Pub Date : 2024-06-01DOI: 10.1016/j.jil.2024.100098
Alexander I. Ikeuba , Nelson Essiet , Obinna C. Echem , Nnaemeka Ezenobi , Effiong Okon , Peter C. Okafor
This review examines the corrosion inhibition performance of ionic liquids used as corrosion inhibitors for aluminum, copper, magnesium, steel, and their alloys in various aqueous media. The predominant classes of ionic liquids employed are imidazolium, triazolium, thiazolium, phosphonium, pyridinium, ammonium, pyrrolidinium, and pyridinium-based ionic liquids. The pieces of literature revealed that the studies were carried out in acid, base, and salt media and an array of inhibition efficiencies was obtained. Herein, the possible influence of experimental techniques, ionic liquid concentration, ionic liquid structure, and molecular weight on the inhibition efficiency are tabulated and discussed.
{"title":"A review of the application of ionic liquids as eco-friendly corrosion inhibitors for steel, aluminum, copper and magnesium alloys","authors":"Alexander I. Ikeuba , Nelson Essiet , Obinna C. Echem , Nnaemeka Ezenobi , Effiong Okon , Peter C. Okafor","doi":"10.1016/j.jil.2024.100098","DOIUrl":"10.1016/j.jil.2024.100098","url":null,"abstract":"<div><p>This review examines the corrosion inhibition performance of ionic liquids used as corrosion inhibitors for aluminum, copper, magnesium, steel, and their alloys in various aqueous media. The predominant classes of ionic liquids employed are imidazolium, triazolium, thiazolium, phosphonium, pyridinium, ammonium, pyrrolidinium, and pyridinium-based ionic liquids. The pieces of literature revealed that the studies were carried out in acid, base, and salt media and an array of inhibition efficiencies was obtained. Herein, the possible influence of experimental techniques, ionic liquid concentration, ionic liquid structure, and molecular weight on the inhibition efficiency are tabulated and discussed.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000211/pdfft?md5=a52958edbff3e1422c1e9621f12f3b4e&pid=1-s2.0-S2772422024000211-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141137604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jil.2024.100097
Enas A. Othman , Aloijsius G.J. van der Ham , Henk Miedema , Sascha R.A. Kersten
In this study a LLX process for the extraction of cobalt by the IL [P8888][Oleate] is analysed in terms of relevant thermodynamic parameters. The process can be considered a typical example of transition metal extraction by an ionic liquid. Conductivity and chemical (FTIR) analyses indicate that Co2+ complexes with the IL. Three different models are evaluated, all different with respect to the actual Co2+ species that complexes with the IL, as well as the Co2+:IL stoichiometry. Based on simulations we identified CoCl2 as the Co species that enters and complexes with the IL, in a Co2+:IL ratio of 1:2. The complexation reaction between the Co-species and the IL is an endothermic, entropy-driven reaction. The influence of the feed composition on Co2+ extraction is investigated, including the effect of the nature of the accompanying anion as well as the presence of a salting out cation agent. The higher Co2+ extraction from a NO3− medium is due to the stronger interaction between Co(NO3)2 and the IL, reflected by a higher equilibrium constant of Co(NO3)2 compared to CoCl2. Differences in dehydration enthalpy between the ion species involved may contribute as well. Similar effects play a role when comparing uptake rates in solutions containing both Co2+ and Na+, with Co2+ extraction clearly preferred over that of Na+. Observed differences in Co2+ uptake in the presence of a salting-out agent (NaCl, KCl and NH4Cl) can be explained in terms of the hydration energy of the salting out cation, the higher this hydration energy, the higher the Co2+ uptake by the IL.
{"title":"Thermodynamics and physical properties of an ionic liquid-based metal extraction process","authors":"Enas A. Othman , Aloijsius G.J. van der Ham , Henk Miedema , Sascha R.A. Kersten","doi":"10.1016/j.jil.2024.100097","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100097","url":null,"abstract":"<div><p>In this study a LLX process for the extraction of cobalt by the IL [P<sub>8888</sub>][Oleate] is analysed in terms of relevant thermodynamic parameters. The process can be considered a typical example of transition metal extraction by an ionic liquid. Conductivity and chemical (FTIR) analyses indicate that Co<sup>2+</sup> complexes with the IL. Three different models are evaluated, all different with respect to the actual Co<sup>2+</sup> species that complexes with the IL, as well as the Co<sup>2+</sup>:IL stoichiometry. Based on simulations we identified CoCl<sub>2</sub> as the Co species that enters and complexes with the IL, in a Co<sup>2+</sup>:IL ratio of 1:2. The complexation reaction between the Co-species and the IL is an endothermic, entropy-driven reaction. The influence of the feed composition on Co<sup>2+</sup> extraction is investigated, including the effect of the nature of the accompanying anion as well as the presence of a salting out cation agent. The higher Co<sup>2+</sup> extraction from a NO<sub>3</sub><sup>−</sup> medium is due to the stronger interaction between Co(NO<sub>3</sub>)<sub>2</sub> and the IL, reflected by a higher equilibrium constant of Co(NO<sub>3</sub>)<sub>2</sub> compared to CoCl<sub>2</sub>. Differences in dehydration enthalpy between the ion species involved may contribute as well. Similar effects play a role when comparing uptake rates in solutions containing both Co<sup>2+</sup> and Na<sup>+</sup>, with Co<sup>2+</sup> extraction clearly preferred over that of Na<sup>+</sup>. Observed differences in Co<sup>2+</sup> uptake in the presence of a salting-out agent (NaCl, KCl and NH<sub>4</sub>Cl) can be explained in terms of the hydration energy of the salting out cation, the higher this hydration energy, the higher the Co<sup>2+</sup> uptake by the IL.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242202400020X/pdfft?md5=2aac78af15813cd096703390c882fea3&pid=1-s2.0-S277242202400020X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-21DOI: 10.1016/j.jil.2024.100096
Marco V. Velarde-Salcedo , Joel Sanchez-Badillo , Marco Gallo , Jorge López-Lemus
The combustion of fossil fuels is an important source of air pollution due to the presence of sulfur-based compounds. In this regard, a reliable atomistic forcefield is required in order to provide insights on solute-solvent interactions, and in designing high aromatic sulfur extracting solvents. In the present work, the excess chemical potentials of thiophene within four 1-butyl-3-methylimidazolium-based ionic liquids were evaluated through the free energy perturbation with replica exchange molecular dynamics methodology by using the CL&Pol polarizable force fields based on Drude oscillators. First, in order to validate the accuracy of the polarizable force fields, a series of thermodynamic properties of pure ionic liquids such as diffusion coefficient, liquid density, dielectric constant, and heat of vaporization were computed using the CL&Pol force field and compared against experimental values. The results from the calculated thiophene excess chemical potential values, indicated that the [C4mim][CH3COO] ionic liquid presents the more favorable excess chemical potential (higher solubility) with respect to the thiophene molecule at both 300 K and 343 K in comparison to the other ionic liquids studied. The structural analysis revealed that the ionic liquid anion interacts more closely and with well-defined RDF peaks with the thiophene molecule, the larger anions present higher surrounding particle densities with the thiophene molecules (solvation shell), while the monoatomic anions interact preferentially with the hydrogens close to the sulfur thiophene atom; In contrast no marked solvation layers were observed with the ionic liquid cations.
由于硫基化合物的存在,化石燃料的燃烧是空气污染的一个重要来源。在这方面,需要一个可靠的原子力场,以便深入了解溶质与溶剂之间的相互作用,并设计高芳香族硫萃取溶剂。本研究利用基于 Drude 振荡器的 CL&Polizable 力场,通过自由能扰动和复制交换分子动力学方法,评估了噻吩在四种 1-丁基-3-甲基咪唑鎓离子液体中的过剩化学势。首先,为了验证可极化力场的准确性,使用 CL&Pol 力场计算了纯离子液体的一系列热力学性质,如扩散系数、液体密度、介电常数和汽化热,并与实验值进行了比较。计算噻吩过剩化学势值的结果表明,与所研究的其他离子液体相比,[C4mim][CH3COO] 离子液体在 300 K 和 343 K 时对噻吩分子具有更有利的过剩化学势(更高的溶解度)。结构分析表明,离子液体阴离子与噻吩分子的相互作用更为密切,并具有明确的 RDF 峰,较大的阴离子与噻吩分子的周围颗粒密度更高(溶解壳),而单原子阴离子则优先与靠近硫噻吩原子的氢相互作用;相比之下,离子液体阳离子没有观察到明显的溶解层。
{"title":"Application of the CL&P-Pol polarizable force field in the determination of the excess chemical potential of thiophene within the [C4mim] [BF4, Cl, Br, CH3COO] ionic liquids","authors":"Marco V. Velarde-Salcedo , Joel Sanchez-Badillo , Marco Gallo , Jorge López-Lemus","doi":"10.1016/j.jil.2024.100096","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100096","url":null,"abstract":"<div><p>The combustion of fossil fuels is an important source of air pollution due to the presence of sulfur-based compounds. In this regard, a reliable atomistic forcefield is required in order to provide insights on solute-solvent interactions, and in designing high aromatic sulfur extracting solvents. In the present work, the excess chemical potentials of thiophene within four 1-butyl-3-methylimidazolium-based ionic liquids were evaluated through the free energy perturbation with replica exchange molecular dynamics methodology by using the CL&Pol polarizable force fields based on Drude oscillators. First, in order to validate the accuracy of the polarizable force fields, a series of thermodynamic properties of pure ionic liquids such as diffusion coefficient, liquid density, dielectric constant, and heat of vaporization were computed using the CL&Pol force field and compared against experimental values. The results from the calculated thiophene excess chemical potential values, indicated that the [C<sub>4</sub>mim][CH<sub>3</sub>COO] ionic liquid presents the more favorable excess chemical potential (higher solubility) with respect to the thiophene molecule at both 300 K and 343 K in comparison to the other ionic liquids studied. The structural analysis revealed that the ionic liquid anion interacts more closely and with well-defined RDF peaks with the thiophene molecule, the larger anions present higher surrounding particle densities with the thiophene molecules (solvation shell), while the monoatomic anions interact preferentially with the hydrogens close to the sulfur thiophene atom; In contrast no marked solvation layers were observed with the ionic liquid cations.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000193/pdfft?md5=9c7ae9fdd8fc6a6424240eb9a576598e&pid=1-s2.0-S2772422024000193-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140647534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1016/j.jil.2024.100093
Kawsar Sheikh , Khan Rajib Hossain , Md. Alal Hossain , Md. Sajedul Islam Sagar , Md Rakib Hasan Raju , Farjana Haque
A new and exciting direction in advanced materials and biomedical engineering is the use of hydrogels based on ionic liquids that are 3D printed. Hydrogels with improved structural integrity and adjustable characteristics are made from ionic liquids, which are renowned for their distinct physicochemical qualities. Utilizing 3D printing technology, which gives precise control over the morphology and spatial arrangement of the finished structures, further expands the potential of these hydrogels. This review discusses the various uses of hydrogels based on ionic liquids that are created on 3D printers, from scaffolds for tissue engineering to drug delivery systems. Ionic liquids and 3D printing together provide a flexible platform for adjusting the hydrogels' mechanical strength, biocompatibility, and responsiveness. The addition of functional components like nanoparticles and bioactive compounds increases the therapeutic potential of these materials. This review covers the latest advancements, obstacles, and potential applications for 3D-printed hydrogels based on ionic liquids. A thorough grasp of how this novel methodology advances materials science and bioengineering and opens the door for next-generation biomedical applications may be gained by delving into the design concepts and fabrication methods.
先进材料和生物医学工程领域的一个令人兴奋的新方向是使用基于离子液体的水凝胶进行三维打印。离子液体以其独特的物理化学特性而闻名于世,它制成的水凝胶具有更好的结构完整性和可调节特性。三维打印技术可对成品结构的形态和空间排列进行精确控制,它的应用进一步拓展了这些水凝胶的潜力。本综述将讨论基于离子液体的水凝胶在三维打印机上的各种用途,从组织工程支架到药物输送系统。离子液体和三维打印技术为调整水凝胶的机械强度、生物相容性和响应性提供了一个灵活的平台。纳米粒子和生物活性化合物等功能性成分的加入提高了这些材料的治疗潜力。本综述涵盖了基于离子液体的 3D 打印水凝胶的最新进展、障碍和潜在应用。通过深入研究设计理念和制造方法,您可以全面了解这种新型方法如何推动材料科学和生物工程的发展,并为下一代生物医学应用打开大门。
{"title":"3D printed ionic liquids based hydrogels and applications","authors":"Kawsar Sheikh , Khan Rajib Hossain , Md. Alal Hossain , Md. Sajedul Islam Sagar , Md Rakib Hasan Raju , Farjana Haque","doi":"10.1016/j.jil.2024.100093","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100093","url":null,"abstract":"<div><p>A new and exciting direction in advanced materials and biomedical engineering is the use of hydrogels based on ionic liquids that are 3D printed. Hydrogels with improved structural integrity and adjustable characteristics are made from ionic liquids, which are renowned for their distinct physicochemical qualities. Utilizing 3D printing technology, which gives precise control over the morphology and spatial arrangement of the finished structures, further expands the potential of these hydrogels. This review discusses the various uses of hydrogels based on ionic liquids that are created on 3D printers, from scaffolds for tissue engineering to drug delivery systems. Ionic liquids and 3D printing together provide a flexible platform for adjusting the hydrogels' mechanical strength, biocompatibility, and responsiveness. The addition of functional components like nanoparticles and bioactive compounds increases the therapeutic potential of these materials. This review covers the latest advancements, obstacles, and potential applications for 3D-printed hydrogels based on ionic liquids. A thorough grasp of how this novel methodology advances materials science and bioengineering and opens the door for next-generation biomedical applications may be gained by delving into the design concepts and fabrication methods.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000168/pdfft?md5=c853009742efb12c8888d633fbcf4e3e&pid=1-s2.0-S2772422024000168-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1016/j.jil.2024.100091
Veronika Jančíková , Michal Jablonský , Dominika Szadkowska , Jan Szadkowski , Pavol Gemeiner
Hemp fibers are promising biomaterials that have many advantages, such as biodegradability, low production costs, and rapid growth. They can be used as alternatives to other cellulosic fibers that have higher environmental impacts. However, to use hemp fibers effectively, they need to be separated from the lignin in the hemp biomass. This process is called delignification, and it is usually done by using harsh chemicals that are harmful to the environment and human health. In this work, we used a new and green solvent, called deep eutectic solvent-like mixtures, to delignify hemp biomass. Deep eutectic solvent-like mixtures are made from choline chloride and lactic acid, which are cheap, safe, and biodegradable. We tested different combinations of temperature (80–160 °C), time (60–240 min.), and solvent amount (1:10–1:60) to find the best conditions for delignification. We measured the Kappa number, which indicates how much lignin is left in the fibers, and the efficiency of delignification, which indicates how much lignin is removed. The Kappa number of delignified hemp fibers ranged from 10.7 (144 °C, 204 min, 1:30) to 21.8 (160 °C, 150 min, 1:17). The results showed that the optimal conditions to obtain the smallest Kappa number representing 6.6 are the boundary conditions of 160 °C, 240 min, and a ratio of 1:60. This method is more sustainable and environmentally friendly than the conventional methods, and it can help achieve the goal of sustainable development for mankind.
{"title":"DES-like mixtures based on choline chloride and lactic acid for fractionation of hemp fibers","authors":"Veronika Jančíková , Michal Jablonský , Dominika Szadkowska , Jan Szadkowski , Pavol Gemeiner","doi":"10.1016/j.jil.2024.100091","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100091","url":null,"abstract":"<div><p>Hemp fibers are promising biomaterials that have many advantages, such as biodegradability, low production costs, and rapid growth. They can be used as alternatives to other cellulosic fibers that have higher environmental impacts. However, to use hemp fibers effectively, they need to be separated from the lignin in the hemp biomass. This process is called delignification, and it is usually done by using harsh chemicals that are harmful to the environment and human health. In this work, we used a new and green solvent, called deep eutectic solvent-like mixtures, to delignify hemp biomass. Deep eutectic solvent-like mixtures are made from choline chloride and lactic acid, which are cheap, safe, and biodegradable. We tested different combinations of temperature (80–160 °C), time (60–240 min.), and solvent amount (1:10–1:60) to find the best conditions for delignification. We measured the Kappa number, which indicates how much lignin is left in the fibers, and the efficiency of delignification, which indicates how much lignin is removed. The Kappa number of delignified hemp fibers ranged from 10.7 (144 °C, 204 min, 1:30) to 21.8 (160 °C, 150 min, 1:17). The results showed that the optimal conditions to obtain the smallest Kappa number representing 6.6 are the boundary conditions of 160 °C, 240 min, and a ratio of 1:60. This method is more sustainable and environmentally friendly than the conventional methods, and it can help achieve the goal of sustainable development for mankind.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000144/pdfft?md5=57e138fa471bbaf5bf8c5321d8405d46&pid=1-s2.0-S2772422024000144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1016/j.jil.2024.100095
Neha Sharma, Reshu Sanan
Owing to the extensive research on imidazolium based ionic liquids; the present study aims to design a potentiometric sensor for alkyl methylimidazolium ion. For this, poly(vinyl chloride) PVC membrane based on the neutral ion-pair complexes of cetylpyridinium chloride and sodium dodecyl sulfate (CPy+DS−) has been developed. The synthesized ion selective electrode (ISEs) have been found to show linear response with near-Nernstian slope for CnMeImCl (C10MeImCl, C12MeImCl and C14MeImCl). The proposed ISEs show quick response (5–6 s) and provide wide pH range for working. The influence of various ions on the performance of ion-selective electrode is investigated in terms of potentiometric selectivity coefficients, which were determined by separate solution method. The performance of synthesized ISE in examining the critical micellar concentration (cmc) of CnMeImCl in aqueous, aqua-organic media and in the presence of amino acids (glycine, L-glutamic acid and L-phenylalanine) has been found to be satisfactory and confirmed through conductivity and fluorescence measurements. This emphasizes its worth for in-situ analysis of alkyl methylimidazolium ions, during an organic reaction, and hence possible reaction mechanism evaluation. Different thermodynamic parameters such as Standard Gibbs energies of micellization (), degree of counterion dissociation (α), amphiphile tail transfer Gibbs free energy () have been evaluated. Further, the analytical application of synthesized electrode as end point indicator in the potentiometric titration of C14MeImCl with SDS has also been explored, which compared well with improved two-phase titration method. The current study is novel as it involves the use of a cheaper material (CPyCl) as ionophore and that the same electrode can be used for different chain alkyl methylimidazolium ions simply by changing the internal reference solutions.
{"title":"Cheap and effective potentiometric PVC sensor for the determination of imidazolium based ionic liquids in aqueous and aqua-organic media","authors":"Neha Sharma, Reshu Sanan","doi":"10.1016/j.jil.2024.100095","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100095","url":null,"abstract":"<div><p>Owing to the extensive research on imidazolium based ionic liquids; the present study aims to design a potentiometric sensor for alkyl methylimidazolium ion. For this, poly(vinyl chloride) PVC membrane based on the neutral ion-pair complexes of cetylpyridinium chloride and sodium dodecyl sulfate (CPy<sup>+</sup>DS<sup>−</sup>) has been developed. The synthesized ion selective electrode (ISEs) have been found to show linear response with near-Nernstian slope for C<sub>n</sub>MeImCl (C<sub>10</sub>MeImCl, C<sub>12</sub>MeImCl and C<sub>14</sub>MeImCl). The proposed ISEs show quick response (5–6 s) and provide wide pH range for working. The influence of various ions on the performance of ion-selective electrode is investigated in terms of potentiometric selectivity coefficients, which were determined by separate solution method. The performance of synthesized ISE in examining the critical micellar concentration (<em>cmc</em>) of C<sub>n</sub>MeImCl in aqueous, aqua-organic media and in the presence of amino acids (glycine, <span>L</span>-glutamic acid and <span>L</span>-phenylalanine) has been found to be satisfactory and confirmed through conductivity and fluorescence measurements. This emphasizes its worth for <em>in-situ</em> analysis of alkyl methylimidazolium ions, during an organic reaction, and hence possible reaction mechanism evaluation. Different thermodynamic parameters such as Standard Gibbs energies of micellization (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msubsup><mi>G</mi><mrow><mi>m</mi></mrow><mo>∘</mo></msubsup></mrow></math></span>), degree of counterion dissociation (α), amphiphile tail transfer Gibbs free energy (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msubsup><mi>G</mi><mrow><mi>m</mi><mo>,</mo><mtext>trans</mtext></mrow><mo>∘</mo></msubsup></mrow></math></span>) have been evaluated. Further, the analytical application of synthesized electrode as end point indicator in the potentiometric titration of C<sub>14</sub>MeImCl with SDS has also been explored, which compared well with improved two-phase titration method. The current study is novel as it involves the use of a cheaper material (CPyCl) as ionophore and that the same electrode can be used for different chain alkyl methylimidazolium ions simply by changing the internal reference solutions.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000181/pdfft?md5=c371428bf012f8f5e961233e238617f5&pid=1-s2.0-S2772422024000181-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1016/j.jil.2024.100092
Daniel Kremitzl , Karoline Röhrs , Marc B. Williams , Peter S. Schulz , Peter Wasserscheid
This study explores the tuning of a Pd/Al2O3 hydrogenation catalyst for the selective removal of trace acetylene from ethylene-rich feeds by coating the catalyst with non-functionalized and functionalized ionic liquids (denoted as SCILL and Advanced SCILL materials, respectively). These materials were tested in an automated continuous hydrogenation rig converting 3300 ppm of acetylene in excess ethylene, a gas mixture mimicking a technical front-end steam cracker feed composition. While the sulfonic-acid-functionalized IL coating resulted in a highly active but very unselective catalyst converting mainly ethylene to ethane, an Advanced SCILL catalyst prepared from a nitrile-functionalized IL reduced the acetylene concentration down to less than 1 ppm, while leaving over 99% of the ethylene untouched. We also examined the potential transformations of the IL layer under reaction conditions by means of 1H NMR. Except for a ketone-functionalized IL, which was inherently labile, all tested ILs primarily underwent C2-ethylation or remained unaltered. Our findings highlight the great potential of functionalized ILs in modifying heterogeneous hydrogenation catalysts.
本研究通过在钯/Al2O3 加氢催化剂上涂覆非官能化和官能化离子液体(分别称为 SCILL 和高级 SCILL 材料),探讨了如何调整钯/Al2O3 加氢催化剂,以便从富含乙烯的进料中选择性地去除痕量乙炔。这些材料在自动连续加氢装置中进行了测试,在过量乙烯中转化 3300 ppm 的乙炔,这种气体混合物模拟了技术前端蒸汽裂解炉进料成分。磺酸官能化 IL 涂层产生的催化剂活性很高,但选择性很差,主要将乙烯转化为乙烷,而用腈官能化 IL 制备的高级 SCILL 催化剂则将乙炔浓度降至 1ppm 以下,而 99% 以上的乙烯未被转化。我们还通过 1H NMR 检查了 IL 层在反应条件下的潜在转化。除了酮官能化 IL 本身具有易变性外,所有测试的 IL 主要都发生了 C2- 乙基化或保持不变。我们的研究结果凸显了官能化 IL 在改性异相加氢催化剂方面的巨大潜力。
{"title":"Functionalized ionic liquid coatings in the Pd-catalyzed selective hydrogenation of acetylene in ethylene-rich feeds","authors":"Daniel Kremitzl , Karoline Röhrs , Marc B. Williams , Peter S. Schulz , Peter Wasserscheid","doi":"10.1016/j.jil.2024.100092","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100092","url":null,"abstract":"<div><p>This study explores the tuning of a Pd/Al<sub>2</sub>O<sub>3</sub> hydrogenation catalyst for the selective removal of trace acetylene from ethylene-rich feeds by coating the catalyst with non-functionalized and functionalized ionic liquids (denoted as SCILL and Advanced SCILL materials, respectively). These materials were tested in an automated continuous hydrogenation rig converting 3300 ppm of acetylene in excess ethylene, a gas mixture mimicking a technical front-end steam cracker feed composition. While the sulfonic-acid-functionalized IL coating resulted in a highly active but very unselective catalyst converting mainly ethylene to ethane, an Advanced SCILL catalyst prepared from a nitrile-functionalized IL reduced the acetylene concentration down to less than 1 ppm, while leaving over 99% of the ethylene untouched. We also examined the potential transformations of the IL layer under reaction conditions by means of <sup>1</sup>H NMR. Except for a ketone-functionalized IL, which was inherently labile, all tested ILs primarily underwent C2-ethylation or remained unaltered. Our findings highlight the great potential of functionalized ILs in modifying heterogeneous hydrogenation catalysts.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000156/pdfft?md5=8a10e60b7f19d86ca2fa44f0bf9979c8&pid=1-s2.0-S2772422024000156-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1016/j.jil.2024.100094
Jila Farajzadeh, Mohsen Oftadeh , Nasrin Sohrabi
Extraction of sulfur compounds from crude oil is one of the problems of industries related to crude oil. The use of ionic liquids (ILs) as a green solvent to extract these sulfur compounds, especially cyclic sulfur compounds, can be considered a potential point in this regard. A functional theory comparison was made to investigate the interaction between N-butylpyridinium tetrafluoroborate as IL and several different cyclic sulfur compounds including Thiophene, benzothiophene, dibenzothiophene, and 4,6-dibenzothiophene. The difference between the solution phase and the gas phase has been investigated. Based on the results, the proper interaction between the components of IL and the cyclic sulfur compounds, the extraction of these compounds is theoretically possible. Natural bond orbital, atoms in molecules, HOMO-LUMO overlap integral, and electron density difference were analyzed. The analysis informs on the use of ionic liquids as solvents for the removal of sulfur compounds from crude oil. The hydrogen and vander Waals bonds formed between the anion and cation of ionic liquid and the sulfur compounds have been determined. The main bonds are formed between the anion of ionic liquid and the sulfur compounds. Between the compound [C4Py][BF4] and C4H4S, the hydrogen bonds are S…H13, F29.... H38, F26…H38, has been established. The hydrogen bonds between the anion of the ionic liquid and the sulfur compound are shorter than the other hydrogen bonds formed. Due to the intermolecular bonds, the transition state with the lowest energy has been obtained. In this way, we will have a proposed mechanism for the extraction of the cyclic compounds from oil with the help of ionic liquids.
{"title":"Molecular interaction between N-butylpyridinium tetrafluoroborate and cyclic sulfur compounds: A DFT study","authors":"Jila Farajzadeh, Mohsen Oftadeh , Nasrin Sohrabi","doi":"10.1016/j.jil.2024.100094","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100094","url":null,"abstract":"<div><p>Extraction of sulfur compounds from crude oil is one of the problems of industries related to crude oil. The use of ionic liquids (ILs) as a green solvent to extract these sulfur compounds, especially cyclic sulfur compounds, can be considered a potential point in this regard. A functional theory comparison was made to investigate the interaction between N-butylpyridinium tetrafluoroborate as IL and several different cyclic sulfur compounds including Thiophene, benzothiophene, dibenzothiophene, and 4,6-dibenzothiophene. The difference between the solution phase and the gas phase has been investigated. Based on the results, the proper interaction between the components of IL and the cyclic sulfur compounds, the extraction of these compounds is theoretically possible. Natural bond orbital, atoms in molecules, HOMO-LUMO overlap integral, and electron density difference were analyzed. The analysis informs on the use of ionic liquids as solvents for the removal of sulfur compounds from crude oil. The hydrogen and vander Waals bonds formed between the anion and cation of ionic liquid and the sulfur compounds have been determined. The main bonds are formed between the anion of ionic liquid and the sulfur compounds. Between the compound [C4Py][BF4] and C<sub>4</sub>H<sub>4</sub>S, the hydrogen bonds are S…H<sub>13</sub>, F<sub>29</sub>.... H<sub>38</sub>, F<sub>26</sub>…H<sub>38</sub>, has been established. The hydrogen bonds between the anion of the ionic liquid and the sulfur compound are shorter than the other hydrogen bonds formed. Due to the intermolecular bonds, the transition state with the lowest energy has been obtained. In this way, we will have a proposed mechanism for the extraction of the cyclic compounds from oil with the help of ionic liquids.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242202400017X/pdfft?md5=98d5e7884d99b9a717e914f510bf00bf&pid=1-s2.0-S277242202400017X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.jil.2024.100090
Adel F. Alenzi, Khaled H.A.E. Alkhaldi, Adel S. Al-Jimaz, Abubaker A. Mohammad, Mohammad S. AlTuwaim
Reducing sulfur levels in fuels has gained significant importance in the oil refining sector to curb harmful emissions of sulfur oxides (SOx), impacting public health and the environment. We conducted liquid-liquid extractions of thiophene from n-paraffin compounds, employing 1-ethyl-3-methylimidazolium dicyanamide [emim][DCA] and 1‑butyl‑3-methylimidazolium dicyanamide [bmim][DCA] ionic liquids at 313.15 K and atmospheric pressure (101.3 kPa). The study involved determining liquid-liquid equilibrium data for three ternary systems: {n-dodecane (1) + thiophene (2) + [bmim][DCA] (3)} and {n-hexadecane (1) + thiophene (2) + [emim][DCA] or [bmim][DCA] (3)}. Furthermore, we computed and compared distribution ratios and selectivity values across these systems to assess their desulfurization competency. The thermodynamic nonrandom two-liquid (NRTL) model was employed to correlate the experimental data. UNISIM steady-state simulator was used to estimate the extraction efficiency of thiophene from n-C16 as a model diesel fuel.
{"title":"Desulfurization of ternary mixtures of n-paraffins (C12 or C16) + thiophene + two methylimidazolium dicyanamide (DCA)-based ionic liquids","authors":"Adel F. Alenzi, Khaled H.A.E. Alkhaldi, Adel S. Al-Jimaz, Abubaker A. Mohammad, Mohammad S. AlTuwaim","doi":"10.1016/j.jil.2024.100090","DOIUrl":"https://doi.org/10.1016/j.jil.2024.100090","url":null,"abstract":"<div><p>Reducing sulfur levels in fuels has gained significant importance in the oil refining sector to curb harmful emissions of sulfur oxides (SO<sub>x</sub>), impacting public health and the environment. We conducted liquid-liquid extractions of thiophene from <em>n</em>-paraffin compounds, employing 1-ethyl-3-methylimidazolium dicyanamide [emim][DCA] and 1‑butyl‑3-methylimidazolium dicyanamide [bmim][DCA] ionic liquids at 313.15 K and atmospheric pressure (101.3 kPa). The study involved determining liquid-liquid equilibrium data for three ternary systems: {<em>n-</em>dodecane (1) + thiophene (2) + [bmim][DCA] (3)} and {<em>n-</em>hexadecane (1) + thiophene (2) + [emim][DCA] or [bmim][DCA] (3)}. Furthermore, we computed and compared distribution ratios and selectivity values across these systems to assess their desulfurization competency. The thermodynamic nonrandom two-liquid (NRTL) model was employed to correlate the experimental data. UNISIM steady-state simulator was used to estimate the extraction efficiency of thiophene from <em>n</em>-C<sub>16</sub> as a model diesel fuel.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000132/pdfft?md5=dfc7f463b0ceaddb79c0ff4e1fee6d43&pid=1-s2.0-S2772422024000132-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140341312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1016/j.jil.2024.100089
Ashutosh Kumar Verma, Amey S. Thorat, Jindal K. Shah
Ionic conductivity plays an important role towards the application of ionic liquids as electrolytes in next-generation batteries and electrochemical processes and is often estimated using the Nernst–Einstein formalism in molecular simulation-based studies. The Nernst–Einstein formalism is useful for dilute systems where ions do not interact with each other, restricting its applicability to dilute solutions. However, this approximation fails in concentrated solutions where ion interactions become significant, which is usually encountered for pure ionic liquids. These ion-ion correlations can dramatically affect ionic conductivity predictions in comparison to that computed under the Nernst–Einstein formalism. This study highlights the challenges associated with calculating ionic conductivity using Einstein formalism and subsequently provides a workflow for such calculations. It has been found that a minimum trajectory length of 60 ns is required to achieve converged results for Einstein ionic conductivity. Guidance is also given to reduce the computational resource requirements for Einstein conductivity determination. This simplification will enable researchers to estimate Einstein conductivity in ionic liquids more efficiently.
{"title":"Estimating ionic conductivity of ionic liquids: Nernst–Einstein and Einstein formalisms","authors":"Ashutosh Kumar Verma, Amey S. Thorat, Jindal K. Shah","doi":"10.1016/j.jil.2024.100089","DOIUrl":"10.1016/j.jil.2024.100089","url":null,"abstract":"<div><p>Ionic conductivity plays an important role towards the application of ionic liquids as electrolytes in next-generation batteries and electrochemical processes and is often estimated using the Nernst–Einstein formalism in molecular simulation-based studies. The Nernst–Einstein formalism is useful for dilute systems where ions do not interact with each other, restricting its applicability to dilute solutions. However, this approximation fails in concentrated solutions where ion interactions become significant, which is usually encountered for pure ionic liquids. These ion-ion correlations can dramatically affect ionic conductivity predictions in comparison to that computed under the Nernst–Einstein formalism. This study highlights the challenges associated with calculating ionic conductivity using Einstein formalism and subsequently provides a workflow for such calculations. It has been found that a minimum trajectory length of 60 ns is required to achieve converged results for Einstein ionic conductivity. Guidance is also given to reduce the computational resource requirements for Einstein conductivity determination. This simplification will enable researchers to estimate Einstein conductivity in ionic liquids more efficiently.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000120/pdfft?md5=04feae738c3957390cbc272acfa277ef&pid=1-s2.0-S2772422024000120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140406299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}