首页 > 最新文献

Clinical and Translational Medicine最新文献

英文 中文
Bioswitches: Towards programmable, on-demand control of therapeutic proteins. 生物开关:朝着可编程、按需控制治疗蛋白的方向发展。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70612
Benedict Wolf, Jan Mathony, Dominik Niopek
{"title":"Bioswitches: Towards programmable, on-demand control of therapeutic proteins.","authors":"Benedict Wolf, Jan Mathony, Dominik Niopek","doi":"10.1002/ctm2.70612","DOIUrl":"10.1002/ctm2.70612","url":null,"abstract":"","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70612"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell and spatial transcriptomics uncover neoadjuvant chemotherapy-resistant malignant cells with inhibitory signalling on B cells in gastric cancer. 单细胞和空间转录组学揭示胃癌新辅助化疗耐药恶性细胞对B细胞的抑制信号。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70600
Pei-Yi Han, Xiang-Xi Ye, Xiao Yang, Lin Li, Xuan Zhao, Yan-Fei Shao, Jing Sun, Lu Zang, Ze-Guang Han, Min-Hua Zheng
{"title":"Single-cell and spatial transcriptomics uncover neoadjuvant chemotherapy-resistant malignant cells with inhibitory signalling on B cells in gastric cancer.","authors":"Pei-Yi Han, Xiang-Xi Ye, Xiao Yang, Lin Li, Xuan Zhao, Yan-Fei Shao, Jing Sun, Lu Zang, Ze-Guang Han, Min-Hua Zheng","doi":"10.1002/ctm2.70600","DOIUrl":"10.1002/ctm2.70600","url":null,"abstract":"","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70600"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T-cell exhaustion from a multiomics perspective: Differentiation mechanisms and regulatory networks in the journey from progenitor-Exhausted T cells to terminally exhausted T cells. 从多组学角度看T细胞耗竭:从祖耗竭T细胞到终耗竭T细胞的分化机制和调控网络。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70609
Tong Zhu, Xiaoyu Teng, Qinlian Jiao, Yidan Ren, Yunshan Wang, Maoxiao Feng

A central hurdle limiting the success of T-cell-based immunotherapies is the progressive dysfunction of T cells, known as exhaustion. Overcoming this exhausted state is therefore a pivotal objective in translational oncology and immunology. The advent of single-cell multiomics has fundamentally revised the once-prevailing view of exhaustion as a uniform endpoint. Instead, it is now recognised as a dynamic differentiation process comprising a spectrum of distinct cellular states. This spectrum is organised along a hierarchical axis, originating from progenitor-exhausted (Tpex) cells that retain proliferative potential and advancing towards terminally exhausted (Tex) populations with severely impaired effector functions. We undertake a comprehensive synthesis of multiomics data-spanning transcriptomic, epigenomic, metabolomic, proteomic and posttranslational modification (PTM)-proteomic layers-to decipher the interconnected regulatory programmes that dictate commitment along this exhaustion axis. From this integrated analysis, we derive a unified mechanistic framework that delineates the molecular drivers of Tpex cell fate determination and terminal exhaustion. Beyond its explanatory power for basic biology, this framework serves as a direct roadmap for therapeutic innovation, highlighting novel nodes for intervention aimed at reinvigorating the exhausted T-cell compartment. The practical application of these insights holds significant promise for enhancing the efficacy of established current immunotherapeutic platforms. KEY POINTS: This review is the first to integrate multi-omics evidence for constructing a dynamic regulatory map of T-cell exhaustion. It highlights the critical cross-omics synergistic mechanisms, such as metabolic reprogramming influencing epigenetic remodeling to drive cell fate. The multi-omics perspective presented directly informs novel therapeutic strategies.

限制基于T细胞的免疫疗法成功的一个主要障碍是T细胞的进行性功能障碍,即衰竭。因此,克服这种疲惫状态是转化肿瘤学和免疫学的关键目标。单细胞多组学的出现从根本上改变了曾经盛行的将疲劳作为统一终点的观点。相反,它现在被认为是一个动态的分化过程,包括一系列不同的细胞状态。该光谱沿等级轴组织,起源于保留增殖潜力的祖细胞枯竭(Tpex)细胞,并向效应功能严重受损的终衰竭(Tex)群体前进。我们对多组学数据进行了全面的综合,包括转录组学、表观基因组学、代谢组学、蛋白质组学和翻译后修饰(PTM)-蛋白质组学层-来破译相互关联的调控程序,这些程序决定了在这个耗尽轴上的承诺。从这一综合分析中,我们得出了一个统一的机制框架,描述了Tpex细胞命运决定和最终衰竭的分子驱动因素。除了其对基础生物学的解释力之外,该框架还可以作为治疗创新的直接路线图,突出了旨在重新激活耗尽的t细胞区室的干预的新节点。这些见解的实际应用为提高现有免疫治疗平台的疗效带来了巨大的希望。这篇综述是第一次整合多组学证据来构建t细胞耗竭的动态调控图谱。它强调了关键的跨组学协同机制,如代谢重编程影响表观遗传重塑,以驱动细胞命运。提出的多组学观点直接影响了新的治疗策略。
{"title":"T-cell exhaustion from a multiomics perspective: Differentiation mechanisms and regulatory networks in the journey from progenitor-Exhausted T cells to terminally exhausted T cells.","authors":"Tong Zhu, Xiaoyu Teng, Qinlian Jiao, Yidan Ren, Yunshan Wang, Maoxiao Feng","doi":"10.1002/ctm2.70609","DOIUrl":"10.1002/ctm2.70609","url":null,"abstract":"<p><p>A central hurdle limiting the success of T-cell-based immunotherapies is the progressive dysfunction of T cells, known as exhaustion. Overcoming this exhausted state is therefore a pivotal objective in translational oncology and immunology. The advent of single-cell multiomics has fundamentally revised the once-prevailing view of exhaustion as a uniform endpoint. Instead, it is now recognised as a dynamic differentiation process comprising a spectrum of distinct cellular states. This spectrum is organised along a hierarchical axis, originating from progenitor-exhausted (Tpex) cells that retain proliferative potential and advancing towards terminally exhausted (Tex) populations with severely impaired effector functions. We undertake a comprehensive synthesis of multiomics data-spanning transcriptomic, epigenomic, metabolomic, proteomic and posttranslational modification (PTM)-proteomic layers-to decipher the interconnected regulatory programmes that dictate commitment along this exhaustion axis. From this integrated analysis, we derive a unified mechanistic framework that delineates the molecular drivers of Tpex cell fate determination and terminal exhaustion. Beyond its explanatory power for basic biology, this framework serves as a direct roadmap for therapeutic innovation, highlighting novel nodes for intervention aimed at reinvigorating the exhausted T-cell compartment. The practical application of these insights holds significant promise for enhancing the efficacy of established current immunotherapeutic platforms. KEY POINTS: This review is the first to integrate multi-omics evidence for constructing a dynamic regulatory map of T-cell exhaustion. It highlights the critical cross-omics synergistic mechanisms, such as metabolic reprogramming influencing epigenetic remodeling to drive cell fate. The multi-omics perspective presented directly informs novel therapeutic strategies.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70609"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNTTIP1 drives leukaemogenesis through MiDAC-mediated epigenetic silencing of BMF. DNTTIP1通过midac介导的BMF表观遗传沉默驱动白血病发生。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70603
Ruolin Xiu, Yuzhu Ma, Yueying Gao, Yao Chen, Xinyu Li, Yue Wu, Meiling Sun, Qizhao Li, Yanhong Zhao, Shuqian Xu, Shengjin Fan, Yongsheng Li, Huitao Fan

Background: Acute leukaemia is a highly aggressive malignancy with significant unmet therapeutic needs, partly due to epigenetic dysregulation. Here, we uncover deoxynucleotidyl transferase terminal-interacting protein 1 (DNTTIP1) within the mitotic deacetylase complex (MiDAC) as a previously unrecognised epigenetic regulator crucial for leukaemic cell survival and elucidate its mechanistic and translational significance.

Methods: Using cellular, biochemical, and genetic perturbations, coupled with validation in multiple in vivo leukaemia mouse models, we characterised DNTTIP1's role in acute leukaemia. An integrated multi-omics analysis incorporating RNA-seq, cleavage under targets and tagmentation (CUT&Tag) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) revealed that DNTTIP1 recruits histone deacetylase 1/2 (HDAC1/2) to silence BCL2-modifying factor (BMF) and drive leukaemogenesis, validated by chromatin immunoprecipitation quantitative PCR (ChIP-qPCR). Drug synergy assays identify poly(ADP-ribose) polymerase (PARP)/HDAC/BCL2 inhibitor combinatorial efficacy.

Results: DNTTIP1 depletion impaired MiDAC recruitment in acute leukaemia, leading to histone H3 lysine 27 (H3K27) hyperacetylation at the BMF promoter and reactivating this effector. Upregulated BMF disrupted BCL2-mediated survival, triggering coordinated autophagy and apoptosis. Combined HDAC1/2 and BCL2 inhibition exerts synergistic anti-leukaemic effects, a therapeutic strategy currently under clinical evaluation. Further, PARP inhibition profoundly enhanced this synergy by impairing DNA damage repair, unveiling a novel triple-combination strategy.

Conclusions: Our work defines the DNTTIP1‒HDAC1/2‒BMF axis as a pivotal epigenetic vulnerability in acute leukaemia and provides preclinical rationale for targeting this axis. These findings offer a validated biological framework for advancing this targeted combination therapy into clinical trials.

Key points: DNTTIP1 is overexpressed in acute leukaemia and associated with poor prognosis. DNTTIP1 acts as a scaffold for the MiDAC complex, recruiting HDAC1/2 to silence BMF and inhibit leukaemic cell death. Pharmacological disruption of the DNTTIP1-HDAC1/2-BMF axis impairs leukaemogenesis.

背景:急性白血病是一种高度侵袭性的恶性肿瘤,具有显著的未满足的治疗需求,部分原因是表观遗传失调。在这里,我们发现有丝分裂去乙酰化酶复合体(MiDAC)中的脱氧核苷酸转移酶末端相互作用蛋白1 (DNTTIP1)是一种以前未被识别的表观遗传调节剂,对白血病细胞存活至关重要,并阐明了其机制和翻译意义。方法:利用细胞、生化和遗传扰动,结合多种体内白血病小鼠模型的验证,我们表征了DNTTIP1在急性白血病中的作用。结合RNA-seq、靶下切割和标记(CUT&Tag)和转座酶可及染色质测序(ATAC-seq)的综合多组学分析显示,DNTTIP1招募组蛋白去乙酰化酶1/2 (HDAC1/2)沉默bcl2修饰因子(BMF)并驱动白血病发生,并通过染色质免疫沉淀定量PCR (ChIP-qPCR)验证。药物协同作用试验鉴定聚(adp -核糖)聚合酶(PARP)/HDAC/BCL2抑制剂联合疗效。结果:DNTTIP1缺失破坏了急性白血病中MiDAC的募集,导致BMF启动子上的组蛋白H3赖氨酸27 (H3K27)超乙酰化,并重新激活该效应物。上调的BMF破坏了bcl2介导的存活,触发协调的自噬和凋亡。联合抑制HDAC1/2和BCL2具有协同抗白血病作用,目前正在临床评估的治疗策略。此外,PARP抑制通过损害DNA损伤修复深刻地增强了这种协同作用,揭示了一种新的三重组合策略。结论:我们的研究将DNTTIP1-HDAC1/2-BMF轴定义为急性白血病的关键表观遗传易感性,并为靶向该轴提供了临床前依据。这些发现为推进这种靶向联合治疗进入临床试验提供了一个有效的生物学框架。重点:DNTTIP1在急性白血病中过表达,与预后不良相关。DNTTIP1作为MiDAC复合体的支架,募集HDAC1/2来沉默BMF并抑制白血病细胞死亡。DNTTIP1-HDAC1/2-BMF轴的药理破坏可损害白血病的发生。
{"title":"DNTTIP1 drives leukaemogenesis through MiDAC-mediated epigenetic silencing of BMF.","authors":"Ruolin Xiu, Yuzhu Ma, Yueying Gao, Yao Chen, Xinyu Li, Yue Wu, Meiling Sun, Qizhao Li, Yanhong Zhao, Shuqian Xu, Shengjin Fan, Yongsheng Li, Huitao Fan","doi":"10.1002/ctm2.70603","DOIUrl":"10.1002/ctm2.70603","url":null,"abstract":"<p><strong>Background: </strong>Acute leukaemia is a highly aggressive malignancy with significant unmet therapeutic needs, partly due to epigenetic dysregulation. Here, we uncover deoxynucleotidyl transferase terminal-interacting protein 1 (DNTTIP1) within the mitotic deacetylase complex (MiDAC) as a previously unrecognised epigenetic regulator crucial for leukaemic cell survival and elucidate its mechanistic and translational significance.</p><p><strong>Methods: </strong>Using cellular, biochemical, and genetic perturbations, coupled with validation in multiple in vivo leukaemia mouse models, we characterised DNTTIP1's role in acute leukaemia. An integrated multi-omics analysis incorporating RNA-seq, cleavage under targets and tagmentation (CUT&Tag) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) revealed that DNTTIP1 recruits histone deacetylase 1/2 (HDAC1/2) to silence BCL2-modifying factor (BMF) and drive leukaemogenesis, validated by chromatin immunoprecipitation quantitative PCR (ChIP-qPCR). Drug synergy assays identify poly(ADP-ribose) polymerase (PARP)/HDAC/BCL2 inhibitor combinatorial efficacy.</p><p><strong>Results: </strong>DNTTIP1 depletion impaired MiDAC recruitment in acute leukaemia, leading to histone H3 lysine 27 (H3K27) hyperacetylation at the BMF promoter and reactivating this effector. Upregulated BMF disrupted BCL2-mediated survival, triggering coordinated autophagy and apoptosis. Combined HDAC1/2 and BCL2 inhibition exerts synergistic anti-leukaemic effects, a therapeutic strategy currently under clinical evaluation. Further, PARP inhibition profoundly enhanced this synergy by impairing DNA damage repair, unveiling a novel triple-combination strategy.</p><p><strong>Conclusions: </strong>Our work defines the DNTTIP1‒HDAC1/2‒BMF axis as a pivotal epigenetic vulnerability in acute leukaemia and provides preclinical rationale for targeting this axis. These findings offer a validated biological framework for advancing this targeted combination therapy into clinical trials.</p><p><strong>Key points: </strong>DNTTIP1 is overexpressed in acute leukaemia and associated with poor prognosis. DNTTIP1 acts as a scaffold for the MiDAC complex, recruiting HDAC1/2 to silence BMF and inhibit leukaemic cell death. Pharmacological disruption of the DNTTIP1-HDAC1/2-BMF axis impairs leukaemogenesis.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70603"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12848531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TIMP2 promotes AKI-CKD transition by inducing tubular maladaptive repair and cell senescence via targeting Wnt/β-catenin signalling. TIMP2通过靶向Wnt/β-catenin信号传导,诱导小管适应性不良修复和细胞衰老,从而促进AKI-CKD转变。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70605
Dongxue Xu, Haichuan Yu, Jingjing Pang, Xiaoyu Zhang, Jun Jiang, Yiming Li, Zhiyong Peng

Background: Acute kidney injury (AKI) frequently progresses to chronic kidney disease (CKD), but the underlying mechanisms of this transition remain unclear. While TIMP2 is a known biomarker for AKI, its direct pathogenic role in the AKI-CKD transition has not been fully elucidated.

Methods: TIMP2 expression was evaluated in multiple murine models, including unilateral ischemia-reperfusion injury (UIR), unilateral ureteral obstruction (UUO), and cisplatin-induced nephropathy. To investigate its function, we employed a tubule-specific, inducible TIMP2 knockout mouse model (Ksp-CreERT2; TIMP2fl/fl) and a tubular overexpression model.

Results: TIMP2 was significantly upregulated during the AKI-CKD transition across all tested models. Tubule-specific deletion of TIMP2 markedly attenuated renal fibrosis, suppressed senescence-associated secretory phenotypes (SASP), and promoted tubular repair. Conversely, TIMP2 overexpression exacerbated cellular senescence and fibrotic remodeling. Mechanistically, TIMP2 was found to bind to the Wnt co-receptor LRP6, promoting its phosphorylation and subsequent β-catenin signaling activation, a process independent of its canonical matrix metalloproteinase (MMP) inhibitory function.

Conclusions: TIMP2 is a central mediator of maladaptive repair that links cell senescence and fibrotic reprogramming via the LRP6/β-catenin pathway. These findings suggest that TIMP2 serves not only as a biomarker but also as a potential therapeutic target for mitigating the AKI-CKD transition.

Highlights: TIMP2 is upregulated in injured renal tubules and promotes maladaptive repair and cell senescence. Genetic deletion of TIMP2 in tubular epithelial cells attenuates renal fibrosis and improves mitochondrial function. TIMP2 activates Wnt/β-catenin signalling by binding to LRP6 via an MMP-independent mechanism.

背景:急性肾损伤(AKI)经常进展为慢性肾脏疾病(CKD),但这种转变的潜在机制尚不清楚。虽然TIMP2是已知的AKI生物标志物,但其在AKI- ckd转变中的直接致病作用尚未完全阐明。方法:在单侧缺血再灌注损伤(UIR)、单侧输尿管梗阻(UUO)、顺铂肾病等多种小鼠模型中检测TIMP2的表达。为了研究其功能,我们采用了小管特异性、可诱导的TIMP2敲除小鼠模型(Ksp-CreERT2; TIMP2fl/fl)和小管过表达模型。结果:在所有被测试的模型中,TIMP2在AKI-CKD过渡期间显着上调。TIMP2小管特异性缺失可显著减轻肾纤维化,抑制衰老相关分泌表型(SASP),并促进小管修复。相反,TIMP2过表达加剧了细胞衰老和纤维化重塑。在机制上,TIMP2被发现与Wnt共受体LRP6结合,促进其磷酸化和随后的β-catenin信号激活,这一过程独立于其典型的基质金属蛋白酶(MMP)抑制功能。结论:TIMP2是通过LRP6/β-catenin通路连接细胞衰老和纤维化重编程的适应性不良修复的中心介质。这些发现表明TIMP2不仅可以作为生物标志物,还可以作为缓解AKI-CKD转变的潜在治疗靶点。重点:TIMP2在受损肾小管中上调,促进不适应修复和细胞衰老。小管上皮细胞中TIMP2基因缺失可减轻肾纤维化并改善线粒体功能。TIMP2通过不依赖于mmp的机制与LRP6结合,激活Wnt/β-catenin信号。
{"title":"TIMP2 promotes AKI-CKD transition by inducing tubular maladaptive repair and cell senescence via targeting Wnt/β-catenin signalling.","authors":"Dongxue Xu, Haichuan Yu, Jingjing Pang, Xiaoyu Zhang, Jun Jiang, Yiming Li, Zhiyong Peng","doi":"10.1002/ctm2.70605","DOIUrl":"10.1002/ctm2.70605","url":null,"abstract":"<p><strong>Background: </strong>Acute kidney injury (AKI) frequently progresses to chronic kidney disease (CKD), but the underlying mechanisms of this transition remain unclear. While TIMP2 is a known biomarker for AKI, its direct pathogenic role in the AKI-CKD transition has not been fully elucidated.</p><p><strong>Methods: </strong>TIMP2 expression was evaluated in multiple murine models, including unilateral ischemia-reperfusion injury (UIR), unilateral ureteral obstruction (UUO), and cisplatin-induced nephropathy. To investigate its function, we employed a tubule-specific, inducible TIMP2 knockout mouse model (Ksp-CreERT2; TIMP2fl/fl) and a tubular overexpression model.</p><p><strong>Results: </strong>TIMP2 was significantly upregulated during the AKI-CKD transition across all tested models. Tubule-specific deletion of TIMP2 markedly attenuated renal fibrosis, suppressed senescence-associated secretory phenotypes (SASP), and promoted tubular repair. Conversely, TIMP2 overexpression exacerbated cellular senescence and fibrotic remodeling. Mechanistically, TIMP2 was found to bind to the Wnt co-receptor LRP6, promoting its phosphorylation and subsequent β-catenin signaling activation, a process independent of its canonical matrix metalloproteinase (MMP) inhibitory function.</p><p><strong>Conclusions: </strong>TIMP2 is a central mediator of maladaptive repair that links cell senescence and fibrotic reprogramming via the LRP6/β-catenin pathway. These findings suggest that TIMP2 serves not only as a biomarker but also as a potential therapeutic target for mitigating the AKI-CKD transition.</p><p><strong>Highlights: </strong>TIMP2 is upregulated in injured renal tubules and promotes maladaptive repair and cell senescence. Genetic deletion of TIMP2 in tubular epithelial cells attenuates renal fibrosis and improves mitochondrial function. TIMP2 activates Wnt/β-catenin signalling by binding to LRP6 via an MMP-independent mechanism.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70605"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12852052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond bacterial defences: the role of lysozyme in cancer. 超越细菌防御:溶菌酶在癌症中的作用。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-02-01 DOI: 10.1002/ctm2.70575
Lei Wang, Qian Dong, Fuchu He, Zhiwen Gu, Aihua Sun

Lysozyme (LYZ) is a naturally occurring antimicrobial protein first discovered in the 1920s. As a key component of innate immunity, its antimicrobial effects and immunomodulatory functions in bacterial defence have been extensively characterized. However, emerging evidence since the 1950s has revealed its complex involvement in tumour progression, with conflicting reports of both tumour-suppressive and tumour-promoting effects across different cancer types. A critical knowledge gap remains in understanding the mechanistic basis for this duality, exacerbated by reliance on single-omics approaches and small cohorts in previous studies. This review focuses on mammalian C-type LYZ (referred to as LYZ hereafter unless specified) and integrates multi-omics data (transcriptomics and proteomics) with clinical and mechanistic research to systematically dissect its dual roles in cancer. By analysing cross-cancer heterogeneity through multi-omics perspectives, we emphasize its dual promise as both a prognostic biomarker and an actionable therapeutic target, aiming to provide new insights for precision oncology. KEY POINTS: LYZ is a multi-functional secreted factor that encompasses both antibacterial and immunomodulatory functions. Emerging evidence highlights its complex role in tumour progression by directly influencing tumour cells and modulating the immune microenvironment. LYZ is a promising potential biomarker and therapeutic target in some cancers.

溶菌酶(LYZ)是一种天然存在的抗菌蛋白,于20世纪20年代首次被发现。作为先天免疫的重要组成部分,其抗菌作用和在细菌防御中的免疫调节功能已被广泛研究。然而,自20世纪50年代以来,新出现的证据揭示了它与肿瘤进展的复杂关系,在不同的癌症类型中,肿瘤抑制和肿瘤促进作用的报道相互矛盾。在理解这种二元性的机制基础上,一个关键的知识差距仍然存在,由于依赖于单组学方法和以前的研究中的小队列而加剧。本文以哺乳动物c型LYZ(以下简称LYZ)为研究对象,结合多组学数据(转录组学和蛋白质组学)与临床和机制研究,系统剖析其在癌症中的双重作用。通过从多组学角度分析跨肿瘤异质性,我们强调其作为预后生物标志物和可操作治疗靶点的双重前景,旨在为精准肿瘤学提供新的见解。重点:LYZ是一种兼具抗菌和免疫调节功能的多功能分泌因子。新出现的证据强调了它通过直接影响肿瘤细胞和调节免疫微环境在肿瘤进展中的复杂作用。LYZ是一种很有潜力的生物标志物和治疗靶点。
{"title":"Beyond bacterial defences: the role of lysozyme in cancer.","authors":"Lei Wang, Qian Dong, Fuchu He, Zhiwen Gu, Aihua Sun","doi":"10.1002/ctm2.70575","DOIUrl":"10.1002/ctm2.70575","url":null,"abstract":"<p><p>Lysozyme (LYZ) is a naturally occurring antimicrobial protein first discovered in the 1920s. As a key component of innate immunity, its antimicrobial effects and immunomodulatory functions in bacterial defence have been extensively characterized. However, emerging evidence since the 1950s has revealed its complex involvement in tumour progression, with conflicting reports of both tumour-suppressive and tumour-promoting effects across different cancer types. A critical knowledge gap remains in understanding the mechanistic basis for this duality, exacerbated by reliance on single-omics approaches and small cohorts in previous studies. This review focuses on mammalian C-type LYZ (referred to as LYZ hereafter unless specified) and integrates multi-omics data (transcriptomics and proteomics) with clinical and mechanistic research to systematically dissect its dual roles in cancer. By analysing cross-cancer heterogeneity through multi-omics perspectives, we emphasize its dual promise as both a prognostic biomarker and an actionable therapeutic target, aiming to provide new insights for precision oncology. KEY POINTS: LYZ is a multi-functional secreted factor that encompasses both antibacterial and immunomodulatory functions. Emerging evidence highlights its complex role in tumour progression by directly influencing tumour cells and modulating the immune microenvironment. LYZ is a promising potential biomarker and therapeutic target in some cancers.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 2","pages":"e70575"},"PeriodicalIF":6.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12862186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum medicine: A quantum–mechanical framework for redox biology, disease and precision medicine 量子医学:氧化还原生物学、疾病和精准医学的量子力学框架。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-01-19 DOI: 10.1002/ctm2.70598
Ji-Yong Sung, Jae-Ho Cheong
<div> <section> <h3> Background</h3> <p>Key biological processes underlying health and disease-including electron transfer, redox regulation, and radical-mediated signaling-are fundamentally governed by quantum-mechanical principles. These processes are central to mitochondrial function, metabolism, and cellular signaling, yet their biomedical implications have remained difficult to address using classical computational approaches.</p> </section> <section> <h3> Rationale</h3> <p>Recent advances in quantum computing, quantum sensing, and quantum machine learning enable direct simulation and measurement of quantum phenomena in biologically relevant systems. Hybrid quantum-classical algorithms, such as the Variational Quantum Eigensolver and Quantum Phase Estimation, now provide first-principles access to redox potentials, electronic couplings, and spin-dependent reactions that are directly linked to disease mechanisms. These developments establish the foundation for quantum biomedicine as a translational framework bridging molecular physics and clinical medicine.</p> </section> <section> <h3> Content</h3> <p>This review synthesizes current progress in the application of quantum technologies to biomedicine, emphasizing translational relevance. We discuss quantum-informed modeling of cancer metabolism and redox rewiring, protein misfolding in neurodegenerative diseases, immune and inflammatory signaling, infectious disease mechanisms, and drug discovery. We further propose a Quantum-Experimental-Clinical (QEC) pipeline that integrates quantum simulations with experimental validation and multi-omics clinical data, enabling mechanistic interpretation of disease phenotypes and identification of redox- and spin-sensitive therapeutic targets.</p> </section> <section> <h3> Conclusion</h3> <p>Quantum biomedicine introduces a new mechanistic layer that links electronic-scale processes to clinical phenotypes. While current implementations are constrained by NISQ-era hardware, rapid advances in quantum algorithms and sensing technologies position quantum approaches as emerging tools in precision and translational medicine. Strategic integration of quantum methods with experimental and clinical workflows may accelerate biomarker discovery and therapeutic development.</p> </section> <section> <h3> Key points</h3> <div> <ul> <li>Quantum biomedicine redefines life as a dynamic equilibrium sustained by quan
背景:健康和疾病背后的关键生物过程——包括电子转移、氧化还原调节和自由基介导的信号传导——从根本上是由量子力学原理控制的。这些过程是线粒体功能、代谢和细胞信号传导的核心,但它们的生物医学意义仍然难以用经典的计算方法来解决。理论基础:量子计算、量子传感和量子机器学习的最新进展使生物相关系统中量子现象的直接模拟和测量成为可能。混合量子经典算法,如变分量子特征求解器和量子相位估计,现在提供了与疾病机制直接相关的氧化还原电位、电子耦合和自旋依赖反应的第一性原理。这些发展奠定了量子生物医学作为分子物理学和临床医学的转化框架的基础。内容:本文综述了量子技术在生物医学领域应用的最新进展,强调了其转化意义。我们讨论了癌症代谢和氧化还原重新布线的量子信息建模,神经退行性疾病中的蛋白质错误折叠,免疫和炎症信号,传染病机制和药物发现。我们进一步提出了一个量子-实验-临床(QEC)管道,将量子模拟与实验验证和多组学临床数据相结合,实现疾病表型的机制解释和氧化还原和自旋敏感治疗靶点的鉴定。结论:量子生物医学引入了一个新的机制层,将电子尺度过程与临床表型联系起来。虽然目前的实现受到nisq时代硬件的限制,但量子算法和传感技术的快速发展使量子方法成为精密医学和转化医学的新兴工具。量子方法与实验和临床工作流程的战略性整合可能会加速生物标志物的发现和治疗开发。量子生物医学将生命重新定义为一种由量子相干、隧穿和氧化还原共振维持的动态平衡。混合量子经典算法,如VQE和QPE,使氧化还原和自旋依赖反应的第一性原理建模具有接近实验的精度。nisq时代的硬件支持电子隧穿和基对动力学的概念验证模拟,将计算与可测量的生物物理学联系起来。量子模拟与光谱学和低温电镜的结合建立了一条连接理论、实验和医学的量子-实验-临床(QEC)管道。伦理、教育和治理框架对于公平、透明和可持续地实施量子卫生技术至关重要。
{"title":"Quantum medicine: A quantum–mechanical framework for redox biology, disease and precision medicine","authors":"Ji-Yong Sung,&nbsp;Jae-Ho Cheong","doi":"10.1002/ctm2.70598","DOIUrl":"10.1002/ctm2.70598","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Key biological processes underlying health and disease-including electron transfer, redox regulation, and radical-mediated signaling-are fundamentally governed by quantum-mechanical principles. These processes are central to mitochondrial function, metabolism, and cellular signaling, yet their biomedical implications have remained difficult to address using classical computational approaches.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Rationale&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Recent advances in quantum computing, quantum sensing, and quantum machine learning enable direct simulation and measurement of quantum phenomena in biologically relevant systems. Hybrid quantum-classical algorithms, such as the Variational Quantum Eigensolver and Quantum Phase Estimation, now provide first-principles access to redox potentials, electronic couplings, and spin-dependent reactions that are directly linked to disease mechanisms. These developments establish the foundation for quantum biomedicine as a translational framework bridging molecular physics and clinical medicine.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Content&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;This review synthesizes current progress in the application of quantum technologies to biomedicine, emphasizing translational relevance. We discuss quantum-informed modeling of cancer metabolism and redox rewiring, protein misfolding in neurodegenerative diseases, immune and inflammatory signaling, infectious disease mechanisms, and drug discovery. We further propose a Quantum-Experimental-Clinical (QEC) pipeline that integrates quantum simulations with experimental validation and multi-omics clinical data, enabling mechanistic interpretation of disease phenotypes and identification of redox- and spin-sensitive therapeutic targets.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusion&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Quantum biomedicine introduces a new mechanistic layer that links electronic-scale processes to clinical phenotypes. While current implementations are constrained by NISQ-era hardware, rapid advances in quantum algorithms and sensing technologies position quantum approaches as emerging tools in precision and translational medicine. Strategic integration of quantum methods with experimental and clinical workflows may accelerate biomarker discovery and therapeutic development.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Key points&lt;/h3&gt;\u0000 \u0000 &lt;div&gt;\u0000 &lt;ul&gt;\u0000 \u0000 &lt;li&gt;Quantum biomedicine redefines life as a dynamic equilibrium sustained by quan","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12816978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146003116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma cell-free DNA markers predict occult metastases in patients with resectable pancreatic ductal adenocarcinoma 血浆无细胞DNA标记预测可切除胰腺导管腺癌患者的隐匿性转移。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-01-19 DOI: 10.1002/ctm2.70573
Jacob E. Till, Ofer Gal-Rosenberg, Sophia G. Giliberto, Nicholas J. Seewald, Dominique G. Ballinger, Heather E. Samberg, Melinda R. Yin, Qiao-Li Wang, Samuele Cannas, Kristine N. Kim, Kyle Tien, Mohammed Sawi, Vidya Madineedi, C. Sloane Furniss, Vasilena Gocheva, Jonathan Nowak, Lauren K. Brais, Chen Yuan, Michael H. Rosenthal, Robert Roses, Ronald DeMatteo, Major Kenneth Lee, Charles Vollmer, Hersh Sagreiya, Mark H. O'Hara, Ruth Shemer, Brian Wolpin, Yuval Dor, Erica L. Carpenter
<p>Dear Editor,</p><p>Detecting pancreatic ductal adenocarcinoma (PDAC) early can yield dramatic improvements in overall survival (OS). Curative intent resection is typically indicated when the disease is localised to the pancreas. However, standard of care imaging lacks sensitivity to detect smaller occult metastases, often resulting in patients undergoing an unnecessary and morbid surgery, followed by early recurrence.<span><sup>1, 2</sup></span> While we have previously demonstrated detection of early-stage PDAC using exocrine pancreas methylation markers in cfDNA,<span><sup>3</sup></span> here we show that methylation markers, when combined with circulating tumour <i>KRAS</i> mutation detection and imaging measurements, can predict the presence of occult metastatic disease before curative intent surgery.</p><p>A convenience sample of patients was enrolled with written informed consent at the University of Pennsylvania Hospital (Philadelphia, PA), under IRB Protocol #822028, NCT02471170. Patients had previously untreated PDAC or were seen in the endoscopy clinic for routine screening (healthy controls) or non-cancer disease evaluation and monitoring (disease controls). Disease control patients’ diagnoses included pancreatic cyst, pancreatitis, intraductal papillary mucinous neoplasm, and other non-cancerous pancreatic conditions. Patients with PDAC were excluded for 1) insufficient imaging surveillance to identify occult metastases within 120 days of surgery or 2) receiving therapy for a second primary tumour ≤5 years of PDAC diagnosis. Clinical and demographic data were abstracted from the electronic medical record, including the presence of metastases within 120 days of surgery. Pathologic staging (pT and pN) was obtained for patients who completed surgery; otherwise, clinical staging was used. CA19-9 values for 69 of 75 naive resectable PDAC patients were abstracted from the medical record for a timepoint within 40 days of surgery. For 6 patients, an aliquot of previously frozen plasma was provided to the clinical laboratory at the University of Pennsylvania and analysed using the clinical protocol. See Supplemental Digital Content for elaboration of study methods. This study was performed in accordance with STARD 2015 guidelines.</p><p>We analysed plasma from a cohort of 176 patients, including PDAC and non-PDAC controls (Figure S1 and Tables S1 and S2), to explore whether cfDNA methylation markers (Figure S2 and Table S7), independent of tumour genomic profiling, distinguished PDAC patients with and without occult metastases. Building on the previous pancreas tissue methylome analysis,<span><sup>3</sup></span> we identified methylated or unmethylated loci in liver and lung tissue, the two most common sites of distant metastases for PDAC. We then adapted our methods to detect these loci in plasma cfDNA. For 75 patients with PDAC who had surgery without receiving neoadjuvant therapy (“naïve resectable”), the cfDNA concentration from exocrin
亲爱的编辑,早期发现胰腺导管腺癌(PDAC)可以显著提高总生存率(OS)。当疾病局限于胰腺时,通常需要进行治疗性切除。然而,标准的护理成像缺乏检测较小的隐匿性转移的敏感性,往往导致患者接受不必要的和病态的手术,随后早期复发。1,2虽然我们之前已经证明了使用外分泌胰腺甲基化标记在cfDNA中检测早期PDAC,3在这里,我们表明甲基化标记,当与循环肿瘤KRAS突变检测和成像测量相结合时,可以在治疗目的手术前预测隐匿转移性疾病的存在。根据IRB协议#822028,NCT02471170,在宾夕法尼亚大学医院(Philadelphia, PA)获得书面知情同意,招募了一组方便的患者样本。患者先前未经治疗的PDAC或在内窥镜检查诊所进行常规筛查(健康对照组)或非癌症疾病评估和监测(疾病对照组)。疾病对照患者的诊断包括胰腺囊肿、胰腺炎、导管内乳头状粘液瘤和其他非癌性胰腺疾病。PDAC患者被排除的原因是:1)在手术120天内没有足够的影像学监测来识别隐匿性转移,或2)在PDAC诊断≤5年的情况下接受第二原发肿瘤治疗。从电子病历中提取临床和人口统计数据,包括手术后120天内转移的存在。完成手术的患者进行病理分期(pT和pN);否则采用临床分期。75例初发可切除PDAC患者中69例的CA19-9值在手术40天内的某个时间点从医疗记录中提取。对于6名患者,将先前冷冻的血浆等量提供给宾夕法尼亚大学的临床实验室,并使用临床方案进行分析。关于学习方法的详细说明,请参见补充数字内容。本研究按照STARD 2015指南进行。我们分析了176名患者的血浆,包括PDAC和非PDAC对照组(图S1和表S1和S2),以探索cfDNA甲基化标记(图S2和表S7)是否独立于肿瘤基因组谱,可以区分有和没有隐匿转移的PDAC患者。在先前胰腺组织甲基组分析的基础上,我们在肝脏和肺组织中发现了甲基化或未甲基化的位点,这是PDAC远处转移的两个最常见的部位。然后,我们调整了我们的方法来检测血浆cfDNA中的这些位点。对于75例接受手术但未接受新辅助治疗的PDAC患者(“naïve可切除”),来自外分泌胰腺、肝细胞和肺上皮的cfDNA浓度(以基因组当量或每ml拷贝数表达)显著高于疾病(见方法)或健康对照(图1A)。与naïve可切除患者相比,24例影像学证实的转移性疾病患者的胰腺和肺部浓度明显高于可切除患者(表S3),但肝脏cfDNA无显著差异(图1A)。在75例naïve可切除PDAC患者中,25例有隐匿性转移,其中6例术中发现,19例术后120天内影像学发现。有隐匿性转移的患者的总生存期(OS)明显短于无隐匿性转移的患者(图S3A)。肝脏是首次发现隐匿性转移的最常见部位(表S4和S5)。有隐匿性转移的患者胰腺和肺部cfDNA明显高于无隐匿性转移的患者(p = 0.0007和p = 0.0090)。然而,两组的肝细胞拷贝数无显著差异(p = 0.6210,图1B)。胰腺和肺拷贝在预测隐匿性转移和无隐匿性转移方面具有显著的auc(分别为p = 0.0009和p = 0.0096),但肝细胞拷贝没有(p = 0.6170,图1C;相关截止值和统计数据见图S4A)。所有75例naïve可切除患者的转移时间(TTM) Kaplan-Meier分析显示,胰腺拷贝数高于≤中位数与中位数TTM显著缩短相关。肺cfDNA得到了类似的结果,而肝细胞cfDNA没有发现显著差异(图1D; Kaplan-Meier分析使用auc衍生的截止点,如图S4B所示)。胰腺和肺部cfDNA均高于中位数的患者的中位TTM最短(图1E),与任何一种或两种标记均高于中位数的患者相比,OS的结果相似(图S3B)。当在多变量分析中加入患者特征时,cfDNA甲基化标记仍然与TTM和OS显著相关(表S6)。 接下来,我们评估了两个额外的血液标志物,术前循环肿瘤dna KRAS突变检测(ctKRAS)和CA19-9,以及术前影像学测量的原发性肿瘤体积。在naïve可切除的患者中,有隐匿性转移的患者检测到ctKRAS的比例显著高于无隐匿性转移的患者(p &lt; 0.0001);然而,CA19-9无差异(p = 0.4161,图2A)。伴有隐匿性转移的naïve可切除患者的原发肿瘤体积高于无转移患者(p = 0.0260,图2A)。CA19-9和肿瘤体积的ROC分析结果与此一致(图2B), ctKRAS、CA19-9和肿瘤体积的TTM和OS的Kaplan-Meier分析结果与此一致(图2C和图S5)。考虑到没有一个连续变量与cfDNA标记显著相关(图2D),我们评估了组合标记是否可以提高预测。最小绝对收缩和选择算子模型选择胰腺和肺拷贝数/mL、ctKRAS和肿瘤体积来预测隐匿转移(图2E,F)。作为探索性分析,我们分析了27例接受新辅助治疗的患者的cfDNA标记;然而,这些标志物并不能预测隐匿性转移(图S6)。血浆cfDNA甲基化标记可以提高隐匿性PDAC转移患者的识别,为患者分层提供潜在的可操作的生物标志物,独立于组织分子分析。这些结果与最近的发现一致,即术前ctDNA水平改善了早期非小细胞肺癌患者的疾病分层,并表明隐匿性转移的肿瘤与原发或转移部位的细胞更新率较高有关。需要做更多的工作来检验这一概念是否适用于PDAC以外的肿瘤,并在更多的患者群体中重现这一发现,以促进临床实施。和Y.D.构思了研究计划。O.G.-R。, d.b., s.c., m.y., k.t., m.s., s.g., h.e.s., k.n.k., m.h.o., j.e.t., c.v., R.S.和H.S.通过实验或医学图表审查生成数据。E.L.C, y.d., M.Y.和R.S.负责这个项目。e.l.c.、R.S.和N.J.S.主导了初步数据分析。E.L.C.起草了初稿。s.g., r.s., e.l.c., j.e.t., o.g.r。英国教育和社会服务部制作了图表。S.C、S.G、H.E.S.和o.g.r负责数据整理和附加分析。J.E.T.和E.L.C.完成了最后的审查。本研究由James and Marlene Scully液体活检创新基金和Penn胰腺癌研究中心Netter基金向Erica L. Carpenter提供支持。黑尔家庭胰腺癌研究中心、Lustgarten基金会专用实验室项目和美国国立卫生研究院国家癌症研究所CA210171奖支持了Brian Wolpin。来自欧盟(PANCAID, 101096309)、Soyka胰腺癌基金和以色列创新局的资助支持了Yuval Dor。根据宾夕法尼亚大学机构审查委员会822028号协议,所有受试者根据赫尔辛基宣言获得书面知情同意。本研究产生和分析的数据包括在表S1中。
{"title":"Plasma cell-free DNA markers predict occult metastases in patients with resectable pancreatic ductal adenocarcinoma","authors":"Jacob E. Till,&nbsp;Ofer Gal-Rosenberg,&nbsp;Sophia G. Giliberto,&nbsp;Nicholas J. Seewald,&nbsp;Dominique G. Ballinger,&nbsp;Heather E. Samberg,&nbsp;Melinda R. Yin,&nbsp;Qiao-Li Wang,&nbsp;Samuele Cannas,&nbsp;Kristine N. Kim,&nbsp;Kyle Tien,&nbsp;Mohammed Sawi,&nbsp;Vidya Madineedi,&nbsp;C. Sloane Furniss,&nbsp;Vasilena Gocheva,&nbsp;Jonathan Nowak,&nbsp;Lauren K. Brais,&nbsp;Chen Yuan,&nbsp;Michael H. Rosenthal,&nbsp;Robert Roses,&nbsp;Ronald DeMatteo,&nbsp;Major Kenneth Lee,&nbsp;Charles Vollmer,&nbsp;Hersh Sagreiya,&nbsp;Mark H. O'Hara,&nbsp;Ruth Shemer,&nbsp;Brian Wolpin,&nbsp;Yuval Dor,&nbsp;Erica L. Carpenter","doi":"10.1002/ctm2.70573","DOIUrl":"10.1002/ctm2.70573","url":null,"abstract":"&lt;p&gt;Dear Editor,&lt;/p&gt;&lt;p&gt;Detecting pancreatic ductal adenocarcinoma (PDAC) early can yield dramatic improvements in overall survival (OS). Curative intent resection is typically indicated when the disease is localised to the pancreas. However, standard of care imaging lacks sensitivity to detect smaller occult metastases, often resulting in patients undergoing an unnecessary and morbid surgery, followed by early recurrence.&lt;span&gt;&lt;sup&gt;1, 2&lt;/sup&gt;&lt;/span&gt; While we have previously demonstrated detection of early-stage PDAC using exocrine pancreas methylation markers in cfDNA,&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; here we show that methylation markers, when combined with circulating tumour &lt;i&gt;KRAS&lt;/i&gt; mutation detection and imaging measurements, can predict the presence of occult metastatic disease before curative intent surgery.&lt;/p&gt;&lt;p&gt;A convenience sample of patients was enrolled with written informed consent at the University of Pennsylvania Hospital (Philadelphia, PA), under IRB Protocol #822028, NCT02471170. Patients had previously untreated PDAC or were seen in the endoscopy clinic for routine screening (healthy controls) or non-cancer disease evaluation and monitoring (disease controls). Disease control patients’ diagnoses included pancreatic cyst, pancreatitis, intraductal papillary mucinous neoplasm, and other non-cancerous pancreatic conditions. Patients with PDAC were excluded for 1) insufficient imaging surveillance to identify occult metastases within 120 days of surgery or 2) receiving therapy for a second primary tumour ≤5 years of PDAC diagnosis. Clinical and demographic data were abstracted from the electronic medical record, including the presence of metastases within 120 days of surgery. Pathologic staging (pT and pN) was obtained for patients who completed surgery; otherwise, clinical staging was used. CA19-9 values for 69 of 75 naive resectable PDAC patients were abstracted from the medical record for a timepoint within 40 days of surgery. For 6 patients, an aliquot of previously frozen plasma was provided to the clinical laboratory at the University of Pennsylvania and analysed using the clinical protocol. See Supplemental Digital Content for elaboration of study methods. This study was performed in accordance with STARD 2015 guidelines.&lt;/p&gt;&lt;p&gt;We analysed plasma from a cohort of 176 patients, including PDAC and non-PDAC controls (Figure S1 and Tables S1 and S2), to explore whether cfDNA methylation markers (Figure S2 and Table S7), independent of tumour genomic profiling, distinguished PDAC patients with and without occult metastases. Building on the previous pancreas tissue methylome analysis,&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; we identified methylated or unmethylated loci in liver and lung tissue, the two most common sites of distant metastases for PDAC. We then adapted our methods to detect these loci in plasma cfDNA. For 75 patients with PDAC who had surgery without receiving neoadjuvant therapy (“naïve resectable”), the cfDNA concentration from exocrin","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12813551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145997405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory mechanism of O-linked N-acetylglucosamine protein modification on autophagy in cancer o -连接n -乙酰氨基葡萄糖蛋白修饰对肿瘤自噬的调控机制。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-01-15 DOI: 10.1002/ctm2.70596
Yizhan Li, Ling Gao, Shaoming Li, Jingjing Zheng, Keqian Zhi, Wenhao Ren

Background

O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic, nutrient-sensitive post-translational modification frequently upregulated in cancers. Autophagy, a lysosome-dependent recycling pathway, plays a context-dependent dual role in tumorigenesis and therapy resistance. Emerging evidence reveals intricate crosstalk between these two processes, positioning the O-GlcNAcylation-autophagy axis as a critical regulator of cancer cell adaptation.

Main Topics

This review systematically delineates the multidimensional mechanisms by which O-GlcNAcylation regulates distinct stages of autophagy initiation, maturation, and fusion across various cancer types. We detail how O-GlcNAcylation targets core autophagy machinery, including the ULK1 complex, LC3 lipidation system, and SNARE fusion proteins, and modulates key signaling hubs like mTOR and AMPK. Furthermore, we integrate this molecular regulation with the stage-specific pro-tumor or tumor-suppressive functions of autophagy, highlighting how O-GlcNAcylation remodels autophagic flux to promote metabolic reprogramming, stress survival, and therapeutic resistance.

Conclusions

The O-GlcNAcylation-autophagy axis represents a promising therapeutic target. Combining small-molecule inhibitors of O-GlcNAc cycling enzymes (OGT/OGA) with autophagy modulators offers a novel strategy to overcome tumor drug resistance. Future research must address the heterogeneity of this regulatory network across cancer types and developmental stages to advance precision oncology interventions.

Keypoints

  • O-GlcNAcylation serves as a nutrient and stress sensor that dynamically regulates autophagy at multiple stages in cancer cells.
  • It fine-tunes autophagy initiation, maturation and fusion by modifying key proteins such as ULK1, ATG4B and SNAP-29.
  • Context-dependent O-GlcNAcylation promotes tumour adaptation and therapy resistance via autophagy remodelling.
  • Targeting the O-GlcNAc–autophagy axis offers a promising strategy to overcome cancer drug resistance.
背景:O-linked n -乙酰氨基葡萄糖蛋白修饰(o - glcnac酰化)是一种动态的、营养敏感的翻译后修饰,在癌症中经常上调。自噬是一种依赖于溶酶体的循环途径,在肿瘤发生和治疗抵抗中起着环境依赖的双重作用。新出现的证据揭示了这两个过程之间复杂的串扰,将o - glcn酰化-自噬轴定位为癌细胞适应的关键调节因子。本综述系统地描述了o - glcn酰化调节各种癌症类型中自噬起始、成熟和融合的不同阶段的多维机制。我们详细介绍了o - glcn酰化如何靶向核心自噬机制,包括ULK1复合物、LC3脂化系统和SNARE融合蛋白,并调节关键信号中枢,如mTOR和AMPK。此外,我们将这种分子调控与自噬的阶段特异性促肿瘤或肿瘤抑制功能结合起来,强调了o- glcn酰化如何重塑自噬通量,从而促进代谢重编程、应激生存和治疗耐药性。结论:o - glcn酰化-自噬轴是一个有希望的治疗靶点。将O-GlcNAc循环酶小分子抑制剂(OGT/OGA)与自噬调节剂结合为克服肿瘤耐药提供了一种新的策略。未来的研究必须解决这种调节网络在癌症类型和发展阶段的异质性,以推进精确的肿瘤干预。o - glcn酰化作为一种营养和应激传感器,在癌细胞的多个阶段动态调节自噬。它通过修饰ULK1、ATG4B和SNAP-29等关键蛋白来微调自噬的起始、成熟和融合。上下文依赖的o - glcn酰化通过自噬重塑促进肿瘤适应和治疗抵抗。靶向o - glcnac自噬轴为克服癌症耐药提供了一种有希望的策略。
{"title":"Regulatory mechanism of O-linked N-acetylglucosamine protein modification on autophagy in cancer","authors":"Yizhan Li,&nbsp;Ling Gao,&nbsp;Shaoming Li,&nbsp;Jingjing Zheng,&nbsp;Keqian Zhi,&nbsp;Wenhao Ren","doi":"10.1002/ctm2.70596","DOIUrl":"10.1002/ctm2.70596","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic, nutrient-sensitive post-translational modification frequently upregulated in cancers. Autophagy, a lysosome-dependent recycling pathway, plays a context-dependent dual role in tumorigenesis and therapy resistance. Emerging evidence reveals intricate crosstalk between these two processes, positioning the O-GlcNAcylation-autophagy axis as a critical regulator of cancer cell adaptation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Topics</h3>\u0000 \u0000 <p>This review systematically delineates the multidimensional mechanisms by which O-GlcNAcylation regulates distinct stages of autophagy initiation, maturation, and fusion across various cancer types. We detail how O-GlcNAcylation targets core autophagy machinery, including the ULK1 complex, LC3 lipidation system, and SNARE fusion proteins, and modulates key signaling hubs like mTOR and AMPK. Furthermore, we integrate this molecular regulation with the stage-specific pro-tumor or tumor-suppressive functions of autophagy, highlighting how O-GlcNAcylation remodels autophagic flux to promote metabolic reprogramming, stress survival, and therapeutic resistance.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The O-GlcNAcylation-autophagy axis represents a promising therapeutic target. Combining small-molecule inhibitors of O-GlcNAc cycling enzymes (OGT/OGA) with autophagy modulators offers a novel strategy to overcome tumor drug resistance. Future research must address the heterogeneity of this regulatory network across cancer types and developmental stages to advance precision oncology interventions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Keypoints</h3>\u0000 \u0000 <div>\u0000 <ul>\u0000 \u0000 <li>O-GlcNAcylation serves as a nutrient and stress sensor that dynamically regulates autophagy at multiple stages in cancer cells.</li>\u0000 \u0000 <li>It fine-tunes autophagy initiation, maturation and fusion by modifying key proteins such as ULK1, ATG4B and SNAP-29.</li>\u0000 \u0000 <li>Context-dependent O-GlcNAcylation promotes tumour adaptation and therapy resistance via autophagy remodelling.</li>\u0000 \u0000 <li>Targeting the O-GlcNAc–autophagy axis offers a promising strategy to overcome cancer drug resistance.</li>\u0000 </ul>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12808929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145988233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic lethality in cancer therapy: Mechanisms, models and clinical translation for overcoming therapeutic resistance 癌症治疗中的合成致死率:克服治疗耐药的机制、模型和临床翻译。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2026-01-15 DOI: 10.1002/ctm2.70586
Junyan Li, Liyuan Zhang, Yan Shang, Juan Liu, Hailong Zhao

Background and Rationale

Synthetic lethality (SL)-based strategies hold significant promise for overcoming therapeutic resistance, a critical bottleneck in cancer treatment where cancer cells evade anticancer therapies, leading to diminished efficacy or treatment failure. The core of SL lies in exploiting tumour-specific vulnerabilities: drug-resistant cells often acquire unique genetic defects or compensatory adaptive responses, and SL strategies selectively target genes or pathways dependent on these vulnerabilities to induce specific cell death, thereby reversing resistance.

Content and Focus

This review systematically elaborates on SL mechanisms and the multi-faceted nature of tumour drug resistance, then focuses on how SL counteracts resistant phenotypes by leveraging resistant cells’ vulnerabilities. We further delineate SL applications in preclinical resistance models, highlight representative SL-related drugs and predictive biomarkers and critically analyse challenges in clinical translation.

Conclusion

By integrating mechanistic insights, preclinical validation and translational perspectives, this review aims to provide novel insights for precision therapy and a foundational reference to advance SL strategies in overcoming tumour resistance and facilitating their clinical implementation.

Key points

  • SL-based strategies exploit tumour-specific vulnerabilities in drug-resistant cells to induce selective cell death and overcome therapeutic resistance.
  • This review dissects SL mechanisms, diverse drivers of tumour drug resistance and how SL counteracts resistant phenotypes via these vulnerabilities.
  • It summarises clinical translational applications of SL from preclinical studies to trials, approvals and emerging targets, and discusses future precision therapy.
背景和理由:基于合成致死性(SL)的策略在克服治疗耐药性方面具有重要的前景,治疗耐药性是癌症治疗的一个关键瓶颈,癌细胞逃避抗癌治疗,导致疗效降低或治疗失败。SL的核心在于利用肿瘤特异性脆弱性:耐药细胞通常获得独特的遗传缺陷或代偿性适应性反应,SL策略选择性地靶向依赖于这些脆弱性的基因或途径,诱导特异性细胞死亡,从而逆转耐药性。内容和重点:本综述系统阐述了SL机制和肿瘤耐药的多面性,然后重点介绍了SL如何通过利用耐药细胞的脆弱性来抵消耐药表型。我们进一步描述了SL在临床前耐药模型中的应用,重点介绍了具有代表性的SL相关药物和预测性生物标志物,并批判性地分析了临床转化中的挑战。结论:通过整合机制见解、临床前验证和转化观点,本综述旨在为精确治疗提供新的见解,并为推进SL策略克服肿瘤耐药并促进其临床实施提供基础参考。重点:基于sl的策略利用耐药细胞中的肿瘤特异性脆弱性诱导选择性细胞死亡并克服治疗耐药性。这篇综述剖析了SL机制、肿瘤耐药的多种驱动因素以及SL如何通过这些脆弱性抵消耐药表型。它总结了SL从临床前研究到试验、批准和新兴靶点的临床转化应用,并讨论了未来的精准治疗。
{"title":"Synthetic lethality in cancer therapy: Mechanisms, models and clinical translation for overcoming therapeutic resistance","authors":"Junyan Li,&nbsp;Liyuan Zhang,&nbsp;Yan Shang,&nbsp;Juan Liu,&nbsp;Hailong Zhao","doi":"10.1002/ctm2.70586","DOIUrl":"10.1002/ctm2.70586","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background and Rationale</h3>\u0000 \u0000 <p>Synthetic lethality (SL)-based strategies hold significant promise for overcoming therapeutic resistance, a critical bottleneck in cancer treatment where cancer cells evade anticancer therapies, leading to diminished efficacy or treatment failure. The core of SL lies in exploiting tumour-specific vulnerabilities: drug-resistant cells often acquire unique genetic defects or compensatory adaptive responses, and SL strategies selectively target genes or pathways dependent on these vulnerabilities to induce specific cell death, thereby reversing resistance.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Content and Focus</h3>\u0000 \u0000 <p>This review systematically elaborates on SL mechanisms and the multi-faceted nature of tumour drug resistance, then focuses on how SL counteracts resistant phenotypes by leveraging resistant cells’ vulnerabilities. We further delineate SL applications in preclinical resistance models, highlight representative SL-related drugs and predictive biomarkers and critically analyse challenges in clinical translation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>By integrating mechanistic insights, preclinical validation and translational perspectives, this review aims to provide novel insights for precision therapy and a foundational reference to advance SL strategies in overcoming tumour resistance and facilitating their clinical implementation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Key points</h3>\u0000 \u0000 <div>\u0000 <ul>\u0000 \u0000 <li>SL-based strategies exploit tumour-specific vulnerabilities in drug-resistant cells to induce selective cell death and overcome therapeutic resistance.</li>\u0000 \u0000 <li>This review dissects SL mechanisms, diverse drivers of tumour drug resistance and how SL counteracts resistant phenotypes via these vulnerabilities.</li>\u0000 \u0000 <li>It summarises clinical translational applications of SL from preclinical studies to trials, approvals and emerging targets, and discusses future precision therapy.</li>\u0000 </ul>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"16 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12805533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145984620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clinical and Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1