Transforming sunlight into renewable energy sources like hydrogen and methane through photocatalytic water splitting and the CO2 conversion presents a promising prospect to tackle energy scarcity and environmental pollution caused by burning fossil fuels. As the core of the photocatalytic technique, photocatalysts design is most significant for acquiring the desirable catalytic performance and target products. Photonic crystals, also denoted as inverse opals and three-dimensionally ordered macroporous materials (3DOM), have been extensively applied in photocatalytic fields due to their distinct advantages. Specifically, photonic crystal possesses slow photons effect, rich reactive sites, and well-interconnected inner channels. Among the above advantages, the slow photons effect contributes the most essential role for accelerating photocatalytic reaction. However, how to design materials with maximized slow photons effect upon specific wavelength illumination is still in the infancy. Although some reviews about 3DOM photocatalysts have been published, a critical review focusing on tunable slow photons effects for efficient photocatalysis is still lacking. In this review, we highlighted recent advances in slow photons effect in boosting solar energy conversion. Meanwhile, the relevant mechanism and fundamentals of the slow photons effect are discussed. Finally, we present our vision of the future developments and challenges in this exciting research field.
扫码关注我们
求助内容:
应助结果提醒方式:
