Pub Date : 2023-09-14DOI: 10.3390/chemosensors11090500
Celia Carrillo, Igor B. Tomasevic, Francisco J. Barba, Senem Kamiloglu
The health-related properties attributed to berries and the subsequent interest awakened within the market of functional foods mean that these small fruits may be potential targets for food fraud. In this review, studies on berry authentication through modern analytical techniques are discussed in detail. Most of the studies reported to date are related to chemical approaches, mainly chromatographic techniques. Other chemical (NMR, NIR, and Raman spectroscopy), biomolecular, and isotopic methods have also delivered promising results in the field of berry authentication, although there is still limited information available in this respect. Despite the potential of the methods described in the present review, to date, there is no universal one. Therefore, combinations of different approaches in order to complement each other are increasingly used (e.g., HPTLC and mass spectrometry; Raman and IR spectroscopies; biomolecular and analytical techniques…). Considering that adulteration practices are increasingly evolving, continuous research in the field of food authentication is needed, especially in the case of berries, since there are still some berry species that have not yet been included in any authentication study.
{"title":"Modern Analytical Techniques for Berry Authentication","authors":"Celia Carrillo, Igor B. Tomasevic, Francisco J. Barba, Senem Kamiloglu","doi":"10.3390/chemosensors11090500","DOIUrl":"https://doi.org/10.3390/chemosensors11090500","url":null,"abstract":"The health-related properties attributed to berries and the subsequent interest awakened within the market of functional foods mean that these small fruits may be potential targets for food fraud. In this review, studies on berry authentication through modern analytical techniques are discussed in detail. Most of the studies reported to date are related to chemical approaches, mainly chromatographic techniques. Other chemical (NMR, NIR, and Raman spectroscopy), biomolecular, and isotopic methods have also delivered promising results in the field of berry authentication, although there is still limited information available in this respect. Despite the potential of the methods described in the present review, to date, there is no universal one. Therefore, combinations of different approaches in order to complement each other are increasingly used (e.g., HPTLC and mass spectrometry; Raman and IR spectroscopies; biomolecular and analytical techniques…). Considering that adulteration practices are increasingly evolving, continuous research in the field of food authentication is needed, especially in the case of berries, since there are still some berry species that have not yet been included in any authentication study.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"145 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134914134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12DOI: 10.3390/chemosensors11090499
Kien Wen Sun
The advancement in chemosensory research towards the ionic species quantitation becomes vital to securing the environment for the future [...]
化学感觉研究在离子种类定量方面的进展对于确保未来的环境至关重要[…]
{"title":"Chemosensors for Ion Detection","authors":"Kien Wen Sun","doi":"10.3390/chemosensors11090499","DOIUrl":"https://doi.org/10.3390/chemosensors11090499","url":null,"abstract":"The advancement in chemosensory research towards the ionic species quantitation becomes vital to securing the environment for the future [...]","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135879058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to develop a refractive-index sensor operating in the visible region using an all-dielectric metasurface, which was chosen for its advantages of low optical loss and narrow spectral bandwidth, compared to those of conventional metallic metasurfaces. COMSOL software was utilized as a calculation tool to simulate the resonant properties of an all-dielectric metasurface composed of a circular nanohole-structured titanium oxide (TiO2) thin film, with the aim of enhancing the sensitivity of the refractive index for sensing targets. The simulation focused on finding the best geometrical conditions for the all-dielectric metasurface to achieve high sensitivity. Two resonance modes observed in this metasurface were considered: the quasi-bound-state-in-the-continuum (qBIC) mode and the perfect-reflection (PR) mode. The simulated results demonstrated that high sensitivities of 257 nm/RIU at the PR mode and 94 nm/RIU at the qBIC mode in the visible spectral range could be obtained by periodically constructing the metasurface with a unit cell having a lattice constant of 350 nm, a nanohole radius of 160 nm, and a nanohole depth of 250 nm. Furthermore, the study showed that the resonance mode that enabled high sensitivity was the PR mode, with a sensitivity nearly three times larger than that of the qBIC mode and the ability to reach the highest reflectance at the resonance wavelength. The optimized feature had the highest reflectance at a resonant wavelength of 570.19 nm, and although the quality factor was 25.50, these designed parameters were considered sufficient for developing a refractive index biosensor with high sensitivity and optical efficiency when operating in the visible spectral range.
{"title":"Optimization of the Geometrical Design for an All-Dielectric Metasurface Sensor with a High Refractive-Index Response","authors":"Chia-Te Chang, Chia-Ming Yang, I-Hsuan Chen, Chih-Ching Ho, Yu-Jen Lu, Chih-Jen Yu","doi":"10.3390/chemosensors11090498","DOIUrl":"https://doi.org/10.3390/chemosensors11090498","url":null,"abstract":"This study aims to develop a refractive-index sensor operating in the visible region using an all-dielectric metasurface, which was chosen for its advantages of low optical loss and narrow spectral bandwidth, compared to those of conventional metallic metasurfaces. COMSOL software was utilized as a calculation tool to simulate the resonant properties of an all-dielectric metasurface composed of a circular nanohole-structured titanium oxide (TiO2) thin film, with the aim of enhancing the sensitivity of the refractive index for sensing targets. The simulation focused on finding the best geometrical conditions for the all-dielectric metasurface to achieve high sensitivity. Two resonance modes observed in this metasurface were considered: the quasi-bound-state-in-the-continuum (qBIC) mode and the perfect-reflection (PR) mode. The simulated results demonstrated that high sensitivities of 257 nm/RIU at the PR mode and 94 nm/RIU at the qBIC mode in the visible spectral range could be obtained by periodically constructing the metasurface with a unit cell having a lattice constant of 350 nm, a nanohole radius of 160 nm, and a nanohole depth of 250 nm. Furthermore, the study showed that the resonance mode that enabled high sensitivity was the PR mode, with a sensitivity nearly three times larger than that of the qBIC mode and the ability to reach the highest reflectance at the resonance wavelength. The optimized feature had the highest reflectance at a resonant wavelength of 570.19 nm, and although the quality factor was 25.50, these designed parameters were considered sufficient for developing a refractive index biosensor with high sensitivity and optical efficiency when operating in the visible spectral range.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-09DOI: 10.3390/chemosensors11090495
Justyna Jońca, Kevin Castello-Lux, Katia Fajerwerg, Myrtil L. Kahn, Vincent Collière, Philippe Menini, Izabela Sówka, Pierre Fau
The nanometer size Cu2O@WO3·H2O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO3·2H2O nanoleaves. The synthesis has been performed in toluene without the addition of any ancillary ligands. The prepared nanocomposite has been deposited as a gas-sensitive layer on miniaturized silicon devices and heated up gradually to 500 °C in the ambient air. During the heating, the CuWO4 phase is formed upon the reaction of Cu2O with the WO3 support as revealed by the XRD analyses. The as-prepared CuWO4@WO3 sensors have been exposed to 10 ppm of CO or 0.4 ppm of NO2 (RH = 50%). At the operating temperature of 445 °C, a normalized response of 620% towards NO2 is obtained whereas the response to CO is significantly lower (S = 30%). Under these conditions, the sensors prepared either with pristine CuO or WO3 nanostructures are sensitive to only one of the two investigated gases, i.e., CO and NO2, respectively. Interestingly, when the CuWO4@WO3 sensitive layer is exposed to UV light emitted from a 365 nm Schottky diode, its sensitivity towards CO vanishes whereas the response towards NO2 remains high. Thus, the application of UV illumination allowed us to modify the selectivity of the device. This new nanocomposite sensor is a versatile sensitive layer that will be integrated into a gas sensor array dedicated to electronic nose platforms.
{"title":"Gas Sensing Properties of CuWO4@WO3 n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO3·2H2O Nanoleaves","authors":"Justyna Jońca, Kevin Castello-Lux, Katia Fajerwerg, Myrtil L. Kahn, Vincent Collière, Philippe Menini, Izabela Sówka, Pierre Fau","doi":"10.3390/chemosensors11090495","DOIUrl":"https://doi.org/10.3390/chemosensors11090495","url":null,"abstract":"The nanometer size Cu2O@WO3·H2O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO3·2H2O nanoleaves. The synthesis has been performed in toluene without the addition of any ancillary ligands. The prepared nanocomposite has been deposited as a gas-sensitive layer on miniaturized silicon devices and heated up gradually to 500 °C in the ambient air. During the heating, the CuWO4 phase is formed upon the reaction of Cu2O with the WO3 support as revealed by the XRD analyses. The as-prepared CuWO4@WO3 sensors have been exposed to 10 ppm of CO or 0.4 ppm of NO2 (RH = 50%). At the operating temperature of 445 °C, a normalized response of 620% towards NO2 is obtained whereas the response to CO is significantly lower (S = 30%). Under these conditions, the sensors prepared either with pristine CuO or WO3 nanostructures are sensitive to only one of the two investigated gases, i.e., CO and NO2, respectively. Interestingly, when the CuWO4@WO3 sensitive layer is exposed to UV light emitted from a 365 nm Schottky diode, its sensitivity towards CO vanishes whereas the response towards NO2 remains high. Thus, the application of UV illumination allowed us to modify the selectivity of the device. This new nanocomposite sensor is a versatile sensitive layer that will be integrated into a gas sensor array dedicated to electronic nose platforms.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-09DOI: 10.3390/chemosensors11090497
Chenyu Dong, Yifan Wang, Xiaoyan Zhao, Jie Bian, Weihua Zhang
Nanostructures and nanomaterials, especially plasmonic nanostructures, often show optical properties that conventional materials lack and can manipulate light, as well as various light–matter interactions, in both their near-field and far-field regions with a high efficiency. Thanks to these unique properties, not only can they be used to enhance the sensitivity of chemical sensing and analysis techniques, but they also provide a solution for designing new sensing devices and simplifying the design of analytical instruments. The earliest applications of optical nanostructures are surface-enhanced spectroscopies. With the help of the resonance field enhancement of plasmonic nanostructures, molecular signals, such as Raman, infrared absorption, and fluorescence can be significantly enhanced, and even single-molecule analysis can be realized. Moreover, the resonant field enhancements of plasmonic nanostructures are often associated with other effects, such as optical forces, resonance shifts, and photothermal effects. Using these properties, label-free plasmonic sensors, nano-optical tweezers, and plasmonic matrix-assisted laser desorption/ionization have also been demonstrated in the past two decades. In the last few years, the research on optical nanostructures has gradually expanded to non-periodic 2D array structures, namely metasurfaces. With the help of metasurfaces, light can be arbitrarily manipulated, leading to many new possibilities for developing miniaturized integrated intelligent sensing and analysis systems. In this review, we discuss the applications of optical nanostructures in chemical sensing and analysis from both theoretical and practical aspects, aiming at a concise and unified framework for this field.
{"title":"Chemical Sensing and Analysis with Optical Nanostructures","authors":"Chenyu Dong, Yifan Wang, Xiaoyan Zhao, Jie Bian, Weihua Zhang","doi":"10.3390/chemosensors11090497","DOIUrl":"https://doi.org/10.3390/chemosensors11090497","url":null,"abstract":"Nanostructures and nanomaterials, especially plasmonic nanostructures, often show optical properties that conventional materials lack and can manipulate light, as well as various light–matter interactions, in both their near-field and far-field regions with a high efficiency. Thanks to these unique properties, not only can they be used to enhance the sensitivity of chemical sensing and analysis techniques, but they also provide a solution for designing new sensing devices and simplifying the design of analytical instruments. The earliest applications of optical nanostructures are surface-enhanced spectroscopies. With the help of the resonance field enhancement of plasmonic nanostructures, molecular signals, such as Raman, infrared absorption, and fluorescence can be significantly enhanced, and even single-molecule analysis can be realized. Moreover, the resonant field enhancements of plasmonic nanostructures are often associated with other effects, such as optical forces, resonance shifts, and photothermal effects. Using these properties, label-free plasmonic sensors, nano-optical tweezers, and plasmonic matrix-assisted laser desorption/ionization have also been demonstrated in the past two decades. In the last few years, the research on optical nanostructures has gradually expanded to non-periodic 2D array structures, namely metasurfaces. With the help of metasurfaces, light can be arbitrarily manipulated, leading to many new possibilities for developing miniaturized integrated intelligent sensing and analysis systems. In this review, we discuss the applications of optical nanostructures in chemical sensing and analysis from both theoretical and practical aspects, aiming at a concise and unified framework for this field.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants formed during incomplete combustion or pyrolysis of organic material. The reliable quantification of PAH in airborne samples is still difficult, costly, and time-consuming due to the use of offline techniques, including long sampling on filters/adsorbents, laboratory extraction, purification, and concentration steps before analysis. To tackle these drawbacks, this work focused on the development of a fully automatic gas chromatograph (GC) equipped with a flame ionization detector (FID) and a sample preconcentration unit (PC) for gas sampling. This instrument was validated under laboratory-controlled conditions in the range 0–10 ng for 18 PAH. The chromatographic separation was rather satisfactory except for two PAH pairs, which were quantified together. For all compounds, the peak areas increased perfectly with the gaseous PAH concentration (R2 > 0.98), without any significant memory effect between two consecutive analyses. Considering a gaseous sample volume of 1 L, the extrapolated limits of detections (LOD) were in the range 19.9–62.6 ng/m3, depending on the PAH. Its analytical performances were then compared to those of the offline reference UHPLC-fluorescence method, widely used for airborne PAH monitoring. This was also compared with the very few portable or continuously operating instruments.
{"title":"Development of an Online Instrument for Continuous Gaseous PAH Quantification: Laboratory Evaluation and Comparison with The Offline Reference UHPLC-Fluorescence Method","authors":"Joana Vaz-Ramos, Mathilde Mascles, Anaïs Becker, Damien Bourgain, Audrey Grandjean, Sylvie Bégin-Colin, Franck Amiet, Damien Bazin, Stéphane Le Calvé","doi":"10.3390/chemosensors11090496","DOIUrl":"https://doi.org/10.3390/chemosensors11090496","url":null,"abstract":"Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants formed during incomplete combustion or pyrolysis of organic material. The reliable quantification of PAH in airborne samples is still difficult, costly, and time-consuming due to the use of offline techniques, including long sampling on filters/adsorbents, laboratory extraction, purification, and concentration steps before analysis. To tackle these drawbacks, this work focused on the development of a fully automatic gas chromatograph (GC) equipped with a flame ionization detector (FID) and a sample preconcentration unit (PC) for gas sampling. This instrument was validated under laboratory-controlled conditions in the range 0–10 ng for 18 PAH. The chromatographic separation was rather satisfactory except for two PAH pairs, which were quantified together. For all compounds, the peak areas increased perfectly with the gaseous PAH concentration (R2 > 0.98), without any significant memory effect between two consecutive analyses. Considering a gaseous sample volume of 1 L, the extrapolated limits of detections (LOD) were in the range 19.9–62.6 ng/m3, depending on the PAH. Its analytical performances were then compared to those of the offline reference UHPLC-fluorescence method, widely used for airborne PAH monitoring. This was also compared with the very few portable or continuously operating instruments.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06DOI: 10.3390/chemosensors11090491
Antonio Fernández, Ismael Montero-Fernández, Olga Monago-Maraña, E. Martín-Tornero, D. Martín-Vertedor
Californian-style is one of the most important black table olive elaborations. During its processing, table olives produce acrylamide, a potential carcinogen compound generated during sterilization. In the present study, total fat and acrylamide content in Californian-style table olives were determined and a regression between them was performed (acrylamide concentration range: below limit of detection—2500 ng g−1 and 8–22% for total fat). Nowadays, there are fast and efficient new techniques, such as Near-Infrared Spectroscopy (NIRS) to measure fat content parameters. In that sense, NIRS was used to perform a fat content quantification model in olives in order to indirectly determine acrylamide content. Calibration models for fat quantification were obtained in defatted olive pastes from a unique variety and for olive pastes from different varieties. In the first case, best results were obtained since only one variety was used (R2 = 0.9694; RMSECV = 1.31%; and REP = 8.4%). However, in the second case, results were still acceptable R2 = 0.678, RMSECV = 2.3%, REP = 17.7% and RMSEV = 2.17%. Regression coefficients showed the most influence variables corresponded with fat. The determination coefficient for the fat and acrylamide correlation was high (r = 0.877), being an efficient approach to find out the contribution of fat degradation to acrylamide synthesis in table olives.
加州风格是最重要的黑餐桌橄榄精心设计之一。食用橄榄在加工过程中会产生丙烯酰胺,这是一种在杀菌过程中产生的潜在致癌化合物。在本研究中,测定了加州风味餐桌橄榄中的总脂肪和丙烯酰胺含量,并对其进行了回归分析(丙烯酰胺浓度范围:低于检测限——2500 ng g−1,总脂肪含量为8-22%)。目前,有一些快速有效的新技术,如近红外光谱(NIRS)来测量脂肪含量参数。从这个意义上说,近红外光谱用于对橄榄中的脂肪含量进行量化模型,以间接测定丙烯酰胺含量。从一个独特品种的脱脂橄榄酱和不同品种的橄榄酱中获得了脂肪定量的校准模型。在第一种情况下,由于只使用了一个品种,因此获得了最好的结果(R2=0.9694;RMSECV=1.31%;REP=8.4%)。然而,在第二种情况中,结果仍然可以接受R2=0.678,RMSECV=2.3%,REP=17.7%和RMSEV=2.17%。回归系数显示,与脂肪相对应的影响变量最多。脂肪和丙烯酰胺相关性的测定系数较高(r=0.877),是了解食用橄榄中脂肪降解对丙烯酰胺合成贡献的有效方法。
{"title":"Acrylamide–Fat Correlation in Californian-Style Black Olives Using Near-Infrared Spectroscopy","authors":"Antonio Fernández, Ismael Montero-Fernández, Olga Monago-Maraña, E. Martín-Tornero, D. Martín-Vertedor","doi":"10.3390/chemosensors11090491","DOIUrl":"https://doi.org/10.3390/chemosensors11090491","url":null,"abstract":"Californian-style is one of the most important black table olive elaborations. During its processing, table olives produce acrylamide, a potential carcinogen compound generated during sterilization. In the present study, total fat and acrylamide content in Californian-style table olives were determined and a regression between them was performed (acrylamide concentration range: below limit of detection—2500 ng g−1 and 8–22% for total fat). Nowadays, there are fast and efficient new techniques, such as Near-Infrared Spectroscopy (NIRS) to measure fat content parameters. In that sense, NIRS was used to perform a fat content quantification model in olives in order to indirectly determine acrylamide content. Calibration models for fat quantification were obtained in defatted olive pastes from a unique variety and for olive pastes from different varieties. In the first case, best results were obtained since only one variety was used (R2 = 0.9694; RMSECV = 1.31%; and REP = 8.4%). However, in the second case, results were still acceptable R2 = 0.678, RMSECV = 2.3%, REP = 17.7% and RMSEV = 2.17%. Regression coefficients showed the most influence variables corresponded with fat. The determination coefficient for the fat and acrylamide correlation was high (r = 0.877), being an efficient approach to find out the contribution of fat degradation to acrylamide synthesis in table olives.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46110665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06DOI: 10.3390/chemosensors11090493
Fabian Thurner, Fatima AlZahra’a Alatraktchi
Quinolones represent a vast family of antibiotics used extensively around the globe in human and veterinary medicine. Over the past decade, the field of biosensors for quinolone detection has experienced significant growth, thanks to the advancements in nanotechnology. These biosensors have emerged as a promising tool for fast and accurate point-of-care detection of quinolones. Although research efforts have proven that it is possible to detect quinolones in complex matrices and in relevant concentration ranges, the complexity of the sensor functionalization and the risk of limited reproducibility has hindered the transfer to real-life applications. This review holistically summarizes existing electrochemical quinolone sensors in comparison to optical and piezoelectric sensors and discusses the challenges that remain to be solved.
{"title":"Recent Trends in Biosensors for Quinolone Detection: A Comprehensive Review","authors":"Fabian Thurner, Fatima AlZahra’a Alatraktchi","doi":"10.3390/chemosensors11090493","DOIUrl":"https://doi.org/10.3390/chemosensors11090493","url":null,"abstract":"Quinolones represent a vast family of antibiotics used extensively around the globe in human and veterinary medicine. Over the past decade, the field of biosensors for quinolone detection has experienced significant growth, thanks to the advancements in nanotechnology. These biosensors have emerged as a promising tool for fast and accurate point-of-care detection of quinolones. Although research efforts have proven that it is possible to detect quinolones in complex matrices and in relevant concentration ranges, the complexity of the sensor functionalization and the risk of limited reproducibility has hindered the transfer to real-life applications. This review holistically summarizes existing electrochemical quinolone sensors in comparison to optical and piezoelectric sensors and discusses the challenges that remain to be solved.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44841866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06DOI: 10.3390/chemosensors11090492
Liqing Wu, Anni Ge, Y. Hao, Xiaolong Yang
The Hippo signaling cascade is frequently dysregulated in a variety of cancers, such as breast cancer (BC), which is one of the most commonly diagnosed malignancies in women. Among BC subtypes, triple-negative BC (TNBC) stands out due to its poor prognosis and high metastatic potential. Despite extensive research aimed at establishing treatment options, existing therapies demonstrate limited efficacy for TNBC. Recently, it has been recognized that targeting the core components of the Hippo pathway (YAP and its paralog TAZ) is a promising strategy for developing anti-cancer treatment. However, no YAP/TAZ inhibitors have been approved by the FDA as anti-TNBC treatments, and only a few compounds have been identified that directly affect YAP and TAZ activity and stability to enhance the prospect of innovative HiBiT biosensors for monitoring of YAP and TAZ in cells. Employing these biosensors, we conducted a small-scale drug screen involving 279 compounds, leading to the identification of several small molecule inhibitors (SMIs) capable of inducing YAP/TAZ degradation in diverse TNBC cell lines. It is worth noting that some drugs may indirectly affect the protein stability following prolonged treatment, and a shorter exposure can be included in the future to identify drug candidates with more direct effects. Nevertheless, our study introduces a novel approach for assessing YAP and TAZ levels, which can have significant implications for developing anti-TNBC targeted therapies.
{"title":"Development of a New HiBiT Biosensor Monitoring Stability of YAP/TAZ Proteins in Cells","authors":"Liqing Wu, Anni Ge, Y. Hao, Xiaolong Yang","doi":"10.3390/chemosensors11090492","DOIUrl":"https://doi.org/10.3390/chemosensors11090492","url":null,"abstract":"The Hippo signaling cascade is frequently dysregulated in a variety of cancers, such as breast cancer (BC), which is one of the most commonly diagnosed malignancies in women. Among BC subtypes, triple-negative BC (TNBC) stands out due to its poor prognosis and high metastatic potential. Despite extensive research aimed at establishing treatment options, existing therapies demonstrate limited efficacy for TNBC. Recently, it has been recognized that targeting the core components of the Hippo pathway (YAP and its paralog TAZ) is a promising strategy for developing anti-cancer treatment. However, no YAP/TAZ inhibitors have been approved by the FDA as anti-TNBC treatments, and only a few compounds have been identified that directly affect YAP and TAZ activity and stability to enhance the prospect of innovative HiBiT biosensors for monitoring of YAP and TAZ in cells. Employing these biosensors, we conducted a small-scale drug screen involving 279 compounds, leading to the identification of several small molecule inhibitors (SMIs) capable of inducing YAP/TAZ degradation in diverse TNBC cell lines. It is worth noting that some drugs may indirectly affect the protein stability following prolonged treatment, and a shorter exposure can be included in the future to identify drug candidates with more direct effects. Nevertheless, our study introduces a novel approach for assessing YAP and TAZ levels, which can have significant implications for developing anti-TNBC targeted therapies.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42721838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06DOI: 10.3390/chemosensors11090494
Rana Dalapati, M. Hunter, Ling Zang
There was an error in the original publication [...]
原文中有个错误[…]
{"title":"Correction: Dalapati et al. A Dual Fluorometric and Colorimetric Sulfide Sensor Based on Coordinating Self-Assembled Nanorods: Applicable for Monitoring Meat Spoilage. Chemosensors 2022, 10, 500","authors":"Rana Dalapati, M. Hunter, Ling Zang","doi":"10.3390/chemosensors11090494","DOIUrl":"https://doi.org/10.3390/chemosensors11090494","url":null,"abstract":"There was an error in the original publication [...]","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43415056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}