Epoxy resin (EP) has been widely utilized in electrical equipment and electronic devices due to its fascinating electric, thermal, and mechanical properties. However, the complex insulation structures of modern power devices in high-voltage direct current systems pose several challenges for EP-based dielectrics. The most significant among these challenges is the need for EP to stably operate under greater electric fields, requiring superior breakdown strength. This paper summarizes the key factors influencing the breakdown strength of EP and reviews reported methods for enhancing this property. Recognizing the limitations of existing approaches, we propose that the emerging technology of molecule design offers a potentially optimal solution for developing EP with enhanced breakdown strength. Furthermore, we anticipate the future development direction of EP with satisfactory insulation properties. We believe that enhancing the breakdown theory of solid dielectrics, exploring new research and development methodologies, and creating environmentally friendly EP with high performance are primary focus areas. We hope that this paper will offer guidance and support for the future development of EP with superior breakdown strength, proving valuable in advancing EP-based dielectrics.
环氧树脂(EP)具有迷人的电、热和机械特性,已被广泛应用于电气设备和电子设备中。然而,现代电力设备在高压直流系统中的复杂绝缘结构给 EP 类电介质带来了诸多挑战。其中最重要的挑战是 EP 需要在更大的电场下稳定工作,这就要求其具有卓越的击穿强度。本文总结了影响 EP 击穿强度的关键因素,并回顾了已报道的增强这一特性的方法。认识到现有方法的局限性,我们提出分子设计这一新兴技术为开发具有更强击穿强度的 EP 提供了潜在的最佳解决方案。此外,我们还预测了具有令人满意的绝缘性能的 EP 的未来发展方向。我们认为,增强固体电介质的击穿理论、探索新的研发方法以及创造具有高性能的环保型 EP 是主要的重点领域。我们希望本文能为具有优异击穿强度的 EP 的未来发展提供指导和支持,并证明其对推动 EP 类电介质的发展具有重要价值。
{"title":"Development of Epoxy Resin with Superior Breakdown Strength: A Review","authors":"Li Shengtao;Li Mingru","doi":"10.23919/IEN.2024.0010","DOIUrl":"https://doi.org/10.23919/IEN.2024.0010","url":null,"abstract":"Epoxy resin (EP) has been widely utilized in electrical equipment and electronic devices due to its fascinating electric, thermal, and mechanical properties. However, the complex insulation structures of modern power devices in high-voltage direct current systems pose several challenges for EP-based dielectrics. The most significant among these challenges is the need for EP to stably operate under greater electric fields, requiring superior breakdown strength. This paper summarizes the key factors influencing the breakdown strength of EP and reviews reported methods for enhancing this property. Recognizing the limitations of existing approaches, we propose that the emerging technology of molecule design offers a potentially optimal solution for developing EP with enhanced breakdown strength. Furthermore, we anticipate the future development direction of EP with satisfactory insulation properties. We believe that enhancing the breakdown theory of solid dielectrics, exploring new research and development methodologies, and creating environmentally friendly EP with high performance are primary focus areas. We hope that this paper will offer guidance and support for the future development of EP with superior breakdown strength, proving valuable in advancing EP-based dielectrics.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 2","pages":"82-95"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate prediction of electric vehicle (EV) charging loads is a foundational step in the establishment of expressway charging infrastructures. This study introduces an approach to enhance the precision of expressway EV charging load predictions. The method considers both the battery dynamic state-of-charge (SOC) and user charging decisions. Expressway network nodes were first extracted using the open Gaode Map API to establish a model that incorporates the expressway network and traffic flow features. A Gaussian mixture model is then employed to construct a SOC distribution model for mixed traffic flow. An innovative SOC dynamic translation model is then introduced to capture the dynamic characteristics of traffic flow SOC values. Based on this foundation, an EV charging decision model was developed which considers expressway node distinctions. EV travel characteristics are extracted from the NHTS2017 datasets to assist in constructing the model. Differentiated decision-making is achieved by utilizing improved Lognormal and Sigmoid functions. Finally, the proposed method is applied to a case study of the Lian-Huo expressway. An analysis of EV charging power converges with historical data and shows that the method accurately predicts the charging loads of EVs on expressways, thus revealing the efficacy of the proposed approach in predicting EV charging dynamics under expressway scenarios.
{"title":"Charging Load Prediction Method for Expressway Electric Vehicles Considering Dynamic Battery State-of-Charge and User Decision","authors":"Jiuding Tan;Shuaibing Li;Yi Cui;Zhixiang Lin;Yufeng Song;Yongqiang Kang;Haiying Dong","doi":"10.23919/IEN.2024.0011","DOIUrl":"https://doi.org/10.23919/IEN.2024.0011","url":null,"abstract":"Accurate prediction of electric vehicle (EV) charging loads is a foundational step in the establishment of expressway charging infrastructures. This study introduces an approach to enhance the precision of expressway EV charging load predictions. The method considers both the battery dynamic state-of-charge (SOC) and user charging decisions. Expressway network nodes were first extracted using the open Gaode Map API to establish a model that incorporates the expressway network and traffic flow features. A Gaussian mixture model is then employed to construct a SOC distribution model for mixed traffic flow. An innovative SOC dynamic translation model is then introduced to capture the dynamic characteristics of traffic flow SOC values. Based on this foundation, an EV charging decision model was developed which considers expressway node distinctions. EV travel characteristics are extracted from the NHTS2017 datasets to assist in constructing the model. Differentiated decision-making is achieved by utilizing improved Lognormal and Sigmoid functions. Finally, the proposed method is applied to a case study of the Lian-Huo expressway. An analysis of EV charging power converges with historical data and shows that the method accurately predicts the charging loads of EVs on expressways, thus revealing the efficacy of the proposed approach in predicting EV charging dynamics under expressway scenarios.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 2","pages":"115-124"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grid-tie voltage source converters (VSCs) can operate in three distinct modes: AC-dominant, DC-dominant, and balanced, depending on the placement of the stiff voltage sources, as shown in Figure 1. The distinct operation modes of VSCs typically require different synchronization control techniques. For instance, the grid-following (GFL) control, which utilizes a phase-locked loop to track the AC grid phase and frequency, can be employed for VSCs operating in the AC-dominant mode and the balanced mode. On the other hand, the grid-forming (GFM) control is utilized for VSCs operating in the DC-dominant mode and the balanced mode. Therefore, neither GFM control nor GFL control can serve as a universal synchronization control technique for VSCs to operate in all of the three modes. While the combination of the GFL VSCs and the GFM VSCs can handle applications that require the VSCs to operate in all of the three modes, effectively accommodating and coordinating the heterogeneous GFL and GFM VSCs remains challenging for power systems.
{"title":"Transitioning from Heterogeneous VSC to Homogeneous VSC Based Power Systems: Leveraging Dual-Port Grid-Forming VSCs","authors":"Shuo Zhang;Wei Qiao;Liyan Qu;Jun Wang","doi":"10.23919/IEN.2024.0009","DOIUrl":"https://doi.org/10.23919/IEN.2024.0009","url":null,"abstract":"Grid-tie voltage source converters (VSCs) can operate in three distinct modes: AC-dominant, DC-dominant, and balanced, depending on the placement of the stiff voltage sources, as shown in Figure 1. The distinct operation modes of VSCs typically require different synchronization control techniques. For instance, the grid-following (GFL) control, which utilizes a phase-locked loop to track the AC grid phase and frequency, can be employed for VSCs operating in the AC-dominant mode and the balanced mode. On the other hand, the grid-forming (GFM) control is utilized for VSCs operating in the DC-dominant mode and the balanced mode. Therefore, neither GFM control nor GFL control can serve as a universal synchronization control technique for VSCs to operate in all of the three modes. While the combination of the GFL VSCs and the GFM VSCs can handle applications that require the VSCs to operate in all of the three modes, effectively accommodating and coordinating the heterogeneous GFL and GFM VSCs remains challenging for power systems.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 2","pages":"75-76"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ningyu Ren;Liguo Tan;Minghao Li;Junjie Zhou;Yiran Ye;Boxin Jiao;Liming Ding;Chenyi Yi
High power conversion efficiency (PCE) flexible perovskite solar cells (FPSCs) are highly desired power sources for aerospace crafts and flexible electronics. However, their PCEs still lag far behind their rigid counterparts. Herein, we report a high PCE FPSC by controllable growth of a SnO2 electron transport layer through constant pH chemical bath deposition (CBD). The application of SnSO4 as tin source enables us to perform CBD without strong acid, which in turn makes it applicable to acid-sensitive flexible indium tin oxide. Furthermore, a mild and controllable growth environment leads to uniform particle growth and dense SnO 2