首页 > 最新文献

Journal of Membrane Science Letters最新文献

英文 中文
Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation 共价有机框架(COF)膜的定制孔径和微孔隙度,以改善分子分离
Q1 ENGINEERING, CHEMICAL Pub Date : 2021-12-15 DOI: 10.1016/j.memlet.2021.100008
Digambar B. Shinde , Li Cao , Xiaowei Liu , Dinga A.D. Wonanke , Zongyao Zhou , Mohamed N. Hedhili , Matthew Addicoat , Kuo-Wei Huang , Zhiping Lai

Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L m−2 h−1 bar−1 along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L m−2 h−1 bar−1. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes.

通过全新的单体设计方法制备了三种基于trusin的β-酮胺COF膜(TFP-HETTA, TFP-HBTTA和TFP-HHTTA),以了解孔结构与分子分离性能之间的基本关系。通过在truxene骨架中引入大体积的烷基基团,将TFP-HETTA、TFP-HBTTA和TFP-HHTTA的孔径从1.08 nm调整到0.72 nm。因此,TFP-HETTA具有良好的透水性,为47 L m−2 h−1 bar−1,对活性蓝(RB, 800 Da)的截留率显著,但对无机盐的截留率低于10%。相比之下,孔径为0.72 nm的TFP-HHTTA膜可以排斥小的染料分子,如Safranin O (SO, 350 Da)和三价盐,但渗透率为19 L m−2 h−1 bar−1。基于粘性流动的孔流模型可以很好地拟合三种COF膜的有机溶剂纳滤结果。
{"title":"Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation","authors":"Digambar B. Shinde ,&nbsp;Li Cao ,&nbsp;Xiaowei Liu ,&nbsp;Dinga A.D. Wonanke ,&nbsp;Zongyao Zhou ,&nbsp;Mohamed N. Hedhili ,&nbsp;Matthew Addicoat ,&nbsp;Kuo-Wei Huang ,&nbsp;Zhiping Lai","doi":"10.1016/j.memlet.2021.100008","DOIUrl":"10.1016/j.memlet.2021.100008","url":null,"abstract":"<div><p>Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a <em>de novo</em> monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L <em>m</em><sup>−2</sup> <em>h</em><sup>−1</sup> bar<sup>−1</sup> along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L <em>m</em><sup>−2</sup> <em>h</em><sup>−1</sup> bar<sup>−1</sup>. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 2","pages":"Article 100008"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000088/pdfft?md5=09c0c61dbe8632cbe9e8eefa796ff197&pid=1-s2.0-S2772421221000088-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83602574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
The role of skin layer defects in organic solvent reverse osmosis membranes 皮肤层缺陷在有机溶剂反渗透膜中的作用
Q1 ENGINEERING, CHEMICAL Pub Date : 2021-12-05 DOI: 10.1016/j.memlet.2021.100004
Hye Youn Jang, Ryan P. Lively

The fractionation of complex liquid hydrocarbon mixtures is an important and emerging area of membrane science. Polymeric asymmetric hollow fiber membranes have the potential to be used for this purpose, especially if the size and number of defects in the membrane skin layer can be precisely engineered. Here, we fabricated various “defect-engineered” Torlon hollow fiber membranes by modifying hollow fiber spinning conditions and spin dopes to study the role of skin layer defects in the organic solvent reverse osmosis (OSRO) membranes. The quality of the membranes was investigated using several sets of pure gas permeation experiments, which provided input data for a permeation resistance model that estimates the pore size and surface porosity of the asymmetric hollow fiber membrane. We develop and experimentally validate a resistance permeation model for solvent permeation and utilize the surface properties derived from the gas permeation experiments to estimate the relative permeation rates of solvents in a mixture. The approach outlined here highlights the interconnection between gas permeation analysis and OSRO separation performance using Torlon hollow fiber membranes as an exemplar test case. The solvent permeation model is then utilized to provide quantitative insight on the differences between OSRO and organic solvent nanofiltration (OSN), and highlight the important transition region between these two modalities.

复杂液态烃混合物的分馏是膜科学的一个重要的新兴领域。聚合物不对称中空纤维膜具有用于这一目的的潜力,特别是如果可以精确地设计膜表皮层中缺陷的大小和数量。本文通过改变中空纤维纺丝条件和纺丝掺杂,制备了各种“缺陷工程”的Torlon中空纤维膜,研究了皮层缺陷在有机溶剂反渗透(OSRO)膜中的作用。通过几组纯气体渗透实验对膜的质量进行了研究,为估计不对称中空纤维膜的孔径和表面孔隙率的渗透阻力模型提供了输入数据。我们开发并实验验证了溶剂渗透的阻力模型,并利用气体渗透实验得出的表面性质来估计混合物中溶剂的相对渗透速率。本文概述的方法强调了气体渗透分析与OSRO分离性能之间的联系,并以Torlon中空纤维膜为例进行了测试。然后利用溶剂渗透模型对OSRO和有机溶剂纳滤(OSN)之间的差异进行定量分析,并突出这两种模式之间的重要过渡区域。
{"title":"The role of skin layer defects in organic solvent reverse osmosis membranes","authors":"Hye Youn Jang,&nbsp;Ryan P. Lively","doi":"10.1016/j.memlet.2021.100004","DOIUrl":"https://doi.org/10.1016/j.memlet.2021.100004","url":null,"abstract":"<div><p>The fractionation of complex liquid hydrocarbon mixtures is an important and emerging area of membrane science. Polymeric asymmetric hollow fiber membranes have the potential to be used for this purpose, especially if the size and number of defects in the membrane skin layer can be precisely engineered. Here, we fabricated various “defect-engineered” Torlon hollow fiber membranes by modifying hollow fiber spinning conditions and spin dopes to study the role of skin layer defects in the organic solvent reverse osmosis (OSRO) membranes. The quality of the membranes was investigated using several sets of pure gas permeation experiments, which provided input data for a permeation resistance model that estimates the pore size and surface porosity of the asymmetric hollow fiber membrane. We develop and experimentally validate a resistance permeation model for solvent permeation and utilize the surface properties derived from the gas permeation experiments to estimate the relative permeation rates of solvents in a mixture. The approach outlined here highlights the interconnection between gas permeation analysis and OSRO separation performance using Torlon hollow fiber membranes as an exemplar test case. The solvent permeation model is then utilized to provide quantitative insight on the differences between OSRO and organic solvent nanofiltration (OSN), and highlight the important transition region between these two modalities.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100004"},"PeriodicalIF":0.0,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000040/pdfft?md5=40acfae29ca8a578deca5f48f918124f&pid=1-s2.0-S2772421221000040-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137403257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformational-change-induced selectivity enhancement of CAU-10-PDC membrane for H2/CH4 and CO2/CH4 separation 构象变化诱导的cu -10- pdc膜对H2/CH4和CO2/CH4分离选择性增强
Q1 ENGINEERING, CHEMICAL Pub Date : 2021-12-05 DOI: 10.1016/j.memlet.2021.100005
Chung-Kai Chang , Hyun Jung Yu , Huiwon Jang , Ting-Hsiang Hung , Chung-Kai Chang , Jihan Kim , Jong Suk Lee , Dun-Yen Kang

The separation of H2/CH4 or CO2/CH4 is critical to the purification of natural gas. Herein, we report on novel membranes with a metal-organic framework of CAU-10-PDC for the separation of these two mixtures. The dense CAU-10-PDC membranes are fabricated on a porous alumina support using the seeded growth method. An unexpected increase in selectivity was observed while testing mixed gas permeation with either H2/CH4 or CO2/CH4 at a molar ratio of 50:50. Steady-state selectivity reached 101 for H2/CH4 and 62 for CO2/CH4. Ideal selectivity measured from single gas permeation reached 475 for H2/CH4 and 288 for CO2/CH4. Molecular dynamics simulations and time-resolved X-ray diffraction with a synchrotron radiation source were used to probe conformational changes in CAU-10-PDC induced by exposure to CH4. When exposed to an atmosphere containing CH4, CAU-10-PDC presented a change in the space group (from I41/amd to I41), which drastically reduced the pore limiting diameter from 4.15 to 2.95 Å, rendering the channel nearly impermeable to CH4.

H2/CH4或CO2/CH4的分离是天然气净化的关键。在此,我们报道了一种新型的膜与金属有机框架的cau10 - pdc分离这两种混合物。采用种子生长法在多孔氧化铝载体上制备了致密的cac -10- pdc膜。在H2/CH4或CO2/CH4摩尔比为50:50的混合气体渗透测试中,发现选择性出乎意料地增加。H2/CH4的稳态选择性为101,CO2/CH4的稳态选择性为62。单气体渗透测得的理想选择性H2/CH4为475,CO2/CH4为288。利用同步辐射源的分子动力学模拟和时间分辨x射线衍射技术,研究了CH4对cu -10- pdc结构的影响。当暴露于含有CH4的大气中时,cac -10- pdc的空间组发生了变化(从I41/amd到I41),孔隙极限直径从4.15急剧降低到2.95 Å,使通道几乎不渗透CH4。
{"title":"Conformational-change-induced selectivity enhancement of CAU-10-PDC membrane for H2/CH4 and CO2/CH4 separation","authors":"Chung-Kai Chang ,&nbsp;Hyun Jung Yu ,&nbsp;Huiwon Jang ,&nbsp;Ting-Hsiang Hung ,&nbsp;Chung-Kai Chang ,&nbsp;Jihan Kim ,&nbsp;Jong Suk Lee ,&nbsp;Dun-Yen Kang","doi":"10.1016/j.memlet.2021.100005","DOIUrl":"10.1016/j.memlet.2021.100005","url":null,"abstract":"<div><p>The separation of H<sub>2</sub>/CH<sub>4</sub> or CO<sub>2</sub>/CH<sub>4</sub> is critical to the purification of natural gas. Herein, we report on novel membranes with a metal-organic framework of CAU-10-PDC for the separation of these two mixtures. The dense CAU-10-PDC membranes are fabricated on a porous alumina support using the seeded growth method. An unexpected increase in selectivity was observed while testing mixed gas permeation with either H<sub>2</sub>/CH<sub>4</sub> or CO<sub>2</sub>/CH<sub>4</sub> at a molar ratio of 50:50. Steady-state selectivity reached 101 for H<sub>2</sub>/CH<sub>4</sub> and 62 for CO<sub>2</sub>/CH<sub>4</sub>. Ideal selectivity measured from single gas permeation reached 475 for H<sub>2</sub>/CH<sub>4</sub> and 288 for CO<sub>2</sub>/CH<sub>4</sub>. Molecular dynamics simulations and time-resolved X-ray diffraction with a synchrotron radiation source were used to probe conformational changes in CAU-10-PDC induced by exposure to CH<sub>4</sub>. When exposed to an atmosphere containing CH<sub>4</sub>, CAU-10-PDC presented a change in the space group (from <em>I</em>4<sub>1</sub>/<em>amd</em> to <em>I</em>4<sub>1</sub>), which drastically reduced the pore limiting diameter from 4.15 to 2.95 Å, rendering the channel nearly impermeable to CH<sub>4</sub>.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":0.0,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000052/pdfft?md5=bc88058c566daef3e0c02c1d2c0cc52a&pid=1-s2.0-S2772421221000052-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75831088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Editorial to the first issue of the inaugural volume of Journal of Membrane Science Letters 《膜科学快报》杂志创刊号第一期社论
Q1 ENGINEERING, CHEMICAL Pub Date : 2021-12-05 DOI: 10.1016/j.memlet.2021.100006
Jerry Y.S. Lin , Rong Wang
{"title":"Editorial to the first issue of the inaugural volume of Journal of Membrane Science Letters","authors":"Jerry Y.S. Lin ,&nbsp;Rong Wang","doi":"10.1016/j.memlet.2021.100006","DOIUrl":"10.1016/j.memlet.2021.100006","url":null,"abstract":"","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100006"},"PeriodicalIF":0.0,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000064/pdfft?md5=ee4eb0fbb964fe1eab4a1ef9d5ccd156&pid=1-s2.0-S2772421221000064-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82402835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel acid resistant thin-film composite nanofiltration membrane with polyurea enhanced dually charged separation layer 一种新型聚脲增强双荷电分离膜耐酸复合纳滤膜
Q1 ENGINEERING, CHEMICAL Pub Date : 2021-12-05 DOI: 10.1016/j.memlet.2021.100002
Yang Cao , Yinhua Wan , Chulong Chen , Jianquan Luo

Fabricating acid resistant nanofiltration (NF) membranes with precise solute separation performance is highly demanded for acidic wastewater treatment but remains a challenge. Herein, we propose a facile strategy for preparing dually charged acid resistant NF membranes with both high cations and anions rejections via a two-layer reverse interfacial polymerization (r-IP) process. Organic monomers of trimesoyl chloride (TMC) and 1,4-phenylene diisocyanate (PPDI) are firstly applied to react with 3-aminobenzenesulfonamide (ABSA) to construct a negatively charged loose intermediate layer, followed by the r-IP of TMC/PPDI and polyethyleneimine (PEI) to engineer a dense positively charged top layer. The highly cross-linked polyurea (PU) formed by isocyanate and amine leads to an enhanced size sieving effect, and the well-arranged dually charged layer endows the membrane stronger electrostatic exclusion. The resultant membrane has 97.7% rejection of Na2SO4 and 93.0% of MgCl2, and it exhibits fairly high rejections to various heavy metals, as well as impressive long-term stability after exposure to strong acid (10 wt% of H2SO4 for 400 h).

制备具有精确溶质分离性能的耐酸纳滤膜是酸性废水处理的迫切要求,但仍是一个挑战。在此,我们提出了一种简单的策略,通过两层反向界面聚合(r-IP)工艺制备具有高阳离子和阴离子排斥的双电荷耐酸NF膜。首先用有机单体三甲基氯(TMC)和1,4-苯基二异氰酸酯(PPDI)与3-氨基苯磺酰胺(ABSA)反应形成带负电的松散中间层,然后用TMC/PPDI和聚乙烯亚胺(PEI)的r-IP反应形成带正电的致密顶层。异氰酸酯与胺形成的高交联聚脲(PU)增强了浆料的筛分效果,排列良好的双荷电层使膜具有更强的静电阻隔性。所得膜对Na2SO4的截留率为97.7%,对MgCl2的截留率为93.0%,对各种重金属的截留率相当高,并且在强酸(10 wt% H2SO4)下暴露400小时后具有令人印象深刻的长期稳定性。
{"title":"A novel acid resistant thin-film composite nanofiltration membrane with polyurea enhanced dually charged separation layer","authors":"Yang Cao ,&nbsp;Yinhua Wan ,&nbsp;Chulong Chen ,&nbsp;Jianquan Luo","doi":"10.1016/j.memlet.2021.100002","DOIUrl":"10.1016/j.memlet.2021.100002","url":null,"abstract":"<div><p>Fabricating acid resistant nanofiltration (NF) membranes with precise solute separation performance is highly demanded for acidic wastewater treatment but remains a challenge. Herein, we propose a facile strategy for preparing dually charged acid resistant NF membranes with both high cations and anions rejections via a two-layer reverse interfacial polymerization (r-IP) process. Organic monomers of trimesoyl chloride (TMC) and 1,4-phenylene diisocyanate (PPDI) are firstly applied to react with 3-aminobenzenesulfonamide (ABSA) to construct a negatively charged loose intermediate layer, followed by the r-IP of TMC/PPDI and polyethyleneimine (PEI) to engineer a dense positively charged top layer. The highly cross-linked polyurea (PU) formed by isocyanate and amine leads to an enhanced size sieving effect, and the well-arranged dually charged layer endows the membrane stronger electrostatic exclusion. The resultant membrane has 97.7% rejection of Na<sub>2</sub>SO<sub>4</sub> and 93.0% of MgCl<sub>2</sub>, and it exhibits fairly high rejections to various heavy metals, as well as impressive long-term stability after exposure to strong acid (10 wt% of H<sub>2</sub>SO<sub>4</sub> for 400 h).</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100002"},"PeriodicalIF":0.0,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000027/pdfft?md5=034af5ee7b614c343cca97866f3e4168&pid=1-s2.0-S2772421221000027-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85371412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
New compact expressions for concentration-polarization of trace-ions in pressure-driven membrane processes 压力驱动膜过程中痕量离子浓度-极化的新紧凑表达式
Q1 ENGINEERING, CHEMICAL Pub Date : 2021-12-05 DOI: 10.1016/j.memlet.2021.100003
Yaeli S. Oren , Viatcheslav Freger , Oded Nir

Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions' CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.

考虑浓度极化(CP)是模拟膜分离过程中溶质输运的关键。在混合电解质溶液中,离子的CP不仅受到扩散和平流的影响,还受到电迁移的影响。然而,缺乏电迁移项的经典薄膜模型经常用于离子CP的建模。通常,为了减少计算负荷,离子CP被完全忽略。在这里,我们研究了微量离子在显性盐溶液中的CP,这是一个与许多反渗透和纳滤过程相关的案例。首先,我们重新审视了溶液-扩散-电迁移-膜理论,以获得显性盐溶液中微量离子的CP和膜输运的解析解。其次,我们考虑了与反渗透和纳滤相关的限制条件,从中我们推导出两个紧凑的方程,作为经典薄膜理论的无缝扩展。这些方程可以用最小的努力来解释电迁移对CP的影响。第三,我们用我们的理论量化了不同优势盐溶液中电迁移对离子CP的影响。最后,通过分析两个环境膜过程,我们证明了我们的理论是如何偏离传统的,并量化了对膜结垢势和离子污染物运输的影响。
{"title":"New compact expressions for concentration-polarization of trace-ions in pressure-driven membrane processes","authors":"Yaeli S. Oren ,&nbsp;Viatcheslav Freger ,&nbsp;Oded Nir","doi":"10.1016/j.memlet.2021.100003","DOIUrl":"https://doi.org/10.1016/j.memlet.2021.100003","url":null,"abstract":"<div><p>Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions' CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100003"},"PeriodicalIF":0.0,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000039/pdfft?md5=8742756c0c4113b199e5b3c2844e8c71&pid=1-s2.0-S2772421221000039-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137403258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial diversity analysis of two full-scale seawater desalination treatment trains provides insights into detrimental biofilm formation 两个全尺寸海水淡化处理列车的微生物多样性分析提供了有害生物膜形成的见解
Q1 ENGINEERING, CHEMICAL Pub Date : 2021-12-05 DOI: 10.1016/j.memlet.2021.100001
Mircea Podar , Amanda L. May , Weiliang Bai , Kellie Peyton , Dawn M. Klingeman , Cynthia M. Swift , Devan A.F. Linson , Jacques Mathieu , Daniel Siljeström , Ignacio Beneyto , Lauren B. Stadler , Yosef Pinhas , Frank E. Löffler , Pedro J.J. Alvarez , Manish Kumar

Detrimental biofilms on RO membranes remain a crucial challenge for seawater desalination. Comparative analysis of 16S rRNA gene amplicon sequencing data revealed differences and commonalities of biofilm communities associated with unit operations in the two largest seawater desalination facilities in the U.S., the Claude "Bud" Lewis Carlsbad Desalination Plant and the Tampa Bay Seater Desalination facility. At both plants, feedwater collected at a single time point was a poor indicator of the RO membrane communities, which showed far greater taxa diversity. The analysis of prefilter cartridges from the Carlsbad plant revealed similarly high taxon diversity as the RO module biofilms, with relevant differences. Algal sequences were enriched on the prefilter cartridges as were sequences representing Bdellovibrionota, which are predatory bacteria. Sequences representing opportunistic Gammaproteobacteria (i.e., Shewanella, Woesia) were present in significantly higher relative abundance on the RO membranes than in the prefilter cartridges, suggesting growth of certain taxa in the RO modules. Untargeted metabolomics distinguished intra- and inter-desalination plant biofilm samples, highlighting the potential value of this tool for biofilm monitoring. These findings underscore the value of omics tools for effective microbial monitoring, to understand biofouling dynamics within RO desalination plants, and to provide insight for the development of ecologically-informed biofilm control measures.

反渗透膜上的有害生物膜仍然是海水淡化的关键挑战。16S rRNA基因扩增子测序数据的比较分析揭示了美国两个最大的海水淡化设施(Claude“Bud”Lewis Carlsbad海水淡化厂和Tampa Bay海水淡化厂)与单元操作相关的生物膜群落的差异和共性。在两个工厂,单一时间点收集的给水不能很好地反映反渗透膜群落,而反渗透膜群落显示出更大的分类群多样性。对卡尔斯巴德植物预滤膜的分析显示,与RO模块生物膜相似的分类群多样性很高,但存在相关差异。藻类序列在预滤盒上富集,代表掠食性细菌蛭弧菌的序列也富集。代表机会性γ变形菌(即希瓦氏菌,Woesia)的序列在反渗透膜上的相对丰度明显高于预过滤筒,表明某些分类群在反渗透模块中生长。非靶向代谢组学区分了海水淡化厂内部和内部的生物膜样品,突出了这种生物膜监测工具的潜在价值。这些发现强调了组学工具对有效微生物监测的价值,了解反渗透海水淡化厂内的生物污染动态,并为开发生态知情的生物膜控制措施提供见解。
{"title":"Microbial diversity analysis of two full-scale seawater desalination treatment trains provides insights into detrimental biofilm formation","authors":"Mircea Podar ,&nbsp;Amanda L. May ,&nbsp;Weiliang Bai ,&nbsp;Kellie Peyton ,&nbsp;Dawn M. Klingeman ,&nbsp;Cynthia M. Swift ,&nbsp;Devan A.F. Linson ,&nbsp;Jacques Mathieu ,&nbsp;Daniel Siljeström ,&nbsp;Ignacio Beneyto ,&nbsp;Lauren B. Stadler ,&nbsp;Yosef Pinhas ,&nbsp;Frank E. Löffler ,&nbsp;Pedro J.J. Alvarez ,&nbsp;Manish Kumar","doi":"10.1016/j.memlet.2021.100001","DOIUrl":"10.1016/j.memlet.2021.100001","url":null,"abstract":"<div><p>Detrimental biofilms on RO membranes remain a crucial challenge for seawater desalination. Comparative analysis of 16S rRNA gene amplicon sequencing data revealed differences and commonalities of biofilm communities associated with unit operations in the two largest seawater desalination facilities in the U.S., the Claude \"Bud\" Lewis Carlsbad Desalination Plant and the Tampa Bay Seater Desalination facility. At both plants, feedwater collected at a single time point was a poor indicator of the RO membrane communities, which showed far greater taxa diversity. The analysis of prefilter cartridges from the Carlsbad plant revealed similarly high taxon diversity as the RO module biofilms, with relevant differences. Algal sequences were enriched on the prefilter cartridges as were sequences representing <em>Bdellovibrionota</em>, which are predatory bacteria. Sequences representing opportunistic Gammaproteobacteria (i.e., <em>Shewanella, Woesia</em>) were present in significantly higher relative abundance on the RO membranes than in the prefilter cartridges, suggesting growth of certain taxa in the RO modules. Untargeted metabolomics distinguished intra- and inter-desalination plant biofilm samples, highlighting the potential value of this tool for biofilm monitoring. These findings underscore the value of omics tools for effective microbial monitoring, to understand biofouling dynamics within RO desalination plants, and to provide insight for the development of ecologically-informed biofilm control measures.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"1 1","pages":"Article 100001"},"PeriodicalIF":0.0,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000015/pdfft?md5=b69e8029098dc8170275f8aef651e1a4&pid=1-s2.0-S2772421221000015-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74495239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Journal of Membrane Science Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1