首页 > 最新文献

Chinese Optics Letters最新文献

英文 中文
Rydberg electromagnetically induced transparency in 40K ultracold Fermi gases 40K超冷费米气体中Rydberg电磁感应透明
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.100201
Guoqi Bian, Biao Shan, Lianghui Huang, Jing Zhang
We report the measurement of the electromagnetically induced transparency (EIT) with Rydberg states in ultracold 40 K Fermi gases, which is obtained through a two-photon process with the ladder scheme. Rydberg – EIT lines are obtained by measuring the atomic losses instead of the transmitted probe beam. Based on the laser frequency stabilization locking to the superstable cavity, we study the Rydberg – EIT line shapes for the 37s and 35d states. We experimentally demonstrate the significant change in the Rydberg – EIT spectrum by changing the principal quantum number of the Rydberg state (n = 37 = 52 and l = 0). Moreover, the transparency peak position shift is observed, which may be induced by the interaction of the Rydberg atoms. This work provides a platform to explore many interesting behaviors involving Rydberg states in ultracold Fermi gases.
本文报道了在超冷的40 K费米气体中,用阶梯结构的双光子过程测量了具有里德堡态的电磁感应透明(EIT)。Rydberg - EIT线是通过测量原子损耗而不是发射探针光束来获得的。基于激光稳频锁定到超稳腔,我们研究了37s和35d状态的Rydberg - EIT线形状。通过改变Rydberg态的主量子数(n = 37 = 52, l = 0),实验证明了Rydberg - EIT谱的显著变化,并且观察到透明峰的位置移位,这可能是由Rydberg原子的相互作用引起的。这项工作为探索超冷费米气体中涉及里德堡态的许多有趣行为提供了一个平台。
{"title":"Rydberg electromagnetically induced transparency in 40K ultracold Fermi gases","authors":"Guoqi Bian, Biao Shan, Lianghui Huang, Jing Zhang","doi":"10.3788/col202321.100201","DOIUrl":"https://doi.org/10.3788/col202321.100201","url":null,"abstract":"We report the measurement of the electromagnetically induced transparency (EIT) with Rydberg states in ultracold 40 K Fermi gases, which is obtained through a two-photon process with the ladder scheme. Rydberg – EIT lines are obtained by measuring the atomic losses instead of the transmitted probe beam. Based on the laser frequency stabilization locking to the superstable cavity, we study the Rydberg – EIT line shapes for the 37s and 35d states. We experimentally demonstrate the significant change in the Rydberg – EIT spectrum by changing the principal quantum number of the Rydberg state (n = 37 = 52 and l = 0). Moreover, the transparency peak position shift is observed, which may be induced by the interaction of the Rydberg atoms. This work provides a platform to explore many interesting behaviors involving Rydberg states in ultracold Fermi gases.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"30 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79158820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition 基于光叠加的50m /187.5 Mbit/s实时水下无线光通信
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.020601
Yongxin Cheng, Xingqi Yang, Yufan Zhang, Chao Zhang, Hao Zhang, Zhijian Tong, Yizhan Dai, Weichao Lü, Xin Li, Haiwu Zou, Zejun Zhang, Jing Xu
In this paper, an optical pulse amplitude modulation with 4 levels (PAM-4) using a fiber combiner is proposed to enhance the data rate of a field-programmable gate-array-based long-distance real-time underwater wireless optical communication system. Two on – off keying signals with different amplitudes are used to modulate two pigtailed laser diodes, respectively, and the generated optical signals are superimposed into optical PAM-4 signals by a fiber combiner. The optical PAM-4 scheme can effectively alleviate the nonlinearity, although it reduces the peak-to-peak value of the emitting optical power by 25%. A real-time data rate of 187.5 Mbit/s is achieved by using the optical PAM-4 with a transmission distance of 50 m. The data rate is increased by about 25% compared with the conventional electrical PAM-4 in the same condition.
为了提高基于现场可编程门阵列的水下远程实时无线光通信系统的数据速率,提出了一种利用光纤组合器实现4级光脉冲调幅(PAM-4)的方案。利用两个不同幅值的开关键控信号分别调制两个尾纤激光二极管,产生的光信号通过光纤合成器叠加成PAM-4光信号。光学PAM-4方案虽然使发射光功率的峰峰值降低了25%,但能有效地缓解非线性。采用光学PAM-4,实时数据速率可达187.5 Mbit/s,传输距离为50 m。在相同条件下,与传统的电气PAM-4相比,数据速率提高了约25%。
{"title":"50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition","authors":"Yongxin Cheng, Xingqi Yang, Yufan Zhang, Chao Zhang, Hao Zhang, Zhijian Tong, Yizhan Dai, Weichao Lü, Xin Li, Haiwu Zou, Zejun Zhang, Jing Xu","doi":"10.3788/col202321.020601","DOIUrl":"https://doi.org/10.3788/col202321.020601","url":null,"abstract":"In this paper, an optical pulse amplitude modulation with 4 levels (PAM-4) using a fiber combiner is proposed to enhance the data rate of a field-programmable gate-array-based long-distance real-time underwater wireless optical communication system. Two on – off keying signals with different amplitudes are used to modulate two pigtailed laser diodes, respectively, and the generated optical signals are superimposed into optical PAM-4 signals by a fiber combiner. The optical PAM-4 scheme can effectively alleviate the nonlinearity, although it reduces the peak-to-peak value of the emitting optical power by 25%. A real-time data rate of 187.5 Mbit/s is achieved by using the optical PAM-4 with a transmission distance of 50 m. The data rate is increased by about 25% compared with the conventional electrical PAM-4 in the same condition.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"19 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73542376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Photon pair generation in lithium niobate waveguide periodically poled by femtosecond laser 飞秒激光周期性极化铌酸锂波导中光子对的产生
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.042701
{"title":"Photon pair generation in lithium niobate waveguide periodically poled by femtosecond laser","authors":"","doi":"10.3788/col202321.042701","DOIUrl":"https://doi.org/10.3788/col202321.042701","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"110 1 Pt 1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89748301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optical spiral vortex from azimuthally increasing/decreasing exponential phase gradients 从方位增加/减少指数相位梯度的光学螺旋涡
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.112601
Peihua Jie, Zhenwei Xie, Xiaocong Yuan
A new type of power-exponent-phase vortex-like beams with both quadratic and cubic azimuthal phase gradients is investigated in this work. The intensity and orbital angular momentum (OAM) density distributions are noticeably different when the phase gradient increases or decreases along the azimuth angle, while the orthogonality and total OAM remain constant. The characteristics of the optical field undergo a significant change when the phase shifts from linear to nonlinear, with the variation of the power index having little impact on the beam characteristics under nonlinear phase conditions. These characteristics provide new ideas for applications such as particle manipulation, optical communications, and OAM encryption.
本文研究了一种具有二次位相梯度和三次位相梯度的新型幂指数位相涡状光束。当相位梯度沿方位角增大或减小时,光强和轨道角动量(OAM)密度分布有显著差异,而正交度和总OAM保持不变。当相位由线性向非线性转变时,光场特性发生显著变化,而在非线性相位条件下,功率指数的变化对光束特性影响不大。这些特性为粒子操作、光通信和OAM加密等应用提供了新的思路。
{"title":"Optical spiral vortex from azimuthally increasing/decreasing exponential phase gradients","authors":"Peihua Jie, Zhenwei Xie, Xiaocong Yuan","doi":"10.3788/col202321.112601","DOIUrl":"https://doi.org/10.3788/col202321.112601","url":null,"abstract":"A new type of power-exponent-phase vortex-like beams with both quadratic and cubic azimuthal phase gradients is investigated in this work. The intensity and orbital angular momentum (OAM) density distributions are noticeably different when the phase gradient increases or decreases along the azimuth angle, while the orthogonality and total OAM remain constant. The characteristics of the optical field undergo a significant change when the phase shifts from linear to nonlinear, with the variation of the power index having little impact on the beam characteristics under nonlinear phase conditions. These characteristics provide new ideas for applications such as particle manipulation, optical communications, and OAM encryption.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNR enhancement of magnetic fields measurement with the diamond NV center using a compound filter system 利用复合滤波系统对金刚石NV中心磁场进行信噪比增强测量
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.111201
An Ye, Dingyuan Fu, Mingming Wu, Jiahao Guo, Tianze Sheng, Xiaolin Li, Shangqing Gong, Yueping Niu
Nitrogen-vacancy (NV) centers in diamond are progressively favored for room-temperature magnetic field measurement. The signal to noise ratio (SNR) optimization for NV diamond magnetometry generally concentrates on signal amplitude enhancement rather than efficient noise processing. Here, we report a compound filter system combining a wavelet denoising method and an adaptive filter for the realization of an efficient weak magnetic measurement with a high SNR. It allows enhanced magnetic field measurement with an average SNR enhancement of 17.80 dB at 50 nT within 500 mHz to 100 Hz and 14.76 dB at 500 mHz within 50 nT to 1100 nT. The introduction of this system in NV diamond magnetometry is aimed to improve signal quality by effectively eliminating the noise and retaining ideal signals.
金刚石中的氮空位(NV)中心在室温磁场测量中越来越受到青睐。金刚石磁强计的信噪比优化通常侧重于信号幅度的增强,而不是有效的噪声处理。本文报道了一种结合小波去噪方法和自适应滤波器的复合滤波系统,用于实现高信噪比的高效弱磁测量。它可以增强磁场测量,在500 mHz至100 Hz范围内,在50 nT时平均信噪比提高17.80 dB,在50 nT至1100 nT范围内,在500 mHz时平均信噪比提高14.76 dB。在NV钻石磁强计中引入该系统旨在通过有效消除噪声和保留理想信号来提高信号质量。
{"title":"SNR enhancement of magnetic fields measurement with the diamond NV center using a compound filter system","authors":"An Ye, Dingyuan Fu, Mingming Wu, Jiahao Guo, Tianze Sheng, Xiaolin Li, Shangqing Gong, Yueping Niu","doi":"10.3788/col202321.111201","DOIUrl":"https://doi.org/10.3788/col202321.111201","url":null,"abstract":"Nitrogen-vacancy (NV) centers in diamond are progressively favored for room-temperature magnetic field measurement. The signal to noise ratio (SNR) optimization for NV diamond magnetometry generally concentrates on signal amplitude enhancement rather than efficient noise processing. Here, we report a compound filter system combining a wavelet denoising method and an adaptive filter for the realization of an efficient weak magnetic measurement with a high SNR. It allows enhanced magnetic field measurement with an average SNR enhancement of 17.80 dB at 50 nT within 500 mHz to 100 Hz and 14.76 dB at 500 mHz within 50 nT to 1100 nT. The introduction of this system in NV diamond magnetometry is aimed to improve signal quality by effectively eliminating the noise and retaining ideal signals.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Raman spectrum uniformity of SERS substrate based on flat electrode 基于平电极的SERS衬底拉曼光谱均匀性改善
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.113001
Zhihui Jiang, Shen Zhang, Congxi Song, Hongmin Mao, Xin Zhao, Huanjun Lu, Zhaoliang Cao
The distribution of metal nanoparticles on the surface of a surface enhancement Raman scattering (SERS)-active substrate plays a prominent part in not only the enhancement of Raman vibration signal, but also the spectrum uniformity. Here, a facile method to fabricate SERS substrates with excellent homogeneity and low cost was proposed, in which a lyotropic liquid crystal soft template was introduced for the coordinated growth of the silver nanoflowers in the process of electrochemistry deposition. Simulation was carried out to illustrate the dominated influence of the distance of electrodes on the deposited nanoparticle number. Two kinds of conductive materials, silver plate and indium tin oxide (ITO) glass, were chosen as the anode, while the cathode was fixed as ITO glass. The simulated conjecture on the effect of electrode flatness on the uniformity of deposited nanoparticles in silver is experimentally proved. More importantly, it was demonstrated that with a relatively smooth and flat ITO glass anode, a SERS substrate featuring higher spectrum uniformity could be achieved. This work is of great significance to the actual applications of the SERS substrate for quantitative detection with high sensitivity.
金属纳米粒子在表面增强拉曼散射(SERS)活性衬底表面的分布不仅对拉曼振动信号的增强,而且对光谱的均匀性起着突出的作用。本文提出了一种制备均匀性好、成本低的SERS衬底的简便方法,即在电化学沉积过程中引入溶致液晶软模板,使银纳米花协同生长。模拟结果表明,电极间距对沉积的纳米颗粒数量有主要影响。选择银板和氧化铟锡(ITO)玻璃两种导电材料作为阳极,阴极固定为ITO玻璃。实验证明了电极平整度对银镀层纳米颗粒均匀性影响的模拟猜想。更重要的是,通过相对光滑和平坦的ITO玻璃阳极,可以获得具有更高光谱均匀性的SERS衬底。该工作对SERS底物在高灵敏度定量检测中的实际应用具有重要意义。
{"title":"Improvement of Raman spectrum uniformity of SERS substrate based on flat electrode","authors":"Zhihui Jiang, Shen Zhang, Congxi Song, Hongmin Mao, Xin Zhao, Huanjun Lu, Zhaoliang Cao","doi":"10.3788/col202321.113001","DOIUrl":"https://doi.org/10.3788/col202321.113001","url":null,"abstract":"The distribution of metal nanoparticles on the surface of a surface enhancement Raman scattering (SERS)-active substrate plays a prominent part in not only the enhancement of Raman vibration signal, but also the spectrum uniformity. Here, a facile method to fabricate SERS substrates with excellent homogeneity and low cost was proposed, in which a lyotropic liquid crystal soft template was introduced for the coordinated growth of the silver nanoflowers in the process of electrochemistry deposition. Simulation was carried out to illustrate the dominated influence of the distance of electrodes on the deposited nanoparticle number. Two kinds of conductive materials, silver plate and indium tin oxide (ITO) glass, were chosen as the anode, while the cathode was fixed as ITO glass. The simulated conjecture on the effect of electrode flatness on the uniformity of deposited nanoparticles in silver is experimentally proved. More importantly, it was demonstrated that with a relatively smooth and flat ITO glass anode, a SERS substrate featuring higher spectrum uniformity could be achieved. This work is of great significance to the actual applications of the SERS substrate for quantitative detection with high sensitivity.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High energy efficiency soliton microcomb generation in high coupling strength, large mode volume, and ultra-high-Q micro-cavity 在高耦合强度、大模体积和超高q微腔中产生高能效孤子微梳
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.101902
Wenwen Cui, Zheng Yi, Xinyu Ma, Yong Geng, Heng Zhou, Kun Qiu
The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%. Here, we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength, large mode volume, and high-Q factor, resulting in a low-repetition-rate dissipative soliton ( ∼ 21 GHz) with an energy conversion efficiency exceeding 20%. Furthermore, by generating an ∼ 105 GHz 5 × FSR (free spectral range) soliton crystal comb in the microcavity, the energy conversion efficiency can be further increased up to 56%.
微腔中时间耗散孤子的非线性物理动力学阻碍了它们从典型的非线性能量转换效率小于1%的泵浦激光器中获得高功率。在这里,我们通过实验证明了一种使用高耦合强度、大模体积和高q因子的硅微棒腔来提高孤子梳输出功率的直接方法,从而产生低重复率的耗散孤子(~ 21 GHz),能量转换效率超过20%。此外,通过在微腔中产生一个~ 105 GHz5×FSR(自由光谱范围)的孤子晶体梳,能量转换效率可进一步提高到56%。
{"title":"High energy efficiency soliton microcomb generation in high coupling strength, large mode volume, and ultra-high-Q micro-cavity","authors":"Wenwen Cui, Zheng Yi, Xinyu Ma, Yong Geng, Heng Zhou, Kun Qiu","doi":"10.3788/col202321.101902","DOIUrl":"https://doi.org/10.3788/col202321.101902","url":null,"abstract":"The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%. Here, we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength, large mode volume, and high-Q factor, resulting in a low-repetition-rate dissipative soliton ( ∼ 21 GHz) with an energy conversion efficiency exceeding 20%. Furthermore, by generating an ∼ 105 GHz 5 × FSR (free spectral range) soliton crystal comb in the microcavity, the energy conversion efficiency can be further increased up to 56%.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136206802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immersed liquid cooling Nd:YAG slab laser oscillator 浸入式液冷Nd:YAG平板激光振荡器
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.081401
Z. Ye, Xiaolong Zhou, Shushan Jiang, Meng Huang, Fei Wu, Dongge Lei
An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium. Using waveguides, a highly uniform pump beam distribution is achieved, and the flow velocity distribution is also optimized in the channels of the gain module (GM). At various flow velocities, the convective heat transfer coefficient (CHTC) is obtained. Experimentally, a maximum output power of 434 W is obtained with an optical – optical efficiency of 27.1% and a slope efficiency of 36.6%. To the best of our knowledge, it is the highest output power of an immersed liquid cooling laser oscillator with a single Nd:YAG slab.
以去离子水为冷却剂,钕钇铝石榴石为增益介质,研制了浸没式液冷板状激光器。利用波导实现了高度均匀的泵浦光束分布,并优化了增益模块(GM)通道内的流速分布。在不同流速下,得到了对流换热系数。实验结果表明,该激光器的最大输出功率为434 W,光效率为27.1%,斜率效率为36.6%。据我们所知,这是具有单个Nd:YAG板的浸入式液冷激光振荡器的最高输出功率。
{"title":"Immersed liquid cooling Nd:YAG slab laser oscillator","authors":"Z. Ye, Xiaolong Zhou, Shushan Jiang, Meng Huang, Fei Wu, Dongge Lei","doi":"10.3788/col202321.081401","DOIUrl":"https://doi.org/10.3788/col202321.081401","url":null,"abstract":"An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium. Using waveguides, a highly uniform pump beam distribution is achieved, and the flow velocity distribution is also optimized in the channels of the gain module (GM). At various flow velocities, the convective heat transfer coefficient (CHTC) is obtained. Experimentally, a maximum output power of 434 W is obtained with an optical – optical efficiency of 27.1% and a slope efficiency of 36.6%. To the best of our knowledge, it is the highest output power of an immersed liquid cooling laser oscillator with a single Nd:YAG slab.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"14 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87577277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-layered non-interleaved spin-insensitive metasurfaces for wavefront engineering 用于波前工程的单层非交织自旋不敏感超表面
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.010006
A. Khalid, Naeem Ullah, Yu Han, Urooj Asghar, Xiaocong Yuan, F. Feng
{"title":"Single-layered non-interleaved spin-insensitive metasurfaces for wavefront engineering","authors":"A. Khalid, Naeem Ullah, Yu Han, Urooj Asghar, Xiaocong Yuan, F. Feng","doi":"10.3788/col202321.010006","DOIUrl":"https://doi.org/10.3788/col202321.010006","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"23 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78071977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting the vector of nanoscale light field with atomic defect 具有原子缺陷的纳米尺度光场矢量检测
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.071202
Qiyu Wang, Zehao Wang, Xiang-Dong Chen, Fangwen Sun
Modulation of a vector light field has played an important role in the research of nanophotonics. However, it is still a great challenge to accurately measure the three-dimensional vector distribution at nanoscale. Here, based on the interaction between the light field and atomic-sized nitrogen-vacancy (NV) color center in diamonds, we demonstrate an efficient method for vectorial mapping of the light-field distribution at nanoscale. Single NV centers with different but well-defined symmetry axes are selected and then interact with the same tightly focused light field. The excitation of a single NV center is related to the angle between the NV center axis and the polarization of the light field. Then the fluorescence patterns of different NV centers provide the information on the vectorial light field distribution. Subsequently analyzing the fluorescence patterns with the help of a deep neural network, the intensity and phase of the light-field vectorial components are fully reconstructed with nanometer resolution. The experimental results are in agreement with theoretical calculations. It demonstrates that our method can help to study light – matter interaction at nanoscale and extend the application of vector light fields in research on nanophotonics.
矢量光场的调制在纳米光子学研究中起着重要的作用。然而,在纳米尺度上精确测量三维矢量分布仍然是一个巨大的挑战。本文基于金刚石中光场与原子大小的氮空位(NV)色中心之间的相互作用,提出了一种纳米尺度光场分布矢量映射的有效方法。选择具有不同但定义明确的对称轴的单个NV中心,然后与相同的紧密聚焦光场相互作用。单个NV中心的激发与NV中心轴与光场偏振的夹角有关。不同NV中心的荧光模式提供了矢量光场分布的信息。随后,利用深度神经网络分析荧光模式,以纳米分辨率完全重建光场矢量分量的强度和相位。实验结果与理论计算相吻合。这表明我们的方法有助于在纳米尺度上研究光与物质的相互作用,并扩展了矢量光场在纳米光子学研究中的应用。
{"title":"Detecting the vector of nanoscale light field with atomic defect","authors":"Qiyu Wang, Zehao Wang, Xiang-Dong Chen, Fangwen Sun","doi":"10.3788/col202321.071202","DOIUrl":"https://doi.org/10.3788/col202321.071202","url":null,"abstract":"Modulation of a vector light field has played an important role in the research of nanophotonics. However, it is still a great challenge to accurately measure the three-dimensional vector distribution at nanoscale. Here, based on the interaction between the light field and atomic-sized nitrogen-vacancy (NV) color center in diamonds, we demonstrate an efficient method for vectorial mapping of the light-field distribution at nanoscale. Single NV centers with different but well-defined symmetry axes are selected and then interact with the same tightly focused light field. The excitation of a single NV center is related to the angle between the NV center axis and the polarization of the light field. Then the fluorescence patterns of different NV centers provide the information on the vectorial light field distribution. Subsequently analyzing the fluorescence patterns with the help of a deep neural network, the intensity and phase of the light-field vectorial components are fully reconstructed with nanometer resolution. The experimental results are in agreement with theoretical calculations. It demonstrates that our method can help to study light – matter interaction at nanoscale and extend the application of vector light fields in research on nanophotonics.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"13 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78812473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Optics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1