首页 > 最新文献

Earthquake Research Advances最新文献

英文 中文
3D near-surface P-wave velocity structure imaging with Distributed Acoustic Sensing and electric hammer source 利用分布式声学传感和电锤源进行三维近地表 P 波速度结构成像
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2023.100274

Distributed Acoustic Sensing (DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional (3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 ​km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 ​m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a Short-Term Average/Long-Term Average (STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances. This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then, we used the TomoDD software to invert the 3D P-wave velocity structure for the uppermost 50 ​m with a resolution of 10 ​m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.

分布式声学传感(DAS)是一种新兴的超密集地震观测技术,为高分辨率次表层地震成像提供了一种新方法。最近,大量线性 DAS 阵列被用于城市地区的二维 S 波近地表成像。为了探索利用 DAS 阵列进行三维(3D)结构成像的可行性,我们在北京国家地球观测站进行了一次主动源实验。我们部署了一条长 1 公里的矩形光缆,光缆被重新铸造成 250 个传感器,通道间距为 4 米。DAS 阵列清晰地记录了锤击源产生的 P 波、S 波和面波。首先用短期平均/长期平均(STA/LTA)法选取首次到达的 P 波行进时间,然后再进行人工检查。DAS 记录的 P 波信号与短周期地震仪水平分量记录的 P 波信号一致。在较短的震源-接收器距离上,DAS 记录的 P 波信号与地震仪垂直分量记录的 P 波信号一致,但在较远的距离上,DAS 记录的 P 波信号明显落后于地震仪垂直分量记录的 P 波信号。这可能是信噪比和入射波的极化共同作用的结果。然后,我们使用 TomoDD 软件反演了最上层 50 米的三维 P 波速度结构,分辨率为 10 米。反演后的 P 波速度结构与之前通过环境噪声层析成像获得的 S 波速度结构非常吻合。我们的研究表明,利用主动源和 DAS 阵列进行三维近地表成像是可行的。然而,在大深度的反演绝对速度值可能存在偏差,这是因为在震源-接收器距离较远时,DAS 记录和地震仪之间可能存在时间偏移。
{"title":"3D near-surface P-wave velocity structure imaging with Distributed Acoustic Sensing and electric hammer source","authors":"","doi":"10.1016/j.eqrea.2023.100274","DOIUrl":"10.1016/j.eqrea.2023.100274","url":null,"abstract":"<div><p>Distributed Acoustic Sensing (DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional (3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 ​km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 ​m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a Short-Term Average/Long-Term Average (STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances. This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then, we used the TomoDD software to invert the 3D P-wave velocity structure for the uppermost 50 ​m with a resolution of 10 ​m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100274"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000714/pdfft?md5=85bab76a64b9cd72d307a5937fbb6a59&pid=1-s2.0-S2772467023000714-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139193587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Major methods of seismic anisotropy 地震各向异性的主要研究方法
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100295

Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.

地震各向异性揭示了地震波速度、振幅和其他物理性质在不同方向上的变化,按其物理机制可分为晶格偏好方位(LPO)和形状偏好方位(SPO)。研究地震各向异性的主要方法有剪切波分裂分析法、P 波旅行时间反演法和面波层析成像法等。这些方法之间存在一些差异和关联。地震各向异性是揭示地壳-地幔动态演化过程的重要途径,对监测地壳应力变化和改进地震勘探研究具有重要意义。在长期观测的帮助下,机器学习技术的应用和基于多相的组合反演将成为地震各向异性研究的潜在发展方向。这可能会提高对复杂地震各向异性模型的理解,如具有斜对称轴的多层各向异性。
{"title":"Major methods of seismic anisotropy","authors":"","doi":"10.1016/j.eqrea.2024.100295","DOIUrl":"10.1016/j.eqrea.2024.100295","url":null,"abstract":"<div><p>Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100295"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000216/pdfft?md5=322d6aa1be9e35e6c23896e701240e8d&pid=1-s2.0-S2772467024000216-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140270875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of seismic action on stability of saline soil subgrade in cold region based on isothermal stratification method 基于等温分层法的地震作用对寒冷地区盐碱土路基稳定性的影响
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2023.100271

With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the influence of seismic action on the stability of saline soil subgrade under the influence of temperature on the strength of saline soil subgrade filler, this paper first carried out saline soil shear tests at different temperatures to obtain the influence of temperature on the shear strength of saline soil. Then, the temperature field of the saline soil subgrade was simulated, and then based on the subgrade isothermal stratification model and FLAC3D, the displacement and acceleration amplification effects of seismic action on the shady slope, sunny slope and subgrade of saline soil subgrade in different months were analyzed. The following conclusions were finally drawn: under the action of seismic, In the process of the change of subgrade temperature of Qarhan - Golmud Expressway between −7.7 ​°C and 27 ​°C, the change of saline soil cohesion is the main factor affecting the stability of subgrade slope, and the maximum and minimum values of subgrade surface settlement appear in September and June of each year, respectively. In August, the differences of settlement between the shady slope and the sunny slope shoulder of the subgrade were the largest, and the acceleration of the shady slope and the sunny slope and the inside of the subgrade changed most significantly in the vertical direction. Special attention should be paid to the seismic early warning in the above key months; In the range from both sides of the shoulder to the centerline of the roadbed, the acceleration amplification effect starts to increase significantly from about 3m from the centerline of the roadbed to the centerline, so it is necessary to pay attention to the seismic design of this range.

随着季节的变化,盐渍土路基填料的抗剪强度会随着外界温度的变化而变化,这将加剧地震对路基的不利影响。为探讨温度对盐土路基填料强度影响下地震作用对盐土路基稳定性的影响,本文首先进行了不同温度下的盐土剪切试验,得出温度对盐土剪切强度的影响。然后,模拟盐渍土路基温度场,基于路基等温分层模型和 FLAC3D,分析了不同月份地震作用对盐渍土路基阴坡、阳坡和路基的位移和加速度放大效应。最终得出以下结论:在地震作用下,卡尔汗-格尔木高速公路路基温度在-7.7 °C至27 °C的变化过程中,盐土内聚力的变化是影响路基边坡稳定性的主要因素,路基表面沉降的最大值和最小值分别出现在每年的9月和6月。在 8 月份,阴坡与阳坡坡肩的沉降差值最大,阴坡与阳坡以及坡面内侧的加速度在垂直方向上变化最为明显。应特别注意上述关键月份的地震预警;在路肩两侧至路基中线范围内,加速度放大效应从路基中线至中线约3m处开始明显增大,需注意该范围的抗震设计。
{"title":"The effect of seismic action on stability of saline soil subgrade in cold region based on isothermal stratification method","authors":"","doi":"10.1016/j.eqrea.2023.100271","DOIUrl":"10.1016/j.eqrea.2023.100271","url":null,"abstract":"<div><p>With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the influence of seismic action on the stability of saline soil subgrade under the influence of temperature on the strength of saline soil subgrade filler, this paper first carried out saline soil shear tests at different temperatures to obtain the influence of temperature on the shear strength of saline soil. Then, the temperature field of the saline soil subgrade was simulated, and then based on the subgrade isothermal stratification model and FLAC3D, the displacement and acceleration amplification effects of seismic action on the shady slope, sunny slope and subgrade of saline soil subgrade in different months were analyzed. The following conclusions were finally drawn: under the action of seismic, In the process of the change of subgrade temperature of Qarhan - Golmud Expressway between −7.7 ​°C and 27 ​°C, the change of saline soil cohesion is the main factor affecting the stability of subgrade slope, and the maximum and minimum values of subgrade surface settlement appear in September and June of each year, respectively. In August, the differences of settlement between the shady slope and the sunny slope shoulder of the subgrade were the largest, and the acceleration of the shady slope and the sunny slope and the inside of the subgrade changed most significantly in the vertical direction. Special attention should be paid to the seismic early warning in the above key months; In the range from both sides of the shoulder to the centerline of the roadbed, the acceleration amplification effect starts to increase significantly from about 3m from the centerline of the roadbed to the centerline, so it is necessary to pay attention to the seismic design of this range.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100271"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000684/pdfft?md5=047312203f8d3905d44d46f92d656902&pid=1-s2.0-S2772467023000684-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138610575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The seismicity in the middle section of the Altyn Tagh Fault system revealed by a dense nodal seismic array 密集节点地震阵列揭示的阿尔廷塔格断层系统中段的地震活动性
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100308

The left-lateral Altyn Tagh Fault (ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes since 1598 AD, so the potential seismic hazard is unclear. We develope an earthquake catalog using continuous waveform data recorded by the Tarim-Altyn-Qaidam dense nodal seismic array from September 17 to November 23, 2021 in the middle section of ATF. With the machine learning-based picker, phase association, location, match and locate workflow, we detecte 233 earthquakes with ML -1–3, far more than 6 earthquakes in the routine catalog. Combining with focal mechanism solutions and the local fault structure, we find that seismic events are clustered along the ATF with strike-slip focal mechanisms and on the southern secondary faults with thrusting focal mechanisms. This overall seismic activity in the middle section of the ATF might be due to the northeastward transpressional motion of the Qinghai-Xizang Plateau block at the western margin of the Qaidam Basin.

左侧的阿尔金山断裂(ATF)系统是青藏高原的北部边界,将塔里木盆地和柴达木盆地分隔开来。自公元 1598 年以来,阿尔金山断裂带中段从未发生过大地震,因此其潜在的地震危害尚不明确。我们利用塔里木-阿尔泰-柴达木密集结点地震阵列记录的 2021 年 9 月 17 日至 11 月 23 日塔里木盆地中段的连续波形数据编制了地震目录。通过基于机器学习的选取、相位关联、定位、匹配和定位工作流程,我们以 ML -1-3 检测到了 233 个地震,远高于常规目录中的 6 个地震。结合焦点机制解决方案和当地断层结构,我们发现地震事件主要集中在沿 ATF 的走向滑动焦点机制和南部次级断层的推力焦点机制上。ATF中段的整体地震活动可能是由于柴达木盆地西缘青藏高原块体向东北方向的换位运动所致。
{"title":"The seismicity in the middle section of the Altyn Tagh Fault system revealed by a dense nodal seismic array","authors":"","doi":"10.1016/j.eqrea.2024.100308","DOIUrl":"10.1016/j.eqrea.2024.100308","url":null,"abstract":"<div><p>The left-lateral Altyn Tagh Fault (ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes since 1598 AD, so the potential seismic hazard is unclear. We develope an earthquake catalog using continuous waveform data recorded by the Tarim-Altyn-Qaidam dense nodal seismic array from September 17 to November 23, 2021 in the middle section of ATF. With the machine learning-based picker, phase association, location, match and locate workflow, we detecte 233 earthquakes with <em>M</em><sub>L</sub> -1–3, far more than 6 earthquakes in the routine catalog. Combining with focal mechanism solutions and the local fault structure, we find that seismic events are clustered along the ATF with strike-slip focal mechanisms and on the southern secondary faults with thrusting focal mechanisms. This overall seismic activity in the middle section of the ATF might be due to the northeastward transpressional motion of the Qinghai-Xizang Plateau block at the western margin of the Qaidam Basin.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100308"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000344/pdfft?md5=46e6ce19ac1c6d360e367ea57cdc2c60&pid=1-s2.0-S2772467024000344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140794432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum regarding previously published articles 关于以前发表的文章的勘误
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100293
{"title":"Erratum regarding previously published articles","authors":"","doi":"10.1016/j.eqrea.2024.100293","DOIUrl":"10.1016/j.eqrea.2024.100293","url":null,"abstract":"","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100293"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000198/pdfft?md5=e095e29e19d4f71c9be66ffc56a9e054&pid=1-s2.0-S2772467024000198-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial distribution characteristics and influence factor analysis of landslides —case study of the Hanwang area in Qinba Mountains 滑坡空间分布特征及影响因素分析--秦巴山区汉旺地区案例研究
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100275

The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model (DEM) on the results are statistically and analytically analyzed. Furthermore, two high-risk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis, the following conclusions were derived: (1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km2, threatening 414 people and property of about 55.87 million Yuan. (2)The landslides in the study area easily occur in the <400 ​m elevation range; the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults (0–200 ​m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads. (3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region. (4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:①damage to the leading edge and stress release, ②continuous creep and cracking, ③rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area.

陕西省安康市紫阳县汉旺镇出现了滑坡地质灾害。然而,目前对该地区滑坡空间分布特征和影响因素的认识仍不清楚。结合遥感解译和野外调查的结果,本研究选取了海拔高度、坡向、坡度、距河流距离、距断层距离、工程地质岩性和距道路距离这七个影响因素进行研究。对各影响因素中滑坡的分布特征以及数字高程模型(DEM)分辨率对结果的影响进行了统计和分析。此外,结合钻探和其他实地调查的结果,对研究区域内的两处高风险滑坡进行了综合分析,以研究其变形机制。在此基础上,得出以下结论:(1)研究区内有 34 处滑坡,以小型土质滑坡为主,分布密度为 0.42/km2,威胁人口 414 人,威胁财产约 5587 万元。(2)研究区滑坡易发生在海拔 400 m 范围内,滑坡向各个坡向发育,坡度主要集中在 10°-40°范围内,滑坡分布密度在距河流和断层较近处(0-200 m)较高,易滑坡地层主要为较软弱的变质岩,滑坡主要发生在道路周围。(3) 应根据研究区域的具体条件、调查要求和滑坡规模选择 DEM 的分辨率。选择合适的 DEM 分辨率有利于了解该地区滑坡的规律和进行风险评估。(4)郑家边滑坡属于牵引滑坡。滑坡体为碎石土和板岩风化层二元结构,破坏过程可分为三个阶段:①前缘破坏与应力释放;②持续蠕变与开裂;③降雨渗透与破坏。砖厂滑坡的主要边坡材料是粘土,滑坡是由坡底开挖产生的牵引效应和砖厂堆放荷载产生的挤压效应共同引发的。此外,砖厂滑坡还表现出持续的蠕变变形。研究结果为汉王镇地区的防灾减灾提供了科学依据。
{"title":"Spatial distribution characteristics and influence factor analysis of landslides —case study of the Hanwang area in Qinba Mountains","authors":"","doi":"10.1016/j.eqrea.2024.100275","DOIUrl":"10.1016/j.eqrea.2024.100275","url":null,"abstract":"<div><p>The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model (DEM) on the results are statistically and analytically analyzed. Furthermore, two high-risk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis, the following conclusions were derived: (1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km<sup>2</sup>, threatening 414 people and property of about 55.87 million Yuan. (2)The landslides in the study area easily occur in the &lt;400 ​m elevation range; the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults (0–200 ​m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads. (3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region. (4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:①damage to the leading edge and stress release, ②continuous creep and cracking, ③rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100275"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000010/pdfft?md5=df642adb4c866ecfbfcf412c2a5e5af5&pid=1-s2.0-S2772467024000010-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139392612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interseismic slip distribution and locking characteristics of the mid-southern segment of the Tanlu fault zone 郯庐断层带中段南侧的震间滑移分布和锁定特征
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100307

We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu (Tancheng-Lujiang) fault zone, according to the GPS horizontal velocity field from 1991 to 2007 (the first phase) and 2013 to 2018 (the second phase). By comparing the deformation characteristics results, we discuss the relationship between the deformation characteristics with the M earthquake in Japan. The results showed that the fault coupling rate of the northern section of Tancheng in the second phase reduced compared with that in the first phase. However, the results of the two phases showed that the northern section of Juxian still has a high coupling rate, a deep blocking depth, and a dextral compressive deficit, which is the enrapture section of the 1668 Tancheng earthquake. At the same time, the area strain results show that the strain rate of the central and eastern regions of the second phase is obviously enhanced compared with that of the first phase. The occurrence of the great earthquake in Japan has played a specific role in alleviating the strain accumulation in the middle and south sections of the Tanlu fault zone. The results of the maximum shear strain show that the shear strain in the middle section of the Tanlu fault zone in the second phase is weaker than that in the first phase, and the maximum shear strain in the southern section is stronger than that in the first phase. The fault coupling coefficient of the south Sihong to Jiashan section is high, and it is also the unruptured section of historical earthquakes. At the same time, small earthquakes in this area are not active and accumulate stress easily, so the future earthquake risk deserves attention.

根据1991-2007年(第一阶段)和2013-2018年(第二阶段)的GPS水平速度场,我们采用块体负位错模型反演了郯庐(郯城-庐江)断裂带不同区段的断层耦合和滑移率亏损分布。通过对比变形特征结果,探讨了变形特征与日本 M 地震的关系。结果表明,与第一阶段相比,第二阶段郯城北段的断层耦合率有所降低。但两个阶段的结果表明,莒县北段仍具有较高的耦合率、较深的阻滞深度和右旋压缩性亏损,是 1668 年郯城地震的诱发段。同时,区域应变结果表明,第二阶段中部和东部地区的应变速率较第一阶段明显增强。日本大地震的发生对缓解郯庐断裂带中段和南段的应变累积起到了特殊作用。最大剪切应变结果表明,郯庐断裂带中段第二阶段的剪切应变弱于第一阶段,而南段的最大剪切应变强于第一阶段。泗洪南至嘉善段断层耦合系数较高,也是历史地震的未破坏段。同时,该地区小震不活跃,应力易积累,未来地震风险值得关注。
{"title":"Interseismic slip distribution and locking characteristics of the mid-southern segment of the Tanlu fault zone","authors":"","doi":"10.1016/j.eqrea.2024.100307","DOIUrl":"10.1016/j.eqrea.2024.100307","url":null,"abstract":"<div><p>We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu (Tancheng-Lujiang) fault zone, according to the GPS horizontal velocity field from 1991 to 2007 (the first phase) and 2013 to 2018 (the second phase). By comparing the deformation characteristics results, we discuss the relationship between the deformation characteristics with the M earthquake in Japan. The results showed that the fault coupling rate of the northern section of Tancheng in the second phase reduced compared with that in the first phase. However, the results of the two phases showed that the northern section of Juxian still has a high coupling rate, a deep blocking depth, and a dextral compressive deficit, which is the enrapture section of the 1668 Tancheng earthquake. At the same time, the area strain results show that the strain rate of the central and eastern regions of the second phase is obviously enhanced compared with that of the first phase. The occurrence of the great earthquake in Japan has played a specific role in alleviating the strain accumulation in the middle and south sections of the Tanlu fault zone. The results of the maximum shear strain show that the shear strain in the middle section of the Tanlu fault zone in the second phase is weaker than that in the first phase, and the maximum shear strain in the southern section is stronger than that in the first phase. The fault coupling coefficient of the south Sihong to Jiashan section is high, and it is also the unruptured section of historical earthquakes. At the same time, small earthquakes in this area are not active and accumulate stress easily, so the future earthquake risk deserves attention.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100307"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000332/pdfft?md5=fda8dd5b0f4c2e340a8265f436ab6344&pid=1-s2.0-S2772467024000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140407090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coseismic deformation and seismogenic structure of the 2024 Hualien Earthquake measured by InSAR and GNSS 利用 InSAR 和 GNSS 测量 2024 年花莲地震的共震变形和震源结构
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100328
Jiangtao Qiu, Lingyun Ji, Liangyu Zhu, Yongsheng Li, Chuanjin Liu, Qiang Zhao
{"title":"Coseismic deformation and seismogenic structure of the 2024 Hualien Earthquake measured by InSAR and GNSS","authors":"Jiangtao Qiu, Lingyun Ji, Liangyu Zhu, Yongsheng Li, Chuanjin Liu, Qiang Zhao","doi":"10.1016/j.eqrea.2024.100328","DOIUrl":"https://doi.org/10.1016/j.eqrea.2024.100328","url":null,"abstract":"","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"274 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 2024 Mj 7.6 Noto Peninsula, Japan earthquake caused by the fluid flow in the crust 地壳流体流动引发的 2024 年日本能登半岛 Mj7.6 级地震
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100292

On January 1, 2024 ​at 16:10:09 JST, an Mj 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from 1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not.

日本时间 2024 年 1 月 1 日 16 时 10 分 09 秒,日本海南部能登半岛发生 Mj 7.6 级地震。在过去三年多的时间里,该地区一直在经历地震群。在此,我们概述了此次地震,重点关注主震的滑移分布及其与之前震群的关系。我们还重新研究了过去在日本海周围发生的其他大地震的震源区,并与 1964 年至 1968 年在日本中部发生的松代地震群进行了比较。松代地震群与能登地震群的不同之处在于周围的应力场。松代地震群是一个走向滑动应力场,因此地壳裂缝的方向是垂直的。这使得从深处渗出的液体上升并流向地表。另一方面,能登地区属于逆断层应力场。因此,地壳裂缝呈水平走向。在深层地区地下流动的流体无法在水平面内上升并扩散到大面积区域。这可能导致大量流体在地下积聚,从而引发大地震。虽然我们提出的机制没有考虑到其他复杂的地质条件,但它可以提供一个简单的方法来解释为什么能登地震群之后会发生大地震,而其他地震群不会发生大地震。
{"title":"The 2024 Mj 7.6 Noto Peninsula, Japan earthquake caused by the fluid flow in the crust","authors":"","doi":"10.1016/j.eqrea.2024.100292","DOIUrl":"10.1016/j.eqrea.2024.100292","url":null,"abstract":"<div><p>On January 1, 2024 ​at 16:10:09 JST, an <em>M</em><sub>j</sub> 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from 1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100292"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000186/pdfft?md5=10befa2ebdac0c54e738a2d940c10ba8&pid=1-s2.0-S2772467024000186-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and hazard analysis of landslides triggered by earthquakes and rainfall 地震和降雨引发的山体滑坡的识别和危害分析
Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2023.100272

This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique and Google Earth optical remote sensing images to analyze the area within 20 ​km around the epicenter of a M 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 ​km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 ​m and 14.1 ​m for the failure surfaces, with volumes of 9.02 ​× ​104 ​m3 and 25.5 ​× ​104 ​m3, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 ​m, the area of the final accumulation area is 1.75 ​× ​104 ​m2, and the farthest movement distance is 1124 ​m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 ​m, the area of the final accumulation area is 7.89 ​× ​104 ​m2, and the farthest movement distance is 742 ​m.

本研究旨在利用小基线子集干涉合成孔径雷达(SBAS-InSAR)技术和谷歌地球光学遥感图像,分析 2020 年 12 月 28 日在甘肃省宕昌县发生的 M 3.9 级地震震中周围 20 公里内的区域。目的是识别潜在的地震诱发滑坡,评估其规模并确定其影响范围。研究结果表明,在震中周围 20 公里半径范围内成功识别出两处潜在滑坡。通过时间序列变形分析,发现这些潜在滑坡受地震和降雨的影响很大。对这些潜在滑坡的进一步估算表明,崩塌面的最大深度分别为 7.4 米和 14.1 米,体积分别为 9.02 × 104 立方米和 25.5 × 104 立方米。最后,根据 Massflow 软件的模拟分析,上窑潜在滑坡滑动后最终堆积区的最大堆积土厚度为 12 m,最终堆积区面积为 1.75 × 104 m2,最远移动距离为 1124 m。王山村潜在滑坡滑动后最终堆积区最大堆积土厚度为 8 m,最终堆积区面积为 7.89 × 104 m2,最远移动距离为 742 m。
{"title":"Identification and hazard analysis of landslides triggered by earthquakes and rainfall","authors":"","doi":"10.1016/j.eqrea.2023.100272","DOIUrl":"10.1016/j.eqrea.2023.100272","url":null,"abstract":"<div><p>This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique and Google Earth optical remote sensing images to analyze the area within 20 ​km around the epicenter of a <em>M</em> 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 ​km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 ​m and 14.1 ​m for the failure surfaces, with volumes of 9.02 ​× ​10<sup>4</sup> ​m<sup>3</sup> and 25.5 ​× ​10<sup>4</sup> ​m<sup>3</sup>, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 ​m, the area of the final accumulation area is 1.75 ​× ​10<sup>4</sup> ​m<sup>2</sup>, and the farthest movement distance is 1124 ​m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 ​m, the area of the final accumulation area is 7.89 ​× ​10<sup>4</sup> ​m<sup>2</sup>, and the farthest movement distance is 742 ​m.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100272"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000696/pdfft?md5=ba6a8cdea7cfdae2bd3eb15fba341bad&pid=1-s2.0-S2772467023000696-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139188018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earthquake Research Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1