首页 > 最新文献

Chinese Optics Letters最新文献

英文 中文
High-power single-frequency fiber amplifiers: progress and challenge [Invited] 大功率单频光纤放大器:进展与挑战[特邀]
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.090002
Can Li, Yue Tao, Man Jiang, P. Ma, W. Liu, R. Su, Jiangming Xu, Jin-yong Leng, P. Zhou
Unlike conventional continuous-wave lasers with wide spectra, the amplification of single-frequency lasers in optical fibers is much more difficult owing to the ultra-high power spectral density induced nonlinear stimulated Brillouin scattering effect. Nevertheless, over the past two decades much effort has been devoted to improving the power scaling and performance of high-power single-frequency fiber amplifiers. These amplifiers are mostly driven by applications, such as high precision detection and metrology, and have benefited from the long coherence length, low noise, and excellent beam quality of this type of laser source. In this paper, we review the overall development of high-power single-frequency fiber amplifiers by focusing on its progress and challenges, specifically, the strategies for circumventing the stimulated Brillouin scattering and transverse mode instability effects that, at present, are the major limiting factors of the power scaling of the single-frequency fiber amplifiers. These factors are also thoroughly discussed in terms of free-space and all-fiber coupled architecture. In addition, we also examine the noise properties of single-frequency fiber amplifiers, along with corresponding noise reducing schemes. Finally, we briefly envision the future development of high-power single-frequency fiber amplifiers.
与传统的宽光谱连续波激光器不同,单频激光器在光纤中的放大由于其超高功率谱密度引起的非线性受激布里渊散射效应而变得更加困难。尽管如此,在过去的二十年里,人们一直致力于提高大功率单频光纤放大器的功率缩放和性能。这些放大器主要由高精度检测和计量等应用驱动,并受益于这种类型的激光源的长相干长度,低噪声和优异的光束质量。本文回顾了大功率单频光纤放大器的总体发展,重点介绍了其进展和面临的挑战,特别是规避受激布里渊散射和横向模不稳定效应的策略,这是目前限制单频光纤放大器功率缩放的主要因素。这些因素也在自由空间和全光纤耦合架构方面进行了深入的讨论。此外,我们还研究了单频光纤放大器的噪声特性,以及相应的降噪方案。最后简要展望了大功率单频光纤放大器的发展前景。
{"title":"High-power single-frequency fiber amplifiers: progress and challenge [Invited]","authors":"Can Li, Yue Tao, Man Jiang, P. Ma, W. Liu, R. Su, Jiangming Xu, Jin-yong Leng, P. Zhou","doi":"10.3788/col202321.090002","DOIUrl":"https://doi.org/10.3788/col202321.090002","url":null,"abstract":"Unlike conventional continuous-wave lasers with wide spectra, the amplification of single-frequency lasers in optical fibers is much more difficult owing to the ultra-high power spectral density induced nonlinear stimulated Brillouin scattering effect. Nevertheless, over the past two decades much effort has been devoted to improving the power scaling and performance of high-power single-frequency fiber amplifiers. These amplifiers are mostly driven by applications, such as high precision detection and metrology, and have benefited from the long coherence length, low noise, and excellent beam quality of this type of laser source. In this paper, we review the overall development of high-power single-frequency fiber amplifiers by focusing on its progress and challenges, specifically, the strategies for circumventing the stimulated Brillouin scattering and transverse mode instability effects that, at present, are the major limiting factors of the power scaling of the single-frequency fiber amplifiers. These factors are also thoroughly discussed in terms of free-space and all-fiber coupled architecture. In addition, we also examine the noise properties of single-frequency fiber amplifiers, along with corresponding noise reducing schemes. Finally, we briefly envision the future development of high-power single-frequency fiber amplifiers.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"7 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82628703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dark-field line confocal imaging with point confocality and extended line field for bulk defects detection 基于点共焦和扩展线场的暗场线共聚焦成像用于体缺陷检测
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.041203
Jingtao Dong, Tengda Zhang, Lei Yang, Yuzhong Zhang, R. Lu, Xinglong Xie
{"title":"Dark-field line confocal imaging with point confocality and extended line field for bulk defects detection","authors":"Jingtao Dong, Tengda Zhang, Lei Yang, Yuzhong Zhang, R. Lu, Xinglong Xie","doi":"10.3788/col202321.041203","DOIUrl":"https://doi.org/10.3788/col202321.041203","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"4 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87797767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High sensitivity all-fiber bend sensor based on modal interferences in a ring core fiber 基于环芯光纤模态干涉的高灵敏度全光纤弯曲传感器
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.051201
Fan Zhang, Beibei Qi, Baijin Su, Ou Xu, Yuwen Qin
{"title":"High sensitivity all-fiber bend sensor based on modal interferences in a ring core fiber","authors":"Fan Zhang, Beibei Qi, Baijin Su, Ou Xu, Yuwen Qin","doi":"10.3788/col202321.051201","DOIUrl":"https://doi.org/10.3788/col202321.051201","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"11 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88119011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of propagation phase on the coupling of plasmonic optical modes 传播相位对等离子体光模耦合的影响
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.010003
Wan-xia Huang, Yabo Zhang, Yuan Pei, Maosheng Wang, Fenghua Shi, Kuan-Yi Li
The temporal coupled-mode theory (TCMT) has made significant progress in recent years, and is widely applied in explaining a variety of optical phenomena. In this paper, the optical characteristics of the metasurface composed of nano-bars and nano-rings are simulated. The simulation results are well explained by TCMT under the coupled basis vector. However, when the structural asymmetry is large, the fitting of results shows that the total radiation loss is not conservative, in contradiction to the requirement of traditional TCMT. We solved this inconsistency by introducing the propagation phase into the near-field coupling term of TCMT. The studies show that, unlike the local mode near the exceptional point which corresponds to the radiation loss of the bright mode, the global mode near the diabolic point is closely related to the propagation phase. Furthermore, the structure near the diabolic point shows characteristic cross-coupling with the change of period. This study proposes a new theoretical framework for comprehending the interaction of light and matter and offers some guiding implications for the application of TCMT to a variety of related domains.
时间耦合模理论(TCMT)近年来取得了重大进展,被广泛应用于解释各种光学现象。本文模拟了由纳米棒和纳米环组成的超表面的光学特性。在耦合基向量下,TCMT很好地解释了仿真结果。然而,当结构不对称较大时,结果的拟合表明总辐射损失不保守,这与传统TCMT的要求相矛盾。我们通过在TCMT的近场耦合项中引入传播相位来解决这种不一致。研究表明,与异常点附近的局部模态对应于亮模态的辐射损失不同,魔鬼点附近的全局模态与传播相位密切相关。此外,在魔鬼点附近的结构随周期的变化表现出特征性的交叉耦合。本研究为理解光与物质相互作用提供了一个新的理论框架,并为TCMT在相关领域的应用提供了一些指导意义。
{"title":"Effects of propagation phase on the coupling of plasmonic optical modes","authors":"Wan-xia Huang, Yabo Zhang, Yuan Pei, Maosheng Wang, Fenghua Shi, Kuan-Yi Li","doi":"10.3788/col202321.010003","DOIUrl":"https://doi.org/10.3788/col202321.010003","url":null,"abstract":"The temporal coupled-mode theory (TCMT) has made significant progress in recent years, and is widely applied in explaining a variety of optical phenomena. In this paper, the optical characteristics of the metasurface composed of nano-bars and nano-rings are simulated. The simulation results are well explained by TCMT under the coupled basis vector. However, when the structural asymmetry is large, the fitting of results shows that the total radiation loss is not conservative, in contradiction to the requirement of traditional TCMT. We solved this inconsistency by introducing the propagation phase into the near-field coupling term of TCMT. The studies show that, unlike the local mode near the exceptional point which corresponds to the radiation loss of the bright mode, the global mode near the diabolic point is closely related to the propagation phase. Furthermore, the structure near the diabolic point shows characteristic cross-coupling with the change of period. This study proposes a new theoretical framework for comprehending the interaction of light and matter and offers some guiding implications for the application of TCMT to a variety of related domains.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"32 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81275922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascaded metasurface for separated information encryption [Invited] 用于分离信息加密的级联元表面[特邀]
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.020003
Jiahao Wang, Guodong Zhu, Weiguo Zhang, Zhou Zhou, Zile Li, Guoxing Zheng
{"title":"Cascaded metasurface for separated information encryption [Invited]","authors":"Jiahao Wang, Guodong Zhu, Weiguo Zhang, Zhou Zhou, Zile Li, Guoxing Zheng","doi":"10.3788/col202321.020003","DOIUrl":"https://doi.org/10.3788/col202321.020003","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"17 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74778668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Highly sensitive torsion sensor based on Mach–Zehnder interference in helical seven-core fiber taper 基于Mach-Zehnder干涉的螺旋七芯光纤锥度高灵敏度扭矩传感器
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.041205
Jiabin Wang, Xinzhe Zeng, Jian Zhou, Jiayu Hao, Xing-yu Yang, Yue Liu, Wenhuan Chen, Song Li, Yunxiang Yan, Tao Geng, Weimin Sun, Libo Yuan
{"title":"Highly sensitive torsion sensor based on Mach–Zehnder interference in helical seven-core fiber taper","authors":"Jiabin Wang, Xinzhe Zeng, Jian Zhou, Jiayu Hao, Xing-yu Yang, Yue Liu, Wenhuan Chen, Song Li, Yunxiang Yan, Tao Geng, Weimin Sun, Libo Yuan","doi":"10.3788/col202321.041205","DOIUrl":"https://doi.org/10.3788/col202321.041205","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"365 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75446727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optical spiral vortex from azimuthally increasing/decreasing exponential phase gradients 从方位增加/减少指数相位梯度的光学螺旋涡
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.112601
Peihua Jie, Zhenwei Xie, Xiaocong Yuan
A new type of power-exponent-phase vortex-like beams with both quadratic and cubic azimuthal phase gradients is investigated in this work. The intensity and orbital angular momentum (OAM) density distributions are noticeably different when the phase gradient increases or decreases along the azimuth angle, while the orthogonality and total OAM remain constant. The characteristics of the optical field undergo a significant change when the phase shifts from linear to nonlinear, with the variation of the power index having little impact on the beam characteristics under nonlinear phase conditions. These characteristics provide new ideas for applications such as particle manipulation, optical communications, and OAM encryption.
本文研究了一种具有二次位相梯度和三次位相梯度的新型幂指数位相涡状光束。当相位梯度沿方位角增大或减小时,光强和轨道角动量(OAM)密度分布有显著差异,而正交度和总OAM保持不变。当相位由线性向非线性转变时,光场特性发生显著变化,而在非线性相位条件下,功率指数的变化对光束特性影响不大。这些特性为粒子操作、光通信和OAM加密等应用提供了新的思路。
{"title":"Optical spiral vortex from azimuthally increasing/decreasing exponential phase gradients","authors":"Peihua Jie, Zhenwei Xie, Xiaocong Yuan","doi":"10.3788/col202321.112601","DOIUrl":"https://doi.org/10.3788/col202321.112601","url":null,"abstract":"A new type of power-exponent-phase vortex-like beams with both quadratic and cubic azimuthal phase gradients is investigated in this work. The intensity and orbital angular momentum (OAM) density distributions are noticeably different when the phase gradient increases or decreases along the azimuth angle, while the orthogonality and total OAM remain constant. The characteristics of the optical field undergo a significant change when the phase shifts from linear to nonlinear, with the variation of the power index having little impact on the beam characteristics under nonlinear phase conditions. These characteristics provide new ideas for applications such as particle manipulation, optical communications, and OAM encryption.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNR enhancement of magnetic fields measurement with the diamond NV center using a compound filter system 利用复合滤波系统对金刚石NV中心磁场进行信噪比增强测量
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.111201
An Ye, Dingyuan Fu, Mingming Wu, Jiahao Guo, Tianze Sheng, Xiaolin Li, Shangqing Gong, Yueping Niu
Nitrogen-vacancy (NV) centers in diamond are progressively favored for room-temperature magnetic field measurement. The signal to noise ratio (SNR) optimization for NV diamond magnetometry generally concentrates on signal amplitude enhancement rather than efficient noise processing. Here, we report a compound filter system combining a wavelet denoising method and an adaptive filter for the realization of an efficient weak magnetic measurement with a high SNR. It allows enhanced magnetic field measurement with an average SNR enhancement of 17.80 dB at 50 nT within 500 mHz to 100 Hz and 14.76 dB at 500 mHz within 50 nT to 1100 nT. The introduction of this system in NV diamond magnetometry is aimed to improve signal quality by effectively eliminating the noise and retaining ideal signals.
金刚石中的氮空位(NV)中心在室温磁场测量中越来越受到青睐。金刚石磁强计的信噪比优化通常侧重于信号幅度的增强,而不是有效的噪声处理。本文报道了一种结合小波去噪方法和自适应滤波器的复合滤波系统,用于实现高信噪比的高效弱磁测量。它可以增强磁场测量,在500 mHz至100 Hz范围内,在50 nT时平均信噪比提高17.80 dB,在50 nT至1100 nT范围内,在500 mHz时平均信噪比提高14.76 dB。在NV钻石磁强计中引入该系统旨在通过有效消除噪声和保留理想信号来提高信号质量。
{"title":"SNR enhancement of magnetic fields measurement with the diamond NV center using a compound filter system","authors":"An Ye, Dingyuan Fu, Mingming Wu, Jiahao Guo, Tianze Sheng, Xiaolin Li, Shangqing Gong, Yueping Niu","doi":"10.3788/col202321.111201","DOIUrl":"https://doi.org/10.3788/col202321.111201","url":null,"abstract":"Nitrogen-vacancy (NV) centers in diamond are progressively favored for room-temperature magnetic field measurement. The signal to noise ratio (SNR) optimization for NV diamond magnetometry generally concentrates on signal amplitude enhancement rather than efficient noise processing. Here, we report a compound filter system combining a wavelet denoising method and an adaptive filter for the realization of an efficient weak magnetic measurement with a high SNR. It allows enhanced magnetic field measurement with an average SNR enhancement of 17.80 dB at 50 nT within 500 mHz to 100 Hz and 14.76 dB at 500 mHz within 50 nT to 1100 nT. The introduction of this system in NV diamond magnetometry is aimed to improve signal quality by effectively eliminating the noise and retaining ideal signals.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Raman spectrum uniformity of SERS substrate based on flat electrode 基于平电极的SERS衬底拉曼光谱均匀性改善
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.113001
Zhihui Jiang, Shen Zhang, Congxi Song, Hongmin Mao, Xin Zhao, Huanjun Lu, Zhaoliang Cao
The distribution of metal nanoparticles on the surface of a surface enhancement Raman scattering (SERS)-active substrate plays a prominent part in not only the enhancement of Raman vibration signal, but also the spectrum uniformity. Here, a facile method to fabricate SERS substrates with excellent homogeneity and low cost was proposed, in which a lyotropic liquid crystal soft template was introduced for the coordinated growth of the silver nanoflowers in the process of electrochemistry deposition. Simulation was carried out to illustrate the dominated influence of the distance of electrodes on the deposited nanoparticle number. Two kinds of conductive materials, silver plate and indium tin oxide (ITO) glass, were chosen as the anode, while the cathode was fixed as ITO glass. The simulated conjecture on the effect of electrode flatness on the uniformity of deposited nanoparticles in silver is experimentally proved. More importantly, it was demonstrated that with a relatively smooth and flat ITO glass anode, a SERS substrate featuring higher spectrum uniformity could be achieved. This work is of great significance to the actual applications of the SERS substrate for quantitative detection with high sensitivity.
金属纳米粒子在表面增强拉曼散射(SERS)活性衬底表面的分布不仅对拉曼振动信号的增强,而且对光谱的均匀性起着突出的作用。本文提出了一种制备均匀性好、成本低的SERS衬底的简便方法,即在电化学沉积过程中引入溶致液晶软模板,使银纳米花协同生长。模拟结果表明,电极间距对沉积的纳米颗粒数量有主要影响。选择银板和氧化铟锡(ITO)玻璃两种导电材料作为阳极,阴极固定为ITO玻璃。实验证明了电极平整度对银镀层纳米颗粒均匀性影响的模拟猜想。更重要的是,通过相对光滑和平坦的ITO玻璃阳极,可以获得具有更高光谱均匀性的SERS衬底。该工作对SERS底物在高灵敏度定量检测中的实际应用具有重要意义。
{"title":"Improvement of Raman spectrum uniformity of SERS substrate based on flat electrode","authors":"Zhihui Jiang, Shen Zhang, Congxi Song, Hongmin Mao, Xin Zhao, Huanjun Lu, Zhaoliang Cao","doi":"10.3788/col202321.113001","DOIUrl":"https://doi.org/10.3788/col202321.113001","url":null,"abstract":"The distribution of metal nanoparticles on the surface of a surface enhancement Raman scattering (SERS)-active substrate plays a prominent part in not only the enhancement of Raman vibration signal, but also the spectrum uniformity. Here, a facile method to fabricate SERS substrates with excellent homogeneity and low cost was proposed, in which a lyotropic liquid crystal soft template was introduced for the coordinated growth of the silver nanoflowers in the process of electrochemistry deposition. Simulation was carried out to illustrate the dominated influence of the distance of electrodes on the deposited nanoparticle number. Two kinds of conductive materials, silver plate and indium tin oxide (ITO) glass, were chosen as the anode, while the cathode was fixed as ITO glass. The simulated conjecture on the effect of electrode flatness on the uniformity of deposited nanoparticles in silver is experimentally proved. More importantly, it was demonstrated that with a relatively smooth and flat ITO glass anode, a SERS substrate featuring higher spectrum uniformity could be achieved. This work is of great significance to the actual applications of the SERS substrate for quantitative detection with high sensitivity.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High energy efficiency soliton microcomb generation in high coupling strength, large mode volume, and ultra-high-Q micro-cavity 在高耦合强度、大模体积和超高q微腔中产生高能效孤子微梳
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.101902
Wenwen Cui, Zheng Yi, Xinyu Ma, Yong Geng, Heng Zhou, Kun Qiu
The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%. Here, we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength, large mode volume, and high-Q factor, resulting in a low-repetition-rate dissipative soliton ( ∼ 21 GHz) with an energy conversion efficiency exceeding 20%. Furthermore, by generating an ∼ 105 GHz 5 × FSR (free spectral range) soliton crystal comb in the microcavity, the energy conversion efficiency can be further increased up to 56%.
微腔中时间耗散孤子的非线性物理动力学阻碍了它们从典型的非线性能量转换效率小于1%的泵浦激光器中获得高功率。在这里,我们通过实验证明了一种使用高耦合强度、大模体积和高q因子的硅微棒腔来提高孤子梳输出功率的直接方法,从而产生低重复率的耗散孤子(~ 21 GHz),能量转换效率超过20%。此外,通过在微腔中产生一个~ 105 GHz5×FSR(自由光谱范围)的孤子晶体梳,能量转换效率可进一步提高到56%。
{"title":"High energy efficiency soliton microcomb generation in high coupling strength, large mode volume, and ultra-high-Q micro-cavity","authors":"Wenwen Cui, Zheng Yi, Xinyu Ma, Yong Geng, Heng Zhou, Kun Qiu","doi":"10.3788/col202321.101902","DOIUrl":"https://doi.org/10.3788/col202321.101902","url":null,"abstract":"The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%. Here, we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength, large mode volume, and high-Q factor, resulting in a low-repetition-rate dissipative soliton ( ∼ 21 GHz) with an energy conversion efficiency exceeding 20%. Furthermore, by generating an ∼ 105 GHz 5 × FSR (free spectral range) soliton crystal comb in the microcavity, the energy conversion efficiency can be further increased up to 56%.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136206802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Optics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1