosity, water absorption, chloride penetration, and corrosion resistance of mortar in a ternary blended cementitious system that substitutes Portland Cement Type 1 (PCT) with varying proportions (15%, 20%, 25%, 30%, and 40%) of finely ground ceramic electrical insulator (CE) and silica fume (SF). To enhance the workability of the mortar, a superplasticizer (SP) was used, maintaining a consistent water-to-binder ratio (W/B) of 0.50. SEM-EDS microstructural analysis revealed a homogeneous composition with a high content of calcium silicate hydrate (C-S-H) gel, particularly notable in samples combining CE and SF. The incorporation of 5% to 20% by weight of CE and SF into the cementitious materials resulted in mortars that exhibited superior compressive strength compared to both the control sample and those containing only 10% SF. The use of very fine CE and SF also improved the mortars’ properties in terms of water absorption and chloride penetration. Furthermore, the addition of CE and SF significantly enhanced the mortar’s porosity and increased its corrosion resistance. These findings demonstrate the viability of ground ceramic electrical insulators as a cementitious material and emphasize the environmental benefits of reducing waste and alleviating disposal burdens by repurposing industrial by-products.
{"title":"Strength, pore and corrosion characteristics of ceramic insulator powder-silica fume based ternary blended mortar","authors":"Sumrerng Rukzon ,&nbsp;Suthon Rungruang ,&nbsp;Udomvit Chaisakulkiet ,&nbsp;Patcharapol Posi ,&nbsp;Prinya Chindaprasirt","doi":"10.1016/j.clema.2024.100284","DOIUrl":"10.1016/j.clema.2024.100284","url":null,"abstract":"<div><div>This study investigates the compressive strength, porosity, water absorption, chloride penetration, and corrosion resistance of mortar in a ternary blended cementitious system that substitutes Portland Cement Type 1 (PCT) with varying proportions (15%, 20%, 25%, 30%, and 40%) of finely ground ceramic electrical insulator (CE) and silica fume (SF). To enhance the workability of the mortar, a superplasticizer (SP) was used, maintaining a consistent water-to-binder ratio (W/B) of 0.50. SEM-EDS microstructural analysis revealed a homogeneous composition with a high content of calcium silicate hydrate (C-S-H) gel, particularly notable in samples combining CE and SF. The incorporation of 5% to 20% by weight of CE and SF into the cementitious materials resulted in mortars that exhibited superior compressive strength compared to both the control sample and those containing only 10% SF. The use of very fine CE and SF also improved the mortars’ properties in terms of water absorption and chloride penetration. Furthermore, the addition of CE and SF significantly enhanced the mortar’s porosity and increased its corrosion resistance. These findings demonstrate the viability of ground ceramic electrical insulators as a cementitious material and emphasize the environmental benefits of reducing waste and alleviating disposal burdens by repurposing industrial by-products.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100284"},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single fiber tensile strength of seagrasses and the development and characterization of Zostera marina-based medium density boards
Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100283
Aldi Kuqo , Aldo Joao Cárdenas-Oscanoa , Carsten Mai
This study investigates the potential of the leaves of the seagrass Zostera marina (ZM) as an alternative raw material for the production medium-density boards. In the first part, the tensile strength properties of various types of seagrasses were investigated. Posidonia oceanica fibers (POF) exhibited a mean tensile strength of up to 123 MPa, while its leaves (POL) reached up to 27  MPa. The ZM leaves also showed a similar tensile strength to Posidonia oceanica leaves, 22.9 MPa. In the second part, ZM leaves and wood fibers (WF) are further processed to produce medium density boards with densities ranging from 500 to 700 kg m−3. The boards were evaluated for fire resistance, thermal conductivity, mechanical strength, and water resistance-related properties. ZM-boards demonstrated high fire resistance and lower thermal conductivity compared to boards based on wood fiber (WF), i.e. medium density fiberboards (MDF), of similar density. However, due to the low tensile strength and unique morphology of the seagrass leaves, ZM-boards display a lower flexural strength (up to 10.9 MPa) and lower resistance to water absorption compared to boards produced from wood fibers (WF). Boards made by Zostera marina can be a promising alternative to commercial MDF panels especially for interior applications prioritizing fire protection and thermal insulation but they are mainly suited for non-structural uses. Further examination of its acoustic properties would assess its potential applications as sound-absorbing architectural panels.
{"title":"Single fiber tensile strength of seagrasses and the development and characterization of Zostera marina-based medium density boards","authors":"Aldi Kuqo ,&nbsp;Aldo Joao Cárdenas-Oscanoa ,&nbsp;Carsten Mai","doi":"10.1016/j.clema.2024.100283","DOIUrl":"10.1016/j.clema.2024.100283","url":null,"abstract":"<div><div>This study investigates the potential of the leaves of the seagrass <em>Zostera marina</em> (ZM) as an alternative raw material for the production medium-density boards. In the first part, the tensile strength properties of various types of seagrasses were investigated. <em>Posidonia oceanica</em> fibers (POF) exhibited a mean tensile strength of up to 123 MPa, while its leaves (POL) reached up to 27 <!--> <!-->MPa. The ZM leaves also showed a similar tensile strength to <em>Posidonia oceanica</em> leaves, 22.9 MPa. In the second part, ZM leaves and wood fibers (WF) are further processed to produce medium density boards with densities ranging from 500 to 700 kg<!--> <!-->m<sup>−3</sup>. The boards were evaluated for fire resistance, thermal conductivity, mechanical strength, and water resistance-related properties. ZM-boards demonstrated high fire resistance and lower thermal conductivity compared to boards based on wood fiber (WF), i.e. medium density fiberboards (MDF), of similar density. However, due to the low tensile strength and unique morphology of the seagrass leaves, ZM-boards display a lower flexural strength (up to 10.9 MPa) and lower resistance to water absorption compared to boards produced from wood fibers (WF). Boards made by <em>Zostera marina</em> can be a promising alternative to commercial MDF panels especially for interior applications prioritizing fire protection and thermal insulation but they are mainly suited for non-structural uses. Further examination of its acoustic properties would assess its potential applications as sound-absorbing architectural panels.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100283"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study of asphalt mixtures with recycled resources: Influence of electric arc furnace slag aggregate roughness and bitumen film thickness on fatigue performance
Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100282
Dario Benavides, Teresa López-Montero, Marilda Barra Bizinotto, Diego Aponte
Electric arc furnace slag (EAFS) is a viable alternative in asphalt mixtures due to its favourable mechanical properties. This study examines the impact of EAFS content and bitumen film thickness (TF) on the fatigue performance of asphalt mixtures. Mixtures with varying levels of EAFS replacement were designed, and their mechanical properties were evaluated through indirect tensile strength and stiffness tests, followed by fatigue tests using the four-point bending method and EBADE (Strain Sweep Test). The results indicated that mixtures with EAFS exhibited increased stiffness, but fatigue performance decreased at high strain levels. At low strain levels, EAFS mixtures performed similarly or better than the control. HMA_GL had the highest TF (13.97 μm), followed by HMA_GS (13.60 μm), HMA_SL (12.66 μm), and HMA_SS (11.77 μm), showing that as the EAFS content increases, the TF decreases. This finding was verified through Digital Image Analysis. This decrease in TF is due to the high porosity and roughness of the EAFS, which in turn reduces the effective bitumen (Pbe) in the mixture. HMA_SL*, with a TF equal to the control, demonstrated a 22 % improvement in fatigue performance compared to HMA_SL. In the EBADE tests, HMA_GL achieved 44.69 MJ/m3 of dissipated energy, HMA_GS 31.55 MJ/m3, HMA_SL 34.45 MJ/m3, and HMA_SS 35.54 MJ/m3. The improved HMA_SL* recorded 42.15 MJ/m3, nearly matching the control. EBADE results confirmed that higher EAFS content increased initial stiffness, but the complex modulus (|E*|) decreased more rapidly as deformation increased. These results are consistent with the stiffness tests. These findings suggest that EAFS can successfully replace natural aggregates in asphalt mixtures, with a moderate increase in bitumen content recommended to improve fatigue performance.
{"title":"Experimental study of asphalt mixtures with recycled resources: Influence of electric arc furnace slag aggregate roughness and bitumen film thickness on fatigue performance","authors":"Dario Benavides,&nbsp;Teresa López-Montero,&nbsp;Marilda Barra Bizinotto,&nbsp;Diego Aponte","doi":"10.1016/j.clema.2024.100282","DOIUrl":"10.1016/j.clema.2024.100282","url":null,"abstract":"<div><div>Electric arc furnace slag (EAFS) is a viable alternative in asphalt mixtures due to its favourable mechanical properties. This study examines the impact of EAFS content and bitumen film thickness (<em>TF</em>) on the fatigue performance of asphalt mixtures. Mixtures with varying levels of EAFS replacement were designed, and their mechanical properties were evaluated through indirect tensile strength and stiffness tests, followed by fatigue tests using the four-point bending method and EBADE (Strain Sweep Test). The results indicated that mixtures with EAFS exhibited increased stiffness, but fatigue performance decreased at high strain levels. At low strain levels, EAFS mixtures performed similarly or better than the control. HMA_GL had the highest <em>TF</em> (13.97 μm), followed by HMA_GS (13.60 μm), HMA_SL (12.66 μm), and HMA_SS (11.77 μm), showing that as the EAFS content increases, the <em>TF</em> decreases. This finding was verified through Digital Image Analysis. This decrease in <em>TF</em> is due to the high porosity and roughness of the EAFS, which in turn reduces the effective bitumen (P<sub>be</sub>) in the mixture. HMA_SL*, with a <em>TF</em> equal to the control, demonstrated a 22 % improvement in fatigue performance compared to HMA_SL. In the EBADE tests, HMA_GL achieved 44.69 MJ/m<sup>3</sup> of dissipated energy, HMA_GS 31.55 MJ/m<sup>3</sup>, HMA_SL 34.45 MJ/m<sup>3</sup>, and HMA_SS 35.54 MJ/m<sup>3</sup>. The improved HMA_SL* recorded 42.15 MJ/m<sup>3</sup>, nearly matching the control. EBADE results confirmed that higher EAFS content increased initial stiffness, but the complex modulus (|<em>E*</em>|) decreased more rapidly as deformation increased. These results are consistent with the stiffness tests. These findings suggest that EAFS can successfully replace natural aggregates in asphalt mixtures, with a moderate increase in bitumen content recommended to improve fatigue performance.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100282"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts
Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100281
Shriram Marathe , Akhila Sheshadri , Łukasz Sadowski
This study investigates the development and performance of agro-industrial waste-based air-cured alkali-activated concrete composites (AC) for sustainable high-strength rigid pavement applications. The calculated amounts of liquid sodium silicate and sodium hydroxide flakes were used with an adequate quantity of water to prepare the alkali-activator solution. Agro-Industrial by-products, including ground granulated blast furnace slag (GGBS), construction and demolition (C&D) waste, and sugarcane bagasse ash (SBA), were utilized to develop AC mixes and the mechanical properties, micro-structural behaviour, and life cycle impacts were studied. Optimized AC mixes containing 50% recycled aggregates (RCA) (with 50% natural coarse aggregates) and 15% SBA (with 85% GGBS) demonstrated superior compressive, splitting-tensile, and flexural strength, while significantly reducing embodied energy and carbon emissions. Microstructural analysis through XRD, SEM, EDAX, and TGA confirmed the formation of stable alumino-silicate hydrate phases, contributing to enhanced mechanical strength performances. The life cycle analysis results indicated considerable environmental benefits compared to traditional Portland Cement based pavement concrete counterparts. This research presents a sustainable solution for pavement infrastructure, aligning with circular economy principles by promoting the reduction of resource consumption and greenhouse gas emissions.
{"title":"Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts","authors":"Shriram Marathe ,&nbsp;Akhila Sheshadri ,&nbsp;Łukasz Sadowski","doi":"10.1016/j.clema.2024.100281","DOIUrl":"10.1016/j.clema.2024.100281","url":null,"abstract":"<div><div>This study investigates the development and performance of agro-industrial waste-based air-cured alkali-activated concrete composites (AC) for sustainable high-strength rigid pavement applications. The calculated amounts of liquid sodium silicate and sodium hydroxide flakes were used with an adequate quantity of water to prepare the alkali-activator solution. Agro-Industrial by-products, including ground granulated blast furnace slag (GGBS), construction and demolition (C&amp;D) waste, and sugarcane bagasse ash (SBA), were utilized to develop AC mixes and the mechanical properties, micro-structural behaviour, and life cycle impacts were studied. Optimized AC mixes containing 50% recycled aggregates (RCA) (with 50% natural coarse aggregates) and 15% SBA (with 85% GGBS) demonstrated superior compressive, splitting-tensile, and flexural strength, while significantly reducing embodied energy and carbon emissions. Microstructural analysis through XRD, SEM, EDAX, and TGA confirmed the formation of stable alumino-silicate hydrate phases, contributing to enhanced mechanical strength performances. The life cycle analysis results indicated considerable environmental benefits compared to traditional Portland Cement based pavement concrete counterparts. This research presents a sustainable solution for pavement infrastructure, aligning with circular economy principles by promoting the reduction of resource consumption and greenhouse gas emissions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100281"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of biopolymer composites using lignin: A sustainable technology for fostering a green transition in the construction sector 利用木质素开发生物聚合物复合材料:促进建筑行业绿色转型的可持续技术
Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100279
Barney H. Miao , Robert J. Headrick , Zhiye Li , Leonardo Spanu , David J. Loftus , Michael D. Lepech
Developing sustainable construction materials is important to help reduce the anthropogenic impacts of the construction industry. Currently, the production of concrete accounts for 8 % of global carbon emissions. Therefore, alternatives to concrete must be developed, to reduce its use in the future. New construction materials will help to facilitate a green transition as envisioned in global climate initiatives. Materials such as lignin are ideal, as they can be implemented with little additional cost to manufacture construction materials. We introduce a novel material, lignin-based biopolymer-bound soil composite (BSC), which is similar to other BSCs using other types of biopolymers. In addition, a design methodology is presented, which allows the manufacture of lignin-based BSCs with tailored characteristics. Two kinds of lignin — hydrolysis lignin and alkali lignin — were investigated, with five mix designs developed for each type of lignin. The lignin-based BSCs were found to have compressive strength ranging from 1.6–8.1 MPa, which allows them to be implemented in non-structural construction applications. Ultimate compressive strength, density, and other parameters were measured, leading to the development of design relationships for lignin-based BSC. The design relationships presented in this study will help introduce lignin-based BSC as a sustainable form of construction.
开发可持续的建筑材料对于帮助减少建筑业的人为影响非常重要。目前,混凝土的生产占全球碳排放量的8%。因此,必须开发混凝土的替代品,以减少其在未来的使用。新型建筑材料将有助于促进全球气候倡议所设想的绿色转型。像木质素这样的材料是理想的,因为它们可以以很少的额外成本来制造建筑材料。我们介绍了一种新型材料,木质素基生物聚合物结合土壤复合材料(BSC),它与其他使用其他类型生物聚合物的BSC相似。此外,提出了一种设计方法,该方法允许制造具有定制特性的木质素基bsc。对水解木质素和碱木质素两种木质素进行了研究,并对每种木质素进行了五种混合设计。基于木质素的BSCs具有1.6-8.1 MPa的抗压强度,这使得它们可以在非结构建筑应用中实现。测量了极限抗压强度、密度和其他参数,从而建立了基于木质素的BSC的设计关系。本研究中提出的设计关系将有助于将木质素为基础的平衡计分卡作为一种可持续的建筑形式。
{"title":"Development of biopolymer composites using lignin: A sustainable technology for fostering a green transition in the construction sector","authors":"Barney H. Miao ,&nbsp;Robert J. Headrick ,&nbsp;Zhiye Li ,&nbsp;Leonardo Spanu ,&nbsp;David J. Loftus ,&nbsp;Michael D. Lepech","doi":"10.1016/j.clema.2024.100279","DOIUrl":"10.1016/j.clema.2024.100279","url":null,"abstract":"<div><div>Developing sustainable construction materials is important to help reduce the anthropogenic impacts of the construction industry. Currently, the production of concrete accounts for 8 % of global carbon emissions. Therefore, alternatives to concrete must be developed, to reduce its use in the future. New construction materials will help to facilitate a green transition as envisioned in global climate initiatives. Materials such as lignin are ideal, as they can be implemented with little additional cost to manufacture construction materials. We introduce a novel material, lignin-based biopolymer-bound soil composite (BSC), which is similar to other BSCs using other types of biopolymers. In addition, a design methodology is presented, which allows the manufacture of lignin-based BSCs with tailored characteristics. Two kinds of lignin — hydrolysis lignin and alkali lignin — were investigated, with five mix designs developed for each type of lignin. The lignin-based BSCs were found to have compressive strength ranging from 1.6–8.1 MPa, which allows them to be implemented in non-structural construction applications. Ultimate compressive strength, density, and other parameters were measured, leading to the development of design relationships for lignin-based BSC. The design relationships presented in this study will help introduce lignin-based BSC as a sustainable form of construction.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100279"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sugarcane leaf-derived organosolv lignin as antibacterial and antioxidant agents of natural rubber composites 甘蔗叶衍生有机溶胶木质素作为天然橡胶复合材料的抗菌剂和抗氧化剂
Pub Date : 2024-11-25 DOI: 10.1016/j.clema.2024.100280
Kamonwat Nakason , Parinvadee Chukaew , Yuwanda Thongpanich , Fuangfa Utrarachkij , Sanchai Kuboon , Wasawat Kraithong , Skulrat Pichaiyut , Wanwitoo Wanmolee , Bunyarit Panyapinyopol
To enhance the sustainability and carbon neutrality of natural rubber (NR) derived product, lignin extracted from sugarcane leaf (SCL) was incorporated into NR to prepare environmentally friendly antibacterial (AB) and antioxidant (AO) lignin/NR composites. In this study, SCL lignin was isolated via an organosolv process at different temperatures (140 – 180 °C) and using various organic solvents (ethanol, acetone, and isopropyl alcohol (IPA)). Disk diffusion susceptibility tests, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) demonstrated the AB efficacy of SCL organosolv lignin against Gram-positive bacteria (S. aureus) compared to Gram-negative bacteria (E. coli and S. Typhimurium). The choice of solvent gradually influenced the AB and AO performances of the lignin. Py-GC/MS analysis revealed that SCL organosolv lignin predominantly comprised p-hydroxyphenyl (H’) and guaiacyl (G’) with a minor presence of syringyl (S’) lignin. The incorporation of SCL organosolv lignin into NR showed that NR vulcanizates exhibited enhanced mechanical, AO, and AB properties, depending on the solvent type used in the organosolv process. The NR vulcanizates incorporated with L-Acetone showed dominant aging properties and AB efficacy. On the other hand, the tensile strength and elongation at break of the NR composites were significantly improved by L-IPA and L-Ethanol. These results suggest that SCL organosolv lignin, particularly L-IPA, could be an excellent alternative bio-filler for enhancing the mechanical, AO, and AB properties of NR composites.
为了提高天然橡胶(NR)衍生产品的可持续性和碳中和,将从甘蔗叶(SCL)中提取的木质素与 NR 结合,制备出环境友好型抗菌(AB)和抗氧化(AO)木质素/NR 复合材料。在这项研究中,SCL 木质素是在不同温度(140 - 180 °C)和使用不同有机溶剂(乙醇、丙酮和异丙醇 (IPA))下通过有机溶胶工艺分离出来的。碟片扩散药敏试验、最低抑菌浓度(MIC)和最低杀菌浓度(MBC)表明,与革兰氏阴性菌(大肠杆菌和鼠伤寒杆菌)相比,SCL 有机溶胶木质素对革兰氏阳性菌(金黄色葡萄球菌)具有 AB 效应。溶剂的选择会逐渐影响木质素的 AB 和 AO 性能。Py-GC/MS 分析表明,SCL 有机溶胶木质素主要由对羟基苯基(H')和愈创木酰(G')组成,少量存在丁香基(S')木质素。将 SCL 有机溶胶木质素掺入 NR 后发现,NR 硫化物的机械性能、AO 性能和 AB 性能均有所提高,具体取决于有机溶胶工艺中使用的溶剂类型。加入 L-Acetone 的 NR 硫化物具有显著的老化性能和 AB 效能。另一方面,L-IPA 和 L-乙醇显著提高了 NR 复合材料的拉伸强度和断裂伸长率。这些结果表明,SCL 有机溶胶木质素,尤其是 L-IPA,可以作为一种极佳的替代生物填料,用于增强 NR 复合材料的机械、AO 和 AB 性能。
{"title":"Sugarcane leaf-derived organosolv lignin as antibacterial and antioxidant agents of natural rubber composites","authors":"Kamonwat Nakason ,&nbsp;Parinvadee Chukaew ,&nbsp;Yuwanda Thongpanich ,&nbsp;Fuangfa Utrarachkij ,&nbsp;Sanchai Kuboon ,&nbsp;Wasawat Kraithong ,&nbsp;Skulrat Pichaiyut ,&nbsp;Wanwitoo Wanmolee ,&nbsp;Bunyarit Panyapinyopol","doi":"10.1016/j.clema.2024.100280","DOIUrl":"10.1016/j.clema.2024.100280","url":null,"abstract":"<div><div>To enhance the sustainability and carbon neutrality of natural rubber (NR) derived product, lignin extracted from sugarcane leaf (SCL) was incorporated into NR to prepare environmentally friendly antibacterial (AB) and antioxidant (AO) lignin/NR composites. In this study, SCL lignin was isolated via an organosolv process at different temperatures (140 – 180 °C) and using various organic solvents (ethanol, acetone, and isopropyl alcohol (IPA)). Disk diffusion susceptibility tests, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) demonstrated the AB efficacy of SCL organosolv lignin against Gram-positive bacteria (<em>S. aureus</em>) compared to Gram-negative bacteria (<em>E. coli</em> and <em>S.</em> Typhimurium). The choice of solvent gradually influenced the AB and AO performances of the lignin. Py-GC/MS analysis revealed that SCL organosolv lignin predominantly comprised p-hydroxyphenyl (H’) and guaiacyl (G’) with a minor presence of syringyl (S’) lignin. The incorporation of SCL organosolv lignin into NR showed that NR vulcanizates exhibited enhanced mechanical, AO, and AB properties, depending on the solvent type used in the organosolv process. The NR vulcanizates incorporated with L-Acetone showed dominant aging properties and AB efficacy. On the other hand, the tensile strength and elongation at break of the NR composites were significantly improved by L-IPA and L-Ethanol. These results suggest that SCL organosolv lignin, particularly L-IPA, could be an excellent alternative bio-filler for enhancing the mechanical, AO, and AB properties of NR composites.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100280"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142719995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1