首页 > 最新文献

Clinical and Translational Medicine最新文献

英文 中文
Integrative single-cell analysis uncovers distinct tumour microenvironment ecotypes and immune evasion across skin cancers 综合单细胞分析揭示了不同的肿瘤微环境生态型和免疫逃避跨越皮肤癌。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-04 DOI: 10.1002/ctm2.70611
Lingjuan Huang, Huihui Hou, Xiyuan Zhang, Liang Dong, Wensheng Shi, Mason Liu, Jie Sun, Anil Prakash, Haoqiu Song, Shiyao Pei, Xin Li, Xiang Chen, Shenglin Mei, Mingzhu Yin
<div> <section> <h3> Background</h3> <p>Skin cancers, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), cutaneous melanoma (CM) and acral melanoma (AM), exhibit profound heterogeneity in clinical behaviour and therapeutic response. However, how tumour-immune ecosystems are remodelled across skin cancer types and disease stages, and how these changes influence immune escape and treatment resistance, remain poorly understood.</p> </section> <section> <h3> Methods</h3> <p>Here, we integrate single-cell transcriptomics data from 102 skin cancer samples (including adjacent normal skin, early-stage and advanced-stage tumours), with bulk RNA-seq prognosis cohorts, immunofluorescence staining and in vitro assays to define clinically relevant immune remodelling patterns.</p> </section> <section> <h3> Results</h3> <p>Our analyses identify a malignant <i>NARS2<sup>+</sup>NDUFC2<sup>+</sup></i> melanoma cell subpopulation, characterised by reduced MHC-I expression, enriched in advanced-stage tumours and associated with worse survival and immunotherapy response. CRISPR screening further showed that <i>NARS2</i> and <i>NDUFC2</i> are necessary for the proliferation of melanoma cells, highlighting these genes as potential therapeutic targets. Tumour-associated macrophages (TAMs) originate from both <i>FCN1</i><sup>+</sup> monocytes and <i>FOLR2<sup>+</sup></i> tissue-resident macrophages, displaying two polarisation states with distinct prognostic associations. Specifically, pro-inflammatory <i>CXCL9<sup>+</sup>CXCL10<sup>+</sup></i> TAMs are enriched in SCC, while tissue-remodelling <i>SPP1</i><sup>+</sup> TAMs are predominant in melanoma. Immunofluorescence staining confirmed that <i>SPP1</i><sup>+</sup> macrophage accumulation correlates with advanced stage, metastasis and poor prognosis in the melanoma cohort. Immune ecotype analysis reveals a transition from ‘T-cell-dominant’ ecotypes to ‘desert’ ecotypes as disease advances in BCC, CM and AM. Cell‒cell communication analysis shows that ‘T-cell-dominant’ ecotypes have higher MHC-I signalling pathways in tumour cells, whereas ‘Desert’ ecotypes have higher <i>SPP1<sup>+</sup></i> macrophage signalling, underlining the role of <i>SPP1</i> on immune remodelling. Functional assays confirm that melanoma cells could drive M2 polarisation and SPP1 upregulation in macrophages. Knocking down or overexpressing <i>SPP1</i> correspondingly alters M2 gene expression in macrophages.</p> </section> <section> <h3> Conclusions</h3> <p>This study establishes a pan-skin cancer immune remodelling framework, pr
背景:皮肤癌,包括基底细胞癌(BCC)、鳞状细胞癌(SCC)、皮肤黑色素瘤(CM)和肢端黑色素瘤(AM),在临床行为和治疗反应上表现出深刻的异质性。然而,肿瘤免疫生态系统如何在皮肤癌类型和疾病阶段被重塑,以及这些变化如何影响免疫逃逸和治疗耐药性,仍然知之甚少。方法:在这里,我们整合了来自102例皮肤癌样本(包括邻近的正常皮肤、早期和晚期肿瘤)的单细胞转录组学数据,结合大量RNA-seq预后队列、免疫荧光染色和体外试验,以确定临床相关的免疫重塑模式。结果:我们的分析确定了恶性NARS2+NDUFC2+黑色素瘤细胞亚群,其特征是MHC-I表达降低,在晚期肿瘤中富集,并且与较差的生存和免疫治疗反应相关。CRISPR筛选进一步表明,NARS2和NDUFC2是黑色素瘤细胞增殖所必需的,突出了这些基因作为潜在的治疗靶点。肿瘤相关巨噬细胞(tam)来源于FCN1+单核细胞和FOLR2+组织巨噬细胞,呈现两种极化状态,与预后有不同的关联。具体来说,促炎的CXCL9+CXCL10+ tam在SCC中富集,而组织重塑的SPP1+ tam在黑色素瘤中占主导地位。免疫荧光染色证实,SPP1+巨噬细胞积累与黑色素瘤队列的晚期、转移和不良预后相关。免疫生态型分析揭示了随着BCC、CM和AM疾病的进展,从“t细胞优势”生态型向“荒漠”生态型的转变。细胞-细胞通讯分析显示,“t细胞优势型”生态型在肿瘤细胞中具有更高的MHC-I信号通路,而“沙漠型”生态型具有更高的SPP1+巨噬细胞信号通路,强调了SPP1在免疫重塑中的作用。功能分析证实,黑色素瘤细胞可以驱动巨噬细胞的M2极化和SPP1上调。敲低或过表达SPP1会相应地改变巨噬细胞中M2基因的表达。结论:本研究建立了泛皮肤癌免疫重构框架,为发现生物标志物和开发新的免疫治疗策略提供了基础。
{"title":"Integrative single-cell analysis uncovers distinct tumour microenvironment ecotypes and immune evasion across skin cancers","authors":"Lingjuan Huang,&nbsp;Huihui Hou,&nbsp;Xiyuan Zhang,&nbsp;Liang Dong,&nbsp;Wensheng Shi,&nbsp;Mason Liu,&nbsp;Jie Sun,&nbsp;Anil Prakash,&nbsp;Haoqiu Song,&nbsp;Shiyao Pei,&nbsp;Xin Li,&nbsp;Xiang Chen,&nbsp;Shenglin Mei,&nbsp;Mingzhu Yin","doi":"10.1002/ctm2.70611","DOIUrl":"10.1002/ctm2.70611","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Skin cancers, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), cutaneous melanoma (CM) and acral melanoma (AM), exhibit profound heterogeneity in clinical behaviour and therapeutic response. However, how tumour-immune ecosystems are remodelled across skin cancer types and disease stages, and how these changes influence immune escape and treatment resistance, remain poorly understood.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Here, we integrate single-cell transcriptomics data from 102 skin cancer samples (including adjacent normal skin, early-stage and advanced-stage tumours), with bulk RNA-seq prognosis cohorts, immunofluorescence staining and in vitro assays to define clinically relevant immune remodelling patterns.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Our analyses identify a malignant &lt;i&gt;NARS2&lt;sup&gt;+&lt;/sup&gt;NDUFC2&lt;sup&gt;+&lt;/sup&gt;&lt;/i&gt; melanoma cell subpopulation, characterised by reduced MHC-I expression, enriched in advanced-stage tumours and associated with worse survival and immunotherapy response. CRISPR screening further showed that &lt;i&gt;NARS2&lt;/i&gt; and &lt;i&gt;NDUFC2&lt;/i&gt; are necessary for the proliferation of melanoma cells, highlighting these genes as potential therapeutic targets. Tumour-associated macrophages (TAMs) originate from both &lt;i&gt;FCN1&lt;/i&gt;&lt;sup&gt;+&lt;/sup&gt; monocytes and &lt;i&gt;FOLR2&lt;sup&gt;+&lt;/sup&gt;&lt;/i&gt; tissue-resident macrophages, displaying two polarisation states with distinct prognostic associations. Specifically, pro-inflammatory &lt;i&gt;CXCL9&lt;sup&gt;+&lt;/sup&gt;CXCL10&lt;sup&gt;+&lt;/sup&gt;&lt;/i&gt; TAMs are enriched in SCC, while tissue-remodelling &lt;i&gt;SPP1&lt;/i&gt;&lt;sup&gt;+&lt;/sup&gt; TAMs are predominant in melanoma. Immunofluorescence staining confirmed that &lt;i&gt;SPP1&lt;/i&gt;&lt;sup&gt;+&lt;/sup&gt; macrophage accumulation correlates with advanced stage, metastasis and poor prognosis in the melanoma cohort. Immune ecotype analysis reveals a transition from ‘T-cell-dominant’ ecotypes to ‘desert’ ecotypes as disease advances in BCC, CM and AM. Cell‒cell communication analysis shows that ‘T-cell-dominant’ ecotypes have higher MHC-I signalling pathways in tumour cells, whereas ‘Desert’ ecotypes have higher &lt;i&gt;SPP1&lt;sup&gt;+&lt;/sup&gt;&lt;/i&gt; macrophage signalling, underlining the role of &lt;i&gt;SPP1&lt;/i&gt; on immune remodelling. Functional assays confirm that melanoma cells could drive M2 polarisation and SPP1 upregulation in macrophages. Knocking down or overexpressing &lt;i&gt;SPP1&lt;/i&gt; correspondingly alters M2 gene expression in macrophages.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;This study establishes a pan-skin cancer immune remodelling framework, pr","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12869349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell analysis reveals cytotoxic and memory CD8+ T cells associated with prolonged survival in relapsed/refractory leukaemia patients after haplo+cord haematopoietic stem cell transplantation 单细胞分析揭示单倍体+脐带造血干细胞移植后复发/难治性白血病患者的细胞毒性和记忆CD8+ T细胞与延长生存期相关。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-04 DOI: 10.1002/ctm2.70529
Hua Li, Zheyang Zhang, Ming Zhu, Xiaofan Li, Jinxian Dai, Ping Chen, Fei Chen, Xianling Chen, Yiding Yang, Xiaohong Yuan, Ronghan Tang, Zhijuan Zhu, Hongli Lin, Ting Lin, Mengsha Tong, Tao Chen, Yuanzhong Chen, Jialiang Huang, Nainong Li

Backgroud

Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for haematological malignancies. Sequential transplantation of haploidentical stem cell and umbilical cord blood (haplo+cord HSCT) among recipients with relapsed/refractory (R/R) leukaemia exhibited superior survival outcomes compared with single cord HSCT. However, the underlying mechanisms remain unclear.

Methods

Here, we profiled and compared single-cell gene expression and chromatin accessibility in bone marrow from 16 patients receiving haplo+cord or single cord HSCT.

Results

We observed distinct compositions and functions of global immune landscapes, with haplo+cord HSCT exhibiting effective anti-tumour and anti-viral immunity mediated by type I interferon signalling. Analysis of T cells revealed specific CD8+ T cell subtype (CD8-c1), enriched in recipients with haplo+cord HSCT, which was also confirmed by flow cytometry. Functionally, gene signature scoring suggests a dual effector and memory property of CD8-c1 that potentially offers long-term protection. Furthermore, single-cell multi-omics analysis delineated the expression of cytotoxic-related genes up-regulated in CD8-c1 are cooperatively regulated by enhancer networks. Notably, a proportion-based survival analysis indicated that high proportion of CD8-c1 was associated with better survival.

Conclusion

Our results collectively demonstrate that a population of CD8+ T cells with effector and memory properties contributes to improved survival in patients with R/R leukaemia receiving haplo+cord HSCT.

背景:同种异体造血干细胞移植是治疗恶性血液病的一种有效方法。在复发/难治性(R/R)白血病患者中,单倍体干细胞和脐带血序贯移植(单倍体+脐带HSCT)比单脐带HSCT具有更高的生存结果。然而,潜在的机制仍不清楚。方法:在这里,我们分析并比较了16例接受单株+脐带或单株脐带造血干细胞移植的患者骨髓中单细胞基因表达和染色质可及性。结果:我们观察到不同的整体免疫景观组成和功能,单倍体+脐带造血干细胞在I型干扰素信号介导下表现出有效的抗肿瘤和抗病毒免疫。T细胞分析显示特异性CD8+ T细胞亚型(CD8-c1),在单倍体+脐带HSCT受体中富集,流式细胞术也证实了这一点。功能上,基因标记评分表明CD8-c1具有双重效应和记忆特性,可能提供长期保护。此外,单细胞多组学分析表明,CD8-c1中上调的细胞毒相关基因的表达受到增强子网络的协同调节。值得注意的是,基于比例的生存分析表明,CD8-c1比例高与更好的生存相关。结论:我们的研究结果共同表明,具有效应和记忆特性的CD8+ T细胞群有助于提高接受单倍体+脐带造血干细胞移植的R/R白血病患者的生存率。
{"title":"Single-cell analysis reveals cytotoxic and memory CD8+ T cells associated with prolonged survival in relapsed/refractory leukaemia patients after haplo+cord haematopoietic stem cell transplantation","authors":"Hua Li,&nbsp;Zheyang Zhang,&nbsp;Ming Zhu,&nbsp;Xiaofan Li,&nbsp;Jinxian Dai,&nbsp;Ping Chen,&nbsp;Fei Chen,&nbsp;Xianling Chen,&nbsp;Yiding Yang,&nbsp;Xiaohong Yuan,&nbsp;Ronghan Tang,&nbsp;Zhijuan Zhu,&nbsp;Hongli Lin,&nbsp;Ting Lin,&nbsp;Mengsha Tong,&nbsp;Tao Chen,&nbsp;Yuanzhong Chen,&nbsp;Jialiang Huang,&nbsp;Nainong Li","doi":"10.1002/ctm2.70529","DOIUrl":"10.1002/ctm2.70529","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Backgroud</h3>\u0000 \u0000 <p>Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for haematological malignancies. Sequential transplantation of haploidentical stem cell and umbilical cord blood (haplo+cord HSCT) among recipients with relapsed/refractory (R/R) leukaemia exhibited superior survival outcomes compared with single cord HSCT. However, the underlying mechanisms remain unclear.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Here, we profiled and compared single-cell gene expression and chromatin accessibility in bone marrow from 16 patients receiving haplo+cord or single cord HSCT.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We observed distinct compositions and functions of global immune landscapes, with haplo+cord HSCT exhibiting effective anti-tumour and anti-viral immunity mediated by type I interferon signalling. Analysis of T cells revealed specific CD8<sup>+</sup> T cell subtype (CD8-c1), enriched in recipients with haplo+cord HSCT, which was also confirmed by flow cytometry. Functionally, gene signature scoring suggests a dual effector and memory property of CD8-c1 that potentially offers long-term protection. Furthermore, single-cell multi-omics analysis delineated the expression of cytotoxic-related genes up-regulated in CD8-c1 are cooperatively regulated by enhancer networks. Notably, a proportion-based survival analysis indicated that high proportion of CD8-c1 was associated with better survival.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Our results collectively demonstrate that a population of CD8<sup>+</sup> T cells with effector and memory properties contributes to improved survival in patients with R/R leukaemia receiving haplo+cord HSCT.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12872979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146118151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How generative AI reconfigure clinician–AI and clinician–patient relationships 生成式人工智能如何重新配置临床医生与人工智能以及临床医生与患者的关系。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-02 DOI: 10.1002/ctm2.70606
Tianyi Shen, Xinru Wang, Yajuan Zhang, Yi Zhang
<p>The rapid uptake of generative AI (GAI) systems in clinical settings—particularly large language models (LLMs) such as DeepSeek—marks a transformative moment for healthcare and necessitates timely regulatory responses to protect safety and equity. In current practice, LLM-based GAI is entering clinical practice through a distinctive ‘dual-interface’ configuration. On one side, models locally deployed or fine-tuned by healthcare institutions are embedded into hospital information systems and patient-facing portals to streamline care processes, support clinical decision-making and facilitate personal health management.<span><sup>1</sup></span> On the other, general-purpose models developed by companies, such as OpenAI, Google and DeepSeek, are reaching clinicians and patients through a growing ecosystem of chatbot applications.<span><sup>2, 3</sup></span></p><p>These channels make GAI increasingly accessible to both sides of the medical encounter. Clinicians use GAI to retrieve medical knowledge, generate analytic reasoning and obtain suggestions for diagnostic and therapeutic decisions (DTD).<span><sup>4</sup></span> Simultaneously, patients consult these models about symptoms, use them to interpret complex clinical rationales and review clinicians’ recommendations.<span><sup>5</sup></span> This dual-interface setting is shifting healthcare away from two separate dyads—‘clinician–patient’ and ‘clinician–AI tool’ (Figure 1A)—toward a configuration where multiple human–AI relations coexist (Figure 1A–D).</p><p>This Letter examines two linked axes of change. First, when GAI operates as an interactive cognitive collaborator, it enters the clinician-led chain-of-thought (CoT). In configuration (B), a previously clear ‘clinician–tool’ relation becomes a clinician–AI collaboration requiring a redefinition of roles. Second, when systems capable of generating clinical CoT interact directly with patients and act as decision-making agents, configurations (C)–(D) recast the clinician–patient relationship—its modes of explanation, patient involvement and trust—into a tripartite arrangement that explicitly includes AI.</p><p>For decades, medical AI—from rule-based expert systems to deep learning models—was positioned as a ‘tool’. These systems rarely prompted fundamental debate about role sharing,<span><sup>6</sup></span> because they did not enter the core CoT that structures clinical practice: the process from problem formulation and evidence integration to DTD, which we refer to as the CoT for clinical reasoning and decision-making (clinical CoT).</p><p>In the traditional configuration (Figure 1A), the clinical CoT is held exclusively by the clinician. AI systems are invoked only at specific points at the clinician's discretion. Even when they ‘compute faster’, they primarily extend perceptual capacities and function as citable evidence or auxiliary signals rather than genuine ‘speakers’ in clinical deliberation. This configuration persisted because clini
生成式人工智能(GAI)系统在临床环境中的快速应用——尤其是像deepseek这样的大型语言模型(llm)——标志着医疗保健的变革时刻,需要及时的监管反应来保护安全和公平。在目前的实践中,基于llm的GAI通过独特的“双界面”配置进入临床实践。一方面,医疗机构在本地部署或微调的模型被嵌入到医院信息系统和面向患者的门户中,以简化护理流程,支持临床决策并促进个人健康管理另一方面,由OpenAI、b谷歌和DeepSeek等公司开发的通用模型,正在通过不断增长的聊天机器人应用生态系统接触临床医生和患者。2,3这些渠道使GAI越来越多地为医疗接触的双方所利用。临床医生使用GAI检索医学知识,生成分析推理并获得诊断和治疗决策(DTD)的建议同时,患者咨询这些模型的症状,用它们来解释复杂的临床理由和审查临床医生的建议这种双界面设置正在将医疗保健从“临床医生-患者”和“临床医生-人工智能工具”(图1A)这两个独立的二元组合转变为多种人类-人工智能关系共存的配置(图1A - d)。这封信考察了两个相互联系的变化轴。首先,当GAI作为一个互动的认知合作者运作时,它进入了临床医生主导的思维链(CoT)。在配置(B)中,先前明确的“临床医生-工具”关系变成了临床医生-人工智能协作,需要重新定义角色。其次,当能够生成临床CoT的系统直接与患者互动并充当决策代理时,配置(C) - (D)将临床-患者关系(其解释模式,患者参与和信任)重塑为明确包括人工智能的三方安排。几十年来,医疗人工智能——从基于规则的专家系统到深度学习模型——被定位为一种“工具”。这些系统很少引起关于角色共享的基本争论,6因为它们没有进入构建临床实践的核心CoT:从问题制定和证据整合到DTD的过程,我们将其称为临床推理和决策的CoT(临床CoT)。在传统的配置中(图1A),临床CoT完全由临床医生持有。人工智能系统只会在临床医生自行决定的特定时间点被调用。即使它们“计算速度更快”,它们也主要扩展了感知能力,并作为可引用的证据或辅助信号发挥作用,而不是在临床审议中真正的“说话者”。这种结构之所以持续存在,是因为临床推理基本上是以语言为中介的——一种不断展开的专业交流,其中语言既是智力互动的媒介,又是判断的工具对于早期的人工智能,自然语言理解和生成仍然是一个持续的瓶颈。基于转换器的会话法学硕士(如ChatGPT)的出现和扩展已经打破了这一瓶颈,使GAI能够在类似人类的交互式语言空间中运行GAI系统现在可以处理医疗信息、集成异构数据并产生循证结构化推理以及DTD建议,从而形成更完整的临床CoT.8在这种情况下,人工智能输出不再是需要人工翻译的“信号”;它们现在表现为可理解的贡献,可以直接与人类的判断相媲美。因此,GAI已经将医疗AI从一个有限的工具转变为一个实质性参与临床CoT的认知合作者(图1B)。这种转变也产生了新的规范要求。在不同的环境下,现在有必要更准确地规定人工智能参与临床临床的合法性——例如,它是否应该被限制为提示工具,协作代理共同生成推理,甚至是授权决策者。相应地,出现了关于临床医生在提示、审查和纠正模型输出方面的职责延伸到什么程度的问题,以及在模型设计、更新和失败方面系统提供者的责任界限在哪里——所有这些都需要在未来的监管框架中做出明确的回应。在传统配置中(图1A,B),患者只与临床医生有直接关系,而人工智能仍然是不可见的。DTD背后的原因很大程度上仍停留在专业论述中,使患者在承担结果和不确定性的同时,对这些决策是如何做出的了解有限。 同时,有限的资源和繁重的工作量进一步压缩了临床医生用于解释和共同决策的时间,使患者对参与式过程的期望得不到满足。这种结构约束的设置长期以来一直与临床遭遇的纠纷和信任崩溃有关,并且很难在实践中实现以患者为中心的护理的伦理理想。在这种情况下,GAI的进步使越来越多的聊天机器人应用程序能够直接与患者互动(图1C,D)。患者可能会在临床环境中遇到这样的系统,它们被用来补充临床医生的解释,并用更容易理解的术语详细说明不同的dtd,或者他们可以在会诊之前或之后独立使用这些系统,询问有关他们的症状、测试结果和拟议的治疗计划的问题。在这些方面,GAI作为一种额外的、结构化的解释性资源,在传统的医患互动之外创造了一个平行的渠道,使患者能够更积极地理解和参与塑造他们自己护理的临床CoT。然而,这种平行渠道也产生了制度上的挑战。尽管GAI可以提高透明度,但临床医生和GAI的不同解释可能会造成不和谐。如果系统的理由偏离临床医生的判断,可能会削弱患者的信任。在不良结果的情况下,临床医生和基于人工智能的账户之间的相互作用使责任归属进一步复杂化。此外,如果期望临床医生验证以患者为导向的输出或调解三方交流,GAI可以从分担解释工作量转变为为临床医生增加新的沟通和责任负担。临床医生审查、鉴定或推翻这些产出的职责范围在规范层面上基本上仍未确定。总之,GAI标志着人工智能的结构性转变,从作为外围工具的人工智能转变为临床护理关系架构中的认知参与者。在这种新兴的环境中,治理必须优先考虑针对特定临床医生-人工智能患者配置量身定制的分层监管框架,明确推理、解释和决策权以及随之而来的责任如何在人类和人工智能代理之间分配。沈天一构思了手稿。沈天一和王心如进行了背景调查,并准备了初稿。张毅对稿件进行了全面指导和修改。张亚娟提供了专家意见。作者声明无利益冲突。本研究得到了“全球可持续社会价值开放研究项目”(SSV Open Program)的支持,项目资金由清华大学可持续社会价值研究院提供。作者没有什么可报告的。作者没有什么可报告的。数据共享不适用于本文,因为在当前研究期间没有生成或分析数据集。
{"title":"How generative AI reconfigure clinician–AI and clinician–patient relationships","authors":"Tianyi Shen,&nbsp;Xinru Wang,&nbsp;Yajuan Zhang,&nbsp;Yi Zhang","doi":"10.1002/ctm2.70606","DOIUrl":"10.1002/ctm2.70606","url":null,"abstract":"&lt;p&gt;The rapid uptake of generative AI (GAI) systems in clinical settings—particularly large language models (LLMs) such as DeepSeek—marks a transformative moment for healthcare and necessitates timely regulatory responses to protect safety and equity. In current practice, LLM-based GAI is entering clinical practice through a distinctive ‘dual-interface’ configuration. On one side, models locally deployed or fine-tuned by healthcare institutions are embedded into hospital information systems and patient-facing portals to streamline care processes, support clinical decision-making and facilitate personal health management.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; On the other, general-purpose models developed by companies, such as OpenAI, Google and DeepSeek, are reaching clinicians and patients through a growing ecosystem of chatbot applications.&lt;span&gt;&lt;sup&gt;2, 3&lt;/sup&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;These channels make GAI increasingly accessible to both sides of the medical encounter. Clinicians use GAI to retrieve medical knowledge, generate analytic reasoning and obtain suggestions for diagnostic and therapeutic decisions (DTD).&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; Simultaneously, patients consult these models about symptoms, use them to interpret complex clinical rationales and review clinicians’ recommendations.&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt; This dual-interface setting is shifting healthcare away from two separate dyads—‘clinician–patient’ and ‘clinician–AI tool’ (Figure 1A)—toward a configuration where multiple human–AI relations coexist (Figure 1A–D).&lt;/p&gt;&lt;p&gt;This Letter examines two linked axes of change. First, when GAI operates as an interactive cognitive collaborator, it enters the clinician-led chain-of-thought (CoT). In configuration (B), a previously clear ‘clinician–tool’ relation becomes a clinician–AI collaboration requiring a redefinition of roles. Second, when systems capable of generating clinical CoT interact directly with patients and act as decision-making agents, configurations (C)–(D) recast the clinician–patient relationship—its modes of explanation, patient involvement and trust—into a tripartite arrangement that explicitly includes AI.&lt;/p&gt;&lt;p&gt;For decades, medical AI—from rule-based expert systems to deep learning models—was positioned as a ‘tool’. These systems rarely prompted fundamental debate about role sharing,&lt;span&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/span&gt; because they did not enter the core CoT that structures clinical practice: the process from problem formulation and evidence integration to DTD, which we refer to as the CoT for clinical reasoning and decision-making (clinical CoT).&lt;/p&gt;&lt;p&gt;In the traditional configuration (Figure 1A), the clinical CoT is held exclusively by the clinician. AI systems are invoked only at specific points at the clinician's discretion. Even when they ‘compute faster’, they primarily extend perceptual capacities and function as citable evidence or auxiliary signals rather than genuine ‘speakers’ in clinical deliberation. This configuration persisted because clini","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioswitches: Towards programmable, on-demand control of therapeutic proteins 生物开关:朝着可编程、按需控制治疗蛋白的方向发展。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-02 DOI: 10.1002/ctm2.70612
Benedict Wolf, Jan Mathony, Dominik Niopek
<p>Modern biomedicine increasingly relies on proteins as functional agents such as engineered antibodies, cytokines, or CRISPR genome editors. Most of these molecules act continuously as long as they are present in the body. This can pose challenges, particularly when pharmacokinetics is long-lived. Adverse effects such as off-target activity and toxicity may arise in consequence of prolonged drug activity and are difficult to mitigate once a patient has received the therapeutic. This is most extreme in gene-based approaches, where therapeutic proteins are often continuously expressed in engineered cells or in vivo. A prominent example is CAR-T cell therapy, in which patient-derived T cells are modified to express tumour-targeting receptors and can persist for months, or even years, after infusion. Similarly, in vivo gene supplementation therapy commonly relies on long-term viral vector-mediated expression, often intended for a lifetime. These modalities would strongly benefit from the ability to control effector protein activity post-delivery, enabling dose adjustment and rapid risk mitigation if adverse effects should arise.</p><p>A compelling solution is to convert proteins into controllable nano-devices, which we here term <b><i>Bioswitches</i></b>. In our definition, a Bioswitch is an effector protein functionally coupled to a fused sensory domain, enabling reversible ON/OFF control by a defined stimulus such as small molecules, light, or changes in temperature (Figure 1A). This control mechanism relies on allostery, where protein activity is regulated by a sensory module detecting the presence or absence of a stimulus. This induces a local conformational change which is then transmitted, sometimes over long distances, to the protein's functional site, thereby modulating activity (Figure 1A). Owing to its central role in natural proteins, Jacques Monod famously referred to allostery as the “second secret of life”.</p><p>To build Bioswitches based on allostery, domain insertion engineering is commonly applied. In short, sensory domains are artificially transplanted into effector proteins via genetic fusion. This approach, however, has been bottlenecked by the challenge of identifying domain insertion sites in effector proteins suitable for sensor fusion, that is sites that preserve function while enabling strong stimulus-dependent regulation through allosteric coupling.</p><p>In Wolf et al.<span><sup>1</sup></span>, we introduced ProDomino (Protein Domain Insertion Optimizer), a machine-learning pipeline that predicts possible domain insertion sites in custom effector proteins to enable rapid creation of Bioswitches. ProDomino was trained on a large protein sequence dataset that captures natural domain-domain coupling. Specifically, the dataset was built from proteins in which evolution has “nested” one domain within another, a phenomenon that implies structural compatibility and interdomain communication. Operationally, ProDomino takes a cus
现代生物医学越来越依赖蛋白质作为功能性制剂,如工程抗体、细胞因子或CRISPR基因组编辑器。只要这些分子存在于体内,它们中的大多数就会持续发挥作用。这可能会带来挑战,特别是当药代动力学长期存在时。脱靶活性和毒性等不良反应可能由于药物活性延长而产生,并且一旦患者接受治疗就难以减轻。这在基于基因的方法中最为极端,其中治疗蛋白通常在工程细胞或体内连续表达。一个突出的例子是CAR-T细胞疗法,在这种疗法中,患者来源的T细胞被修饰成表达肿瘤靶向受体,并且在输注后可以持续数月,甚至数年。同样,体内基因补充疗法通常依赖于长期的病毒载体介导的表达,通常是终生的。这些方式将极大地受益于在分娩后控制效应蛋白活性的能力,从而在出现不良反应时能够调整剂量并迅速减轻风险。一个引人注目的解决方案是将蛋白质转化为可控的纳米器件,我们称之为生物开关。在我们的定义中,生物开关是一种效应蛋白,功能上偶联到融合的感觉域,通过小分子、光或温度变化等特定刺激实现可逆的开/关控制(图1A)。这种控制机制依赖于变构,其中蛋白质活性由检测刺激存在或不存在的感觉模块调节。这引起了局部构象的变化,然后传递,有时经过很长的距离,到蛋白质的功能位点,从而调节活性(图1A)。由于变构在天然蛋白质中的核心作用,雅克·莫诺将变构称为“生命的第二个秘密”。为了构建基于变构的生物开关,通常采用域插入工程。简而言之,感觉域通过基因融合被人工移植到效应蛋白中。然而,这种方法受到了在效应蛋白中识别适合传感器融合的结构域插入位点的挑战的瓶颈,即在通过变弹性耦合实现强刺激依赖性调节的同时保留功能的位点。在Wolf et al.1中,我们介绍了ProDomino(蛋白质结构域插入优化器),这是一种机器学习管道,可以预测自定义效应蛋白中可能的结构域插入位点,从而实现生物开关的快速创建。ProDomino是在捕获自然域-域耦合的大型蛋白质序列数据集上进行训练的。具体来说,该数据集是由蛋白质构建的,其中进化已经“嵌套”了一个域在另一个域中,这种现象意味着结构兼容性和域间通信。在操作上,ProDomino采用自定义效应蛋白序列作为输入,并输出位置解析的插入可能性剖面,突出显示适合融合感觉域的位点1因此,ProDomino加速了Bioswitch的创建:用户定义:(i)效应器和感觉域(控制模态),(ii)使用ProDomino在它们之间“进行匹配”,(iii)进行实验验证,如果需要,优化Bioswitch设计(图1B)。在我们的研究中,我们使用这个管道来创建基于大肠杆菌转录因子AraC、基因治疗相关的CRISPR-Cas效应物和多种酶的生物开关,而不需要耗时和昂贵的实验筛选重要的是,这条管道对于激活刺激是模块化的:对光、临床批准的药物和温度变化做出反应的感觉域都可以整合在一起1,2,并且最近在受体域工程方面的进展日益拓宽了输入选择。总的来说,ProDomino旨在将域插入工程从主要的实验工作转变为一次性的、设计驱动的生物开关构建。因此,基于prodomino的生物开关增强了基础研究和生物技术,并在诊断和治疗领域开辟了充足的机会(图1C)。从最直接的影响开始,生物开关已经为询问生物系统中的动态过程提供了强有力的途径。通过将扰动与细胞和生物体的生物时间尺度和空间组织相匹配,生物开关多年来一直被用于信号网络的解剖、基因调控和细胞命运的决定。在这种情况下,光遗传生物开关,采用光敏光感受器,提供秒到分钟的分辨率和空间精度。同样,化学发生生物开关使用配体结合域,并通过小分子促进深层控制。 除了被用作探测工具之外,生物开关还可以作为蛋白质生物学本身的有趣研究对象,因为成功的设计揭示了蛋白质耐受结构扰动的位置以及构象变化如何传播。生物开关的另一个自然应用领域是生物技术,特别是代谢工程。在这种情况下,可控酶可以作为代谢级联中的可调节节点,动态平衡通量,使生长与生产脱钩,并管理途径毒性,从而提高生物生产过程的等级和产量。目前,生物开关在生物传感和诊断领域也获得了发展势头。分子识别的耦合强大的酶或荧光输出使生物标志物检测,药物监测,或点护理读数实用的分析格式。许多遵循Bioswitch范例的生物传感器的成功案例已经被报道过,到目前为止,大多数都是通过试错工程来构建的,ProDomino现在可以帮助简化和加速这个过程。最具变革性,也是最具挑战性的机会在于可控蛋白质治疗,生物开关可以将有效但高风险的模式转化为可剂量的,可逆的精确干预。抗体、细胞因子和其他效应物可以被设计成根据临床可行的输入来切换活性,当不良反应出现或治疗窗口随着时间的推移而变化时,允许递送后的功能调节。此外,空间受限的生物开关刺激(例如,光、聚焦超声、局部加热/冷却或磁场)原则上可以使活性偏向预期组织,并减少系统脱靶效应。类似的原理也适用于基因治疗:编码可控制的生物开关,而不是永久活跃的转基因,可以在持久表达之上引入可调节层,从而提高长期干预的安全性和灵活性。实现这些目标需要解决一些概念和实践上的挑战,将概念验证型生物开关设计转化为临床级性能。这将涉及进一步优化ProDomino管道,使其具有跨蛋白质家族的强大适用性,加强受体-效应耦合,以实现接近数字性能和/或大范围可调性,例如通过定向进化策略8,9解决设计生物开关的潜在免疫原性问题,以及实现其可扩展的生产和质量控制。应对这些挑战意味着从基础研究、生物技术到诊断和未来疗法的一系列创新。作者是已经提交和/或即将提交的与生物开关概念相关的专利申请的发明者。
{"title":"Bioswitches: Towards programmable, on-demand control of therapeutic proteins","authors":"Benedict Wolf,&nbsp;Jan Mathony,&nbsp;Dominik Niopek","doi":"10.1002/ctm2.70612","DOIUrl":"10.1002/ctm2.70612","url":null,"abstract":"&lt;p&gt;Modern biomedicine increasingly relies on proteins as functional agents such as engineered antibodies, cytokines, or CRISPR genome editors. Most of these molecules act continuously as long as they are present in the body. This can pose challenges, particularly when pharmacokinetics is long-lived. Adverse effects such as off-target activity and toxicity may arise in consequence of prolonged drug activity and are difficult to mitigate once a patient has received the therapeutic. This is most extreme in gene-based approaches, where therapeutic proteins are often continuously expressed in engineered cells or in vivo. A prominent example is CAR-T cell therapy, in which patient-derived T cells are modified to express tumour-targeting receptors and can persist for months, or even years, after infusion. Similarly, in vivo gene supplementation therapy commonly relies on long-term viral vector-mediated expression, often intended for a lifetime. These modalities would strongly benefit from the ability to control effector protein activity post-delivery, enabling dose adjustment and rapid risk mitigation if adverse effects should arise.&lt;/p&gt;&lt;p&gt;A compelling solution is to convert proteins into controllable nano-devices, which we here term &lt;b&gt;&lt;i&gt;Bioswitches&lt;/i&gt;&lt;/b&gt;. In our definition, a Bioswitch is an effector protein functionally coupled to a fused sensory domain, enabling reversible ON/OFF control by a defined stimulus such as small molecules, light, or changes in temperature (Figure 1A). This control mechanism relies on allostery, where protein activity is regulated by a sensory module detecting the presence or absence of a stimulus. This induces a local conformational change which is then transmitted, sometimes over long distances, to the protein's functional site, thereby modulating activity (Figure 1A). Owing to its central role in natural proteins, Jacques Monod famously referred to allostery as the “second secret of life”.&lt;/p&gt;&lt;p&gt;To build Bioswitches based on allostery, domain insertion engineering is commonly applied. In short, sensory domains are artificially transplanted into effector proteins via genetic fusion. This approach, however, has been bottlenecked by the challenge of identifying domain insertion sites in effector proteins suitable for sensor fusion, that is sites that preserve function while enabling strong stimulus-dependent regulation through allosteric coupling.&lt;/p&gt;&lt;p&gt;In Wolf et al.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;, we introduced ProDomino (Protein Domain Insertion Optimizer), a machine-learning pipeline that predicts possible domain insertion sites in custom effector proteins to enable rapid creation of Bioswitches. ProDomino was trained on a large protein sequence dataset that captures natural domain-domain coupling. Specifically, the dataset was built from proteins in which evolution has “nested” one domain within another, a phenomenon that implies structural compatibility and interdomain communication. Operationally, ProDomino takes a cus","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell and spatial transcriptomics uncover neoadjuvant chemotherapy-resistant malignant cells with inhibitory signalling on B cells in gastric cancer 单细胞和空间转录组学揭示胃癌新辅助化疗耐药恶性细胞对B细胞的抑制信号。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-02 DOI: 10.1002/ctm2.70600
Pei-Yi Han, Xiang-Xi Ye, Xiao Yang, Lin Li, Xuan Zhao, Yan-Fei Shao, Jing Sun, Lu Zang, Ze-Guang Han, Min-Hua Zheng
<p>Dear editor,</p><p>Patients with advanced gastric cancer (GC) often receive the neoadjuvant therapy with variable responsiveness. Here, we conducted single-cell RNA sequencing on tumour tissues from GC patients receiving neoadjuvant chemotherapy, integrated with spatial transcriptomics analysis, revealing that resistance to neoadjuvant chemotherapy appears to be driven by SPP1-CD44 axis, which drives immunosuppressive crosstalk between apoptosis-resistant undifferentiated malignant cells and B cells.</p><p>GC remains one of the leading causes of cancer-related mortality worldwide.<span><sup>1</sup></span> Neoadjuvant chemotherapy has become a standard treatment modality for these patients with advanced GC but does not always yield satisfactory outcomes.<span><sup>2</sup></span> Activating of anti-apoptotic signalling pathways,<span><sup>3</sup></span> the immunosuppressive microenvironment tumour-associated macrophages (TAMs) and regulatory T cells (Tregs) may contribute to the resistance to chemotherapy.<span><sup>4, 5</sup></span> Recent studies have shown that activated B cells can enhance anti-tumour responses by secreting antibodies and cytokines,<span><sup>6</sup></span> but B cells can also be reprogrammed to promote tumour growth and immune evasion.<span><sup>7</sup></span> The underlying molecular and cellular characteristics remain unclear.</p><p>In this study, we performed multi-omics analysis on tumour tissues from five patients (including 3 responders and 2 non-responders) treated with DOS, SOX and XELOX regimens for 3 or 4 cycles (Table S1), according to the response evaluation criteria in solid tumours (RECIST).<span><sup>8</sup></span> Whole-exome sequencing revealed that somatic mutations in some genes existed in the residual tumours of all five patients. Interestingly, amongst these genes, ATR, a master regulator of cellular responses to DNA replication stress; ABCB1, an ATP-dependent drug efflux pump for xenobiotic compounds; and NSD1, a histone methyltransferase, have been reported to be involved in anticancer drug resistance. In addition, the mutations of <i>EPB41L3</i>, <i>TFG</i>, <i>TAL2</i>, <i>WWTR1</i> and <i>ARIH1</i> were observed in responders, whereas nonsynonymous SNV and frameshift deletion in <i>CCNB1IP</i> existed in the non-responders (Figure 1A,B). COSMIC signature analysis showed that SBS24 and SBS36, which are respectively associated with aflatoxin exposure and defective base excision repair, appeared to have more contribution in responders (Figure 1C). Transcriptomic analysis showed 161 upregulated and 439 downregulated genes in non-responders (Figure 1D). Interestingly, gene ontology (GO) enrichment analysis revealed suppressed immune response and antibody production in non-responders (Figure 1E).</p><p>Furthermore, single-cell RNA sequencing of 36,910 cells identified 8 major cell types (Figure 1F–H). Amongst these, epithelial cells, fibroblasts and smooth muscle cells were enriched in non-responders,
晚期胃癌(GC)患者常接受不同反应性的新辅助治疗。在这里,我们对接受新辅助化疗的胃癌患者的肿瘤组织进行了单细胞RNA测序,并结合空间转录组学分析,发现对新辅助化疗的耐药性似乎是由SPP1-CD44轴驱动的,SPP1-CD44轴驱动凋亡抵抗的未分化恶性细胞和B细胞之间的免疫抑制串扰。胃癌仍然是全球癌症相关死亡的主要原因之一新辅助化疗已成为晚期胃癌患者的标准治疗方式,但并不总能取得令人满意的结果抗凋亡信号通路的激活,免疫抑制微环境肿瘤相关巨噬细胞(tam)和调节性T细胞(Tregs)可能有助于化疗耐药。最近的研究表明,活化的B细胞可以通过分泌抗体和细胞因子来增强抗肿瘤反应,但B细胞也可以被重新编程以促进肿瘤生长和免疫逃避潜在的分子和细胞特征尚不清楚。在本研究中,我们根据实体瘤应答评价标准(RECIST),对5名患者(包括3名应答者和2名无应答者)接受DOS、SOX和XELOX方案治疗3或4个周期(表S1)的肿瘤组织进行了多组学分析全外显子组测序显示,在所有5例患者的残余肿瘤中存在一些基因的体细胞突变。有趣的是,在这些基因中,ATR是细胞对DNA复制应激反应的主要调节器;ABCB1,一种用于外源性化合物的atp依赖性药物外排泵;和NSD1,一种组蛋白甲基转移酶,据报道与抗癌耐药有关。此外,应答者中存在EPB41L3、TFG、TAL2、WWTR1和ARIH1突变,而非应答者中存在非同义SNV和CCNB1IP移码缺失(图1A,B)。COSMIC特征分析显示,分别与黄曲霉毒素暴露和碱基切除修复缺陷相关的SBS24和SBS36似乎在应答者中有更大的贡献(图1C)。转录组学分析显示,无应答者中有161个基因上调,439个基因下调(图1D)。有趣的是,基因本体(GO)富集分析显示,无应答者的免疫反应和抗体产生受到抑制(图1E)。此外,对36910个细胞进行单细胞RNA测序,鉴定出8种主要的细胞类型(图1F-H)。其中,无应答者中上皮细胞、成纤维细胞和平滑肌细胞富集,而B细胞减少,也表明适应性免疫减弱(图1 - k)。推断的拷贝数变异(CNVs)分析将6610个恶性上皮细胞与606个正常细胞区分开来(图2A和S1A,B),揭示了7个恶性亚群(EPI1-7;上皮细胞[EPI])(图2B)。值得注意的是,EPI5在无应答者中优先富集(图2C,D)。轨迹分析表明,从EPI5亚群向其他恶性细胞亚群有明显的方向性流动(图2E)。Pseudotime和CytoTRACE分析将EPI5定位在最早的分化阶段,表明具有祖细胞样表型(图2F,G)。有趣的是,EPI5表现出茎样,未分化,抗凋亡细胞的特征,粘附减少(图2H)。具体来说,EPI5簇表现出一种特殊的抗凋亡表型,这得到了关键生存调节因子MCL1、CFLAR和XIAP上调的支持(图2I-K),以及基因集富集分析(GSEA)证实cdkn1a介导的生存途径富集(图S2A)。在TCGA-STAD队列中,EPI5标记基因(HSPA1B、PLA2G2A和RAMP1)的高表达与较差的总生存率相关(图2L-N和S2B-D),提示其预后价值。我们进一步利用TCGA数据来探索EPI亚群特征与癌症患者总体生存期的关系。在cox多因素风险回归分析中,EPI5细胞组是预后不良的独立危险因素,差异有统计学意义(图20)。为了研究EPI5亚群是否与B细胞相互作用,从而促进免疫抑制肿瘤微环境的形成,我们进行了细胞-细胞通讯分析,揭示了各种恶性上皮细胞亚群(EPI1-7)通过MIF及其受体CD74、CD44和CXCR4与B细胞之间的配体-受体相互作用(图3A)。值得注意的是,已知的SPP1-CD44轴介导的免疫抑制信号通路仅存在于EPI5细胞与B细胞的相互作用中。 EPI5作为SPP1信号的显性发送者,而B细胞和一些上皮亚群作为受体(图3B,C)。为了描述B细胞在新辅助治疗应答中的作用,我们进一步从5例患者的scRNA-seq数据中提取了B细胞信息(图3D)。B细胞被鉴定为四种亚型:活化B细胞、FKBP11+浆细胞、TXN+浆细胞和线粒体相关B细胞(图3E,F)。激活的B细胞占应答者B细胞的50%,但在无应答者中仅占10%,这意味着激活的B细胞可以在无应答者中被抑制。此外,GSEA还显示,在应答者激活的B细胞中,蛋白质合成和t细胞调节途径得到增强(图3G),而在无应答者中,这些功能受到抑制。CD44和CD83在活化的B细胞中高表达,9支持它们的活化潜能(图3H)。相反,负责调节MHC II类基因的转录因子XBP1和tnf受体超家族成员TNFRSF17在浆细胞中高表达,而在活化的B细胞中不表达(图3H)。SCENIC分析显示,转录因子HOXA11、GATA2和JUNB在活化的B细胞中活化,但在无应答的浆细胞中没有活化,表明功能下降(图3I)。有趣的是,EPI5对活化的B细胞施加了最强的相互作用权重(图3J)。值得注意的是,与与其他B细胞亚群的相互作用相比,已知的免疫抑制SPP1-CD44信号轴在EPI5和活化的B细胞之间表现出明显更强的强度(图3K)。此外,通路作用分析显示,EPI5是SPP1信号分子的主要发送者,而活化的B细胞是主要的受体(图3L,M)。我们还分析了新辅助治疗前后样本中已发表的PRJEB45598 GC单细胞测序数据通过Milo算法进行的差异种群丰度分析显示,与RES队列相比,NR队列中的EPI5集群显著富集(图S3A)。虽然大多数其他上皮亚群在治疗后下降,但EPI5群体在新辅助治疗前后保持相对稳定(图S3B),表明固有的耐药表型。同时,在NR组治疗后观察到B细胞频率显著降低(图S3C),进一步支持了B细胞丰度降低可能与EPI5特征存在相关的假设。为了全面验证SPP1-CD44轴对B细胞的功能影响,我们进行了一系列体外实验。正如预期的那样,重组SPP1显著减弱了原代B细胞的增殖和活化,但通过抗cd44抗体阻断,抑制作用被有效逆转(图3N,O)。随后,我们建立了spp1过表达(OE)的MFC细胞系,通过荧光显微镜和Western blotting证实(图3P,Q)。与重组SPP1一致,SPP1- oe mfc的上清液显著抑制B细胞功能(图3R,S)。在SPP1-OE MFC与原代B细胞的直接共培养中也观察到类似的表型(图3T,U)。至关重要的是,在两种实验环境中,CD44阻断逆转了抑制作用,共同证实了SPP1-CD44轴介导B细胞抑制的观点。为了进一步证实EPI5与B细胞之间的关系,我们对无应答者(GSE251950)的样本进行了空间转录组学分析。通过病理切片和空间分布模式的比较,我们发现耐药相关的恶性上皮细胞(EPI5)主要集中在不同微瘤灶的核心,而活化的B细胞主要位于基质丰富的区域(图4A)。共定位分析表明,某些耐药相关的上皮细胞和活化的B细胞聚集在同一区域内(图4B和S4A)。同源细胞网络分析分别鉴定活化B细胞和耐药相关上皮细胞的丰度(图4C)。有趣的是,微肿瘤灶内耐药相关上皮细胞的分布程度与活化B细胞的分布程度呈负相关(图4D和S4B)。无应答组织的免疫荧光染色证实了这些空间模式:CD44+ B细胞和SPP1+肿瘤细胞聚集在同一区域,但缺乏直接的共定位(图S4C)。我们还进行了CO
{"title":"Single-cell and spatial transcriptomics uncover neoadjuvant chemotherapy-resistant malignant cells with inhibitory signalling on B cells in gastric cancer","authors":"Pei-Yi Han,&nbsp;Xiang-Xi Ye,&nbsp;Xiao Yang,&nbsp;Lin Li,&nbsp;Xuan Zhao,&nbsp;Yan-Fei Shao,&nbsp;Jing Sun,&nbsp;Lu Zang,&nbsp;Ze-Guang Han,&nbsp;Min-Hua Zheng","doi":"10.1002/ctm2.70600","DOIUrl":"10.1002/ctm2.70600","url":null,"abstract":"&lt;p&gt;Dear editor,&lt;/p&gt;&lt;p&gt;Patients with advanced gastric cancer (GC) often receive the neoadjuvant therapy with variable responsiveness. Here, we conducted single-cell RNA sequencing on tumour tissues from GC patients receiving neoadjuvant chemotherapy, integrated with spatial transcriptomics analysis, revealing that resistance to neoadjuvant chemotherapy appears to be driven by SPP1-CD44 axis, which drives immunosuppressive crosstalk between apoptosis-resistant undifferentiated malignant cells and B cells.&lt;/p&gt;&lt;p&gt;GC remains one of the leading causes of cancer-related mortality worldwide.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Neoadjuvant chemotherapy has become a standard treatment modality for these patients with advanced GC but does not always yield satisfactory outcomes.&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; Activating of anti-apoptotic signalling pathways,&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; the immunosuppressive microenvironment tumour-associated macrophages (TAMs) and regulatory T cells (Tregs) may contribute to the resistance to chemotherapy.&lt;span&gt;&lt;sup&gt;4, 5&lt;/sup&gt;&lt;/span&gt; Recent studies have shown that activated B cells can enhance anti-tumour responses by secreting antibodies and cytokines,&lt;span&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/span&gt; but B cells can also be reprogrammed to promote tumour growth and immune evasion.&lt;span&gt;&lt;sup&gt;7&lt;/sup&gt;&lt;/span&gt; The underlying molecular and cellular characteristics remain unclear.&lt;/p&gt;&lt;p&gt;In this study, we performed multi-omics analysis on tumour tissues from five patients (including 3 responders and 2 non-responders) treated with DOS, SOX and XELOX regimens for 3 or 4 cycles (Table S1), according to the response evaluation criteria in solid tumours (RECIST).&lt;span&gt;&lt;sup&gt;8&lt;/sup&gt;&lt;/span&gt; Whole-exome sequencing revealed that somatic mutations in some genes existed in the residual tumours of all five patients. Interestingly, amongst these genes, ATR, a master regulator of cellular responses to DNA replication stress; ABCB1, an ATP-dependent drug efflux pump for xenobiotic compounds; and NSD1, a histone methyltransferase, have been reported to be involved in anticancer drug resistance. In addition, the mutations of &lt;i&gt;EPB41L3&lt;/i&gt;, &lt;i&gt;TFG&lt;/i&gt;, &lt;i&gt;TAL2&lt;/i&gt;, &lt;i&gt;WWTR1&lt;/i&gt; and &lt;i&gt;ARIH1&lt;/i&gt; were observed in responders, whereas nonsynonymous SNV and frameshift deletion in &lt;i&gt;CCNB1IP&lt;/i&gt; existed in the non-responders (Figure 1A,B). COSMIC signature analysis showed that SBS24 and SBS36, which are respectively associated with aflatoxin exposure and defective base excision repair, appeared to have more contribution in responders (Figure 1C). Transcriptomic analysis showed 161 upregulated and 439 downregulated genes in non-responders (Figure 1D). Interestingly, gene ontology (GO) enrichment analysis revealed suppressed immune response and antibody production in non-responders (Figure 1E).&lt;/p&gt;&lt;p&gt;Furthermore, single-cell RNA sequencing of 36,910 cells identified 8 major cell types (Figure 1F–H). Amongst these, epithelial cells, fibroblasts and smooth muscle cells were enriched in non-responders, ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T-cell exhaustion from a multiomics perspective: Differentiation mechanisms and regulatory networks in the journey from progenitor-Exhausted T cells to terminally exhausted T cells 从多组学角度看T细胞耗竭:从祖耗竭T细胞到终耗竭T细胞的分化机制和调控网络。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-02 DOI: 10.1002/ctm2.70609
Tong Zhu, Xiaoyu Teng, Qinlian Jiao, Yidan Ren, Yunshan Wang, Maoxiao Feng

A central hurdle limiting the success of T-cell-based immunotherapies is the progressive dysfunction of T cells, known as exhaustion. Overcoming this exhausted state is therefore a pivotal objective in translational oncology and immunology. The advent of single-cell multiomics has fundamentally revised the once-prevailing view of exhaustion as a uniform endpoint. Instead, it is now recognised as a dynamic differentiation process comprising a spectrum of distinct cellular states. This spectrum is organised along a hierarchical axis, originating from progenitor-exhausted (Tpex) cells that retain proliferative potential and advancing towards terminally exhausted (Tex) populations with severely impaired effector functions. We undertake a comprehensive synthesis of multiomics data—spanning transcriptomic, epigenomic, metabolomic, proteomic and posttranslational modification (PTM)-proteomic layers—to decipher the interconnected regulatory programmes that dictate commitment along this exhaustion axis. From this integrated analysis, we derive a unified mechanistic framework that delineates the molecular drivers of Tpex cell fate determination and terminal exhaustion. Beyond its explanatory power for basic biology, this framework serves as a direct roadmap for therapeutic innovation, highlighting novel nodes for intervention aimed at reinvigorating the exhausted T-cell compartment. The practical application of these insights holds significant promise for enhancing the efficacy of established current immunotherapeutic platforms.

Key points

  • This review is the first to integrate multi-omics evidence for constructing a dynamic regulatory map of T-cell exhaustion.
  • It highlights the critical cross-omics synergistic mechanisms, such as metabolic reprogramming influencing epigenetic remodeling to drive cell fate.
  • The multi-omics perspective presented directly informs novel therapeutic strategies.
限制基于T细胞的免疫疗法成功的一个主要障碍是T细胞的进行性功能障碍,即衰竭。因此,克服这种疲惫状态是转化肿瘤学和免疫学的关键目标。单细胞多组学的出现从根本上改变了曾经盛行的将疲劳作为统一终点的观点。相反,它现在被认为是一个动态的分化过程,包括一系列不同的细胞状态。该光谱沿等级轴组织,起源于保留增殖潜力的祖细胞枯竭(Tpex)细胞,并向效应功能严重受损的终衰竭(Tex)群体前进。我们对多组学数据进行了全面的综合,包括转录组学、表观基因组学、代谢组学、蛋白质组学和翻译后修饰(PTM)-蛋白质组学层-来破译相互关联的调控程序,这些程序决定了在这个耗尽轴上的承诺。从这一综合分析中,我们得出了一个统一的机制框架,描述了Tpex细胞命运决定和最终衰竭的分子驱动因素。除了其对基础生物学的解释力之外,该框架还可以作为治疗创新的直接路线图,突出了旨在重新激活耗尽的t细胞区室的干预的新节点。这些见解的实际应用为提高现有免疫治疗平台的疗效带来了巨大的希望。这篇综述是第一次整合多组学证据来构建t细胞耗竭的动态调控图谱。它强调了关键的跨组学协同机制,如代谢重编程影响表观遗传重塑,以驱动细胞命运。提出的多组学观点直接影响了新的治疗策略。
{"title":"T-cell exhaustion from a multiomics perspective: Differentiation mechanisms and regulatory networks in the journey from progenitor-Exhausted T cells to terminally exhausted T cells","authors":"Tong Zhu,&nbsp;Xiaoyu Teng,&nbsp;Qinlian Jiao,&nbsp;Yidan Ren,&nbsp;Yunshan Wang,&nbsp;Maoxiao Feng","doi":"10.1002/ctm2.70609","DOIUrl":"10.1002/ctm2.70609","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>A central hurdle limiting the success of T-cell-based immunotherapies is the progressive dysfunction of T cells, known as exhaustion. Overcoming this exhausted state is therefore a pivotal objective in translational oncology and immunology. The advent of single-cell multiomics has fundamentally revised the once-prevailing view of exhaustion as a uniform endpoint. Instead, it is now recognised as a dynamic differentiation process comprising a spectrum of distinct cellular states. This spectrum is organised along a hierarchical axis, originating from progenitor-exhausted (Tpex) cells that retain proliferative potential and advancing towards terminally exhausted (Tex) populations with severely impaired effector functions. We undertake a comprehensive synthesis of multiomics data—spanning transcriptomic, epigenomic, metabolomic, proteomic and posttranslational modification (PTM)-proteomic layers—to decipher the interconnected regulatory programmes that dictate commitment along this exhaustion axis. From this integrated analysis, we derive a unified mechanistic framework that delineates the molecular drivers of Tpex cell fate determination and terminal exhaustion. Beyond its explanatory power for basic biology, this framework serves as a direct roadmap for therapeutic innovation, highlighting novel nodes for intervention aimed at reinvigorating the exhausted T-cell compartment. The practical application of these insights holds significant promise for enhancing the efficacy of established current immunotherapeutic platforms.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Key points</h3>\u0000 \u0000 <div>\u0000 <ul>\u0000 \u0000 <li>This review is the first to integrate multi-omics evidence for constructing a dynamic regulatory map of T-cell exhaustion.</li>\u0000 \u0000 <li>It highlights the critical cross-omics synergistic mechanisms, such as metabolic reprogramming influencing epigenetic remodeling to drive cell fate.</li>\u0000 \u0000 <li>The multi-omics perspective presented directly informs novel therapeutic strategies.</li>\u0000 </ul>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycolysis enzymes and cellular lactylation in tumour. 肿瘤中的糖酵解酶和细胞乳酸化。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70549
Chenyuan Dai, Lihua Wang

Cellular lactylation, a recently identified post-translational modification, has emerged as a crucial regulator in various biological processes, particularly in cancer. The discovery of lactylation provides a new perspective for understanding the functional significance of the Warburg effect in tumour cells. Enzymes involved in the glycolytic pathway modulate lactylation, influencing tumour genesis and progression. This review explores the intricate relationship between glycolysis, lactylation and tumour biology, with a focus on how enzymes participating in glycolysis impact lactylation in cancer cells. We discuss how glycolytic enzymes regulate lactylation and highlight their broader implications in tumour biology. The role of lactylation in shaping the tumour microenvironment underscores its increasing significance as a biomarker for cancer prognosis and a target for therapeutic intervention. Therefore, we also summarised the potential of targeting lactylation as a cancer therapy strategy. KEY POINTS: Glycolytic enzymes regulate lactylation in cancer cells. Lactylation drives tumour growth, metastasis, immune evasion and contributes to microenvironment remodelling Targeting lactylation holds promise for cancer therapy.

细胞乳酸化是最近发现的一种翻译后修饰,在各种生物过程中,特别是在癌症中,已成为一个重要的调节因子。乳酸化的发现为理解肿瘤细胞中Warburg效应的功能意义提供了一个新的视角。参与糖酵解途径的酶调节乳酸化,影响肿瘤的发生和发展。本文综述了糖酵解、乳酸化和肿瘤生物学之间的复杂关系,重点讨论了参与糖酵解的酶如何影响癌细胞中的乳酸化。我们讨论糖酵解酶如何调节乳酸化,并强调其在肿瘤生物学中的广泛意义。乳酸化在塑造肿瘤微环境中的作用强调了其作为癌症预后的生物标志物和治疗干预目标的重要性。因此,我们也总结了靶向乳酸化作为一种癌症治疗策略的潜力。重点:糖酵解酶调节癌细胞的乳酸化。乳酸化驱动肿瘤生长、转移、免疫逃避并有助于微环境重塑靶向乳酸化为癌症治疗带来希望。
{"title":"Glycolysis enzymes and cellular lactylation in tumour.","authors":"Chenyuan Dai, Lihua Wang","doi":"10.1002/ctm2.70549","DOIUrl":"https://doi.org/10.1002/ctm2.70549","url":null,"abstract":"<p><p>Cellular lactylation, a recently identified post-translational modification, has emerged as a crucial regulator in various biological processes, particularly in cancer. The discovery of lactylation provides a new perspective for understanding the functional significance of the Warburg effect in tumour cells. Enzymes involved in the glycolytic pathway modulate lactylation, influencing tumour genesis and progression. This review explores the intricate relationship between glycolysis, lactylation and tumour biology, with a focus on how enzymes participating in glycolysis impact lactylation in cancer cells. We discuss how glycolytic enzymes regulate lactylation and highlight their broader implications in tumour biology. The role of lactylation in shaping the tumour microenvironment underscores its increasing significance as a biomarker for cancer prognosis and a target for therapeutic intervention. Therefore, we also summarised the potential of targeting lactylation as a cancer therapy strategy. KEY POINTS: Glycolytic enzymes regulate lactylation in cancer cells. Lactylation drives tumour growth, metastasis, immune evasion and contributes to microenvironment remodelling Targeting lactylation holds promise for cancer therapy.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70549"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146212290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Milk fat globule-EGF factor 8/ATP-binding cassette subfamily E member 1 axis maintains mitophagy flux homeostasis to suppress ferroptosis in acute pancreatitis. 乳脂球- egf因子8/ atp结合盒亚家族E成员1轴维持线粒体自噬通量稳态,抑制急性胰腺炎铁凋亡。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70619
Yifan Ren, Yuxuan Lu, Qing Cui, Hao Shang, Meng Fan, Yun Sun, Xiali Shi, Rongqian Wu, Hongwei Lu

Background: Acute pancreatitis (AP) is a severe inflammatory disorder in which mitochondrial dysfunction and ferroptosis critically drive acinar cell injury. Our previous work suggested a protective role for exogenous milk fat globule-epidermal growth factor 8 (MFG-E8) in AP. This study aimed to elucidate the molecular mechanism by which endogenous MFG-E8 mitigates mitochondrial damage and ferroptosis during AP.

Methods: Two mouse models of AP were used for in vivo studies, while cerulein + lipopolysaccharide-induced mitophagy and ferroptosis in AR42J cells (cells of the rat exocrine pancreas) for in vitro studies. Mfge8 gene-defective mice and lentivirus were utilised to downregulate MFG-E8 expression in mice and overexpress MFG-E8 in cells, respectively. Dual gene modification was employed to overexpress MFG-E8 and simultaneously knockdown adenosine triphosphate (ATP)-binding cassette subfamily E member 1 (ABCE1) in vitro. One mitophagy agonist and two ferroptosis inhibitors were used in both in vitro and in vivo experiments.

Results: Endogenous MFG-E8 expression was downregulated in experimental AP. Genetic deletion of Mfge8 aggravated mitochondrial ultrastructural damage, impaired mitophagy flux and intensified ferroptosis, as evidenced by increased lipid peroxidation, Fe2+ accumulation and depletion of glutathione peroxidase. Lentiviral overexpression of MFG-E8 in AR42J acinar cells restored mitophagy activity, preserved mitochondrial membrane potential and reduced oxidative stress. Mechanistically, co-immunoprecipitation confirmed that MFG-E8 directly interacts with ABCE1, a key mitophagy regulator. ABCE1 knockdown abolished the protective effects of MFG-E8 on mitochondrial function and ferroptosis suppression, indicating that the MFG-E8/ABCE1 axis is essential for maintaining mitophagy homeostasis. Pharmacological restoration of mitophagy or inhibition of ferroptosis rescued acinar cell injury caused by MFG-E8/ABCE1 dysregulation. In vivo, ferroptosis inhibition significantly improved pancreatic pathology and survival in Mfge8-deficient AP mice.

Conclusion: Endogenous MFG-E8 protects against AP by binding ABCE1 to sustain mitophagy flux and inhibit ferroptosis. Targeting this axis offers a promising therapeutic strategy for mitigating pancreatic injury.

Key points: Endogenous MFG-E8 is downregulated in acute pancreatitis (AP), disrupting MFG-E8/ABCE1 complex formation. MFG-E8/ABCE1 axis sustains Parkin-PINK1-mediated mitophagy to clear damaged mitochondria in pancreatic acinar cells. This axis suppresses ferroptosis by reducing Fe2+ accumulation and lipid peroxidation, alleviating AP-related pancreatic injury.

背景:急性胰腺炎(AP)是一种严重的炎症性疾病,线粒体功能障碍和铁下垂严重驱动腺泡细胞损伤。我们之前的研究表明外源性乳脂球-表皮生长因子8 (MFG-E8)在AP中具有保护作用。本研究旨在阐明内源性MFG-E8在AP中减轻线粒体损伤和铁凋亡的分子机制。方法:采用两种小鼠AP模型进行体内研究,同时采用cerulein +脂多糖诱导AR42J细胞(大鼠外分泌胰腺细胞)的线粒体自噬和铁凋亡进行体外研究。利用Mfge8基因缺陷小鼠和慢病毒分别下调MFG-E8在小鼠中的表达和过表达MFG-E8在细胞中的表达。采用双基因修饰法在体外过表达MFG-E8,同时敲低三磷酸腺苷(ATP)结合盒亚家族E成员1 (ABCE1)。在体外和体内实验中使用了一种线粒体自噬激动剂和两种铁下垂抑制剂。结果:内源性MFG-E8在实验性AP中表达下调。Mfge8基因缺失加重了线粒体超微结构损伤,线粒体自噬通量受损,铁凋亡加剧,表现为脂质过氧化、铁2+积累和谷胱甘肽过氧化物酶耗竭增加。慢病毒过表达MFG-E8在AR42J腺泡细胞中恢复线粒体自噬活性,保存线粒体膜电位,降低氧化应激。在机制上,共免疫沉淀证实MFG-E8直接与ABCE1相互作用,ABCE1是一个关键的有丝分裂调节因子。ABCE1敲低消除了MFG-E8对线粒体功能和铁凋亡抑制的保护作用,表明MFG-E8/ABCE1轴对维持线粒体自噬稳态至关重要。MFG-E8/ABCE1失调所致的腺泡细胞损伤可通过药物修复有丝分裂或抑制铁下垂。在体内,抑制铁下垂可显著改善mfge8缺陷AP小鼠的胰腺病理和存活。结论:内源性MFG-E8通过与ABCE1结合,维持线粒体自噬通量,抑制铁凋亡。靶向这条轴为减轻胰腺损伤提供了一种有希望的治疗策略。内源性MFG-E8在急性胰腺炎(AP)中下调,破坏MFG-E8/ABCE1复合物的形成。MFG-E8/ABCE1轴维持parkin - pink1介导的线粒体自噬以清除胰腺腺泡细胞中受损的线粒体。该轴通过减少Fe2+积累和脂质过氧化来抑制铁下垂,减轻ap相关的胰腺损伤。
{"title":"Milk fat globule-EGF factor 8/ATP-binding cassette subfamily E member 1 axis maintains mitophagy flux homeostasis to suppress ferroptosis in acute pancreatitis.","authors":"Yifan Ren, Yuxuan Lu, Qing Cui, Hao Shang, Meng Fan, Yun Sun, Xiali Shi, Rongqian Wu, Hongwei Lu","doi":"10.1002/ctm2.70619","DOIUrl":"https://doi.org/10.1002/ctm2.70619","url":null,"abstract":"<p><strong>Background: </strong>Acute pancreatitis (AP) is a severe inflammatory disorder in which mitochondrial dysfunction and ferroptosis critically drive acinar cell injury. Our previous work suggested a protective role for exogenous milk fat globule-epidermal growth factor 8 (MFG-E8) in AP. This study aimed to elucidate the molecular mechanism by which endogenous MFG-E8 mitigates mitochondrial damage and ferroptosis during AP.</p><p><strong>Methods: </strong>Two mouse models of AP were used for in vivo studies, while cerulein + lipopolysaccharide-induced mitophagy and ferroptosis in AR42J cells (cells of the rat exocrine pancreas) for in vitro studies. Mfge8 gene-defective mice and lentivirus were utilised to downregulate MFG-E8 expression in mice and overexpress MFG-E8 in cells, respectively. Dual gene modification was employed to overexpress MFG-E8 and simultaneously knockdown adenosine triphosphate (ATP)-binding cassette subfamily E member 1 (ABCE1) in vitro. One mitophagy agonist and two ferroptosis inhibitors were used in both in vitro and in vivo experiments.</p><p><strong>Results: </strong>Endogenous MFG-E8 expression was downregulated in experimental AP. Genetic deletion of Mfge8 aggravated mitochondrial ultrastructural damage, impaired mitophagy flux and intensified ferroptosis, as evidenced by increased lipid peroxidation, Fe<sup>2+</sup> accumulation and depletion of glutathione peroxidase. Lentiviral overexpression of MFG-E8 in AR42J acinar cells restored mitophagy activity, preserved mitochondrial membrane potential and reduced oxidative stress. Mechanistically, co-immunoprecipitation confirmed that MFG-E8 directly interacts with ABCE1, a key mitophagy regulator. ABCE1 knockdown abolished the protective effects of MFG-E8 on mitochondrial function and ferroptosis suppression, indicating that the MFG-E8/ABCE1 axis is essential for maintaining mitophagy homeostasis. Pharmacological restoration of mitophagy or inhibition of ferroptosis rescued acinar cell injury caused by MFG-E8/ABCE1 dysregulation. In vivo, ferroptosis inhibition significantly improved pancreatic pathology and survival in Mfge8-deficient AP mice.</p><p><strong>Conclusion: </strong>Endogenous MFG-E8 protects against AP by binding ABCE1 to sustain mitophagy flux and inhibit ferroptosis. Targeting this axis offers a promising therapeutic strategy for mitigating pancreatic injury.</p><p><strong>Key points: </strong>Endogenous MFG-E8 is downregulated in acute pancreatitis (AP), disrupting MFG-E8/ABCE1 complex formation. MFG-E8/ABCE1 axis sustains Parkin-PINK1-mediated mitophagy to clear damaged mitochondria in pancreatic acinar cells. This axis suppresses ferroptosis by reducing Fe<sup>2+</sup> accumulation and lipid peroxidation, alleviating AP-related pancreatic injury.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70619"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146212279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CLINICAL AND TRANSLATIONAL MEDICINE 临床和转化医学
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70613
{"title":"CLINICAL AND TRANSLATIONAL MEDICINE","authors":"","doi":"10.1002/ctm2.70613","DOIUrl":"10.1002/ctm2.70613","url":null,"abstract":"","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HepAssis2® bioartificial liver system in treating acute-on-chronic liver failure patients: Findings from a phase 1 randomised, open-label clinical trial. HepAssis2®生物人工肝系统治疗急性慢性肝衰竭患者:来自1期随机、开放标签临床试验的发现
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70620
Zibiao Zhong, Wenjin Liang, Yong'an Dai, Chengbiao Xue, Dawei Zhou, Zhigao Xu, Ling Li, Li Pan, Chongxiang He, Xin Zhou, Wei Zhou, Lihua Zhou, Zhongzhong Liu, Zhiping Xia, Xiaoli Fan, Guizhu Peng, Yanfeng Wang, Ping Zhou, Shaojun Ye, Qifa Ye
{"title":"HepAssis2<sup>®</sup> bioartificial liver system in treating acute-on-chronic liver failure patients: Findings from a phase 1 randomised, open-label clinical trial.","authors":"Zibiao Zhong, Wenjin Liang, Yong'an Dai, Chengbiao Xue, Dawei Zhou, Zhigao Xu, Ling Li, Li Pan, Chongxiang He, Xin Zhou, Wei Zhou, Lihua Zhou, Zhongzhong Liu, Zhiping Xia, Xiaoli Fan, Guizhu Peng, Yanfeng Wang, Ping Zhou, Shaojun Ye, Qifa Ye","doi":"10.1002/ctm2.70620","DOIUrl":"https://doi.org/10.1002/ctm2.70620","url":null,"abstract":"","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70620"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146212298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clinical and Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1