首页 > 最新文献

Chinese Optics Letters最新文献

英文 中文
Dual photopatterning of rotational fingerprint superstructures 旋转指纹超结构的双光模式
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.041603
Jintao Pan, Jiaxin Qian, Lingling Ma, Zeyu Wang, Ren Zheng, Ning Wang, Bing-Xiang Li, Yanqing Lu
{"title":"Dual photopatterning of rotational fingerprint superstructures","authors":"Jintao Pan, Jiaxin Qian, Lingling Ma, Zeyu Wang, Ren Zheng, Ning Wang, Bing-Xiang Li, Yanqing Lu","doi":"10.3788/col202321.041603","DOIUrl":"https://doi.org/10.3788/col202321.041603","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72835832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic nanostructure characterized by deep-neural-network-assisted spectroscopy 用深度神经网络辅助光谱学表征等离子体纳米结构
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.010004
Qiao Dong, Wenqi Wang, Xinyi Cao, Yibo Xiao, Xiaohan Guo, Jingxuan Ma, Lianhui Wang, Li Gao
{"title":"Plasmonic nanostructure characterized by deep-neural-network-assisted spectroscopy","authors":"Qiao Dong, Wenqi Wang, Xinyi Cao, Yibo Xiao, Xiaohan Guo, Jingxuan Ma, Lianhui Wang, Li Gao","doi":"10.3788/col202321.010004","DOIUrl":"https://doi.org/10.3788/col202321.010004","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73750185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Beam homogenization structure for a laser illuminator design based on diode laser beam combining technology 基于二极管激光束组合技术的激光照明器光束均匀化结构设计
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.031405
Jinliang Han, Jun Zhang, X. Shan, Yawei Zhang, H. Peng, L. Qin, Lijun Wang
With the rapid development of laser technology, laser as the light source of night vision illuminating can realize long-dis-tance and clear imaging, which has been widely used in laser active illuminating field. A high-power diode laser with a wavelength of 808 nm was designed as the laser active illuminating source, and the output power of no less than 100 W was obtained by spatial beam multiplexing, polarization multiplexing, and high efficiency fiber coupling techniques. In view of the beam homogenization of illuminating source, a novel beam homogenization system based on waveguide is proposed in this work. A square spot with a horizontal divergence angle of 40°, a vertical divergence angle of 10°, and an illuminating power ratio of 4:1 was obtained by a collimating lens. Comparing with the traditional circular illuminating beam, the square illuminating beam can match the illuminating angle of CCD camera better, and the energy utilization rate is higher. In addition, by optimizing the structure of waveguide and collimating lens, the illuminating angle can be changed to meet the illuminating requirements under different conditions theoretically.
随着激光技术的飞速发展,激光作为夜视照明光源可以实现远距离、清晰的成像,在激光主动照明领域得到了广泛的应用。设计了波长为808 nm的大功率二极管激光器作为激光主动光源,通过空间波束复用、偏振复用和高效光纤耦合技术获得了不小于100 W的输出功率。针对光源光束的均匀化问题,提出了一种基于波导的光束均匀化系统。通过准直透镜得到水平发散角为40°、垂直发散角为10°、光照功率比为4:1的方形光斑。与传统的圆形照明光束相比,方形照明光束能更好地匹配CCD相机的照明角度,且能量利用率更高。此外,通过优化波导和准直透镜的结构,理论上可以改变照射角度,满足不同条件下的照射要求。
{"title":"Beam homogenization structure for a laser illuminator design based on diode laser beam combining technology","authors":"Jinliang Han, Jun Zhang, X. Shan, Yawei Zhang, H. Peng, L. Qin, Lijun Wang","doi":"10.3788/col202321.031405","DOIUrl":"https://doi.org/10.3788/col202321.031405","url":null,"abstract":"With the rapid development of laser technology, laser as the light source of night vision illuminating can realize long-dis-tance and clear imaging, which has been widely used in laser active illuminating field. A high-power diode laser with a wavelength of 808 nm was designed as the laser active illuminating source, and the output power of no less than 100 W was obtained by spatial beam multiplexing, polarization multiplexing, and high efficiency fiber coupling techniques. In view of the beam homogenization of illuminating source, a novel beam homogenization system based on waveguide is proposed in this work. A square spot with a horizontal divergence angle of 40°, a vertical divergence angle of 10°, and an illuminating power ratio of 4:1 was obtained by a collimating lens. Comparing with the traditional circular illuminating beam, the square illuminating beam can match the illuminating angle of CCD camera better, and the energy utilization rate is higher. In addition, by optimizing the structure of waveguide and collimating lens, the illuminating angle can be changed to meet the illuminating requirements under different conditions theoretically.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83029128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of 12th order harmonic mode-locking in a Nd-doped single-mode all-fiber laser operating at 0.9 µm 掺nd单模全光纤激光器12阶谐波锁模的产生,工作波长为0.9µm
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.011405
Bingxin Zhang, Ping Li, Zhaojun Liu, Ming Li, Jing Liu, Haoxu Zhao, Qiongyu Hu, Xiaohan Chen
Based on the Nd-doped single-mode fiber as the gain medium, an all-fiber 12th harmonic mode-locked (HML) laser operating at the 0.9 μ m waveband was obtained for the first time, to the best of our knowledge. A mandrel with a diameter of 10 mm was employed to introduce bending losses to suppress mode competition at 1.06 μ m, which resulted in a suppression ratio of up to 54 dB. The 1st – 12th order HML pulses with the tunable repetition rate of 494.62 kHz – 5.94 MHz were obtained in the mode-locked laser with a center wavelength of ∼ 904 nm. In addition, the laser has an extremely low threshold pump power of 88 mW. To the best of our knowledge, this is the first time that an HML pulse has been achieved in a 0.9 μ m Nd-doped single-mode all-fiber mode-locked laser with the advantages of low cost, simple structure, and compactness, which could be an ideal light source for two-photon microscopy.
以掺nd单模光纤为增益介质,首次获得了工作在0.9 μ m波段的全光纤12谐波锁模(HML)激光器。采用直径为10 mm的芯轴引入弯曲损耗来抑制1.06 μ m处的模竞争,抑制比高达54 dB。在中心波长为~ 904 nm的锁模激光器中获得了重复频率为494.62 kHz ~ 5.94 MHz的1 ~ 12阶HML脉冲。此外,激光器有一个极低的阈值泵浦功率为88兆瓦。据我们所知,这是第一次在0.9 μ m掺nd单模全光纤锁模激光器中实现HML脉冲,具有成本低、结构简单、紧凑等优点,可以作为双光子显微镜的理想光源。
{"title":"Generation of 12th order harmonic mode-locking in a Nd-doped single-mode all-fiber laser operating at 0.9 µm","authors":"Bingxin Zhang, Ping Li, Zhaojun Liu, Ming Li, Jing Liu, Haoxu Zhao, Qiongyu Hu, Xiaohan Chen","doi":"10.3788/col202321.011405","DOIUrl":"https://doi.org/10.3788/col202321.011405","url":null,"abstract":"Based on the Nd-doped single-mode fiber as the gain medium, an all-fiber 12th harmonic mode-locked (HML) laser operating at the 0.9 μ m waveband was obtained for the first time, to the best of our knowledge. A mandrel with a diameter of 10 mm was employed to introduce bending losses to suppress mode competition at 1.06 μ m, which resulted in a suppression ratio of up to 54 dB. The 1st – 12th order HML pulses with the tunable repetition rate of 494.62 kHz – 5.94 MHz were obtained in the mode-locked laser with a center wavelength of ∼ 904 nm. In addition, the laser has an extremely low threshold pump power of 88 mW. To the best of our knowledge, this is the first time that an HML pulse has been achieved in a 0.9 μ m Nd-doped single-mode all-fiber mode-locked laser with the advantages of low cost, simple structure, and compactness, which could be an ideal light source for two-photon microscopy.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83116594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smith–Purcell radiation-like photoacoustic phased array Smith-Purcell类辐射光声相控阵
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.041901
Dongyi Shen, Guolin Zhao, Xianfeng Chen, W. Wan
{"title":"Smith–Purcell radiation-like photoacoustic phased array","authors":"Dongyi Shen, Guolin Zhao, Xianfeng Chen, W. Wan","doi":"10.3788/col202321.041901","DOIUrl":"https://doi.org/10.3788/col202321.041901","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81194217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photo-reconfigurable and electrically switchable spatial terahertz wave modulator [Invited] 光可重构和电可切换空间太赫兹波调制器[特邀]
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.010002
Hongguan Yu, Huacai Wang, Zhixiong Shen, Shina Tao, Shijun Ge, Wei Hu
Spatial terahertz wave modulators that can arbitrarily tailor the electromagnetic wavefront are in high demand in nondestructive inspections and high-capacity wireless communications. Here, we propose a liquid crystal integrated metadevice. It modulates the terahertz wave based on the adjustable electromagnetically induced transparency analog when spatially changing the environmental refractive index. The functions of the device can be arbitrarily programmed via photo-reorienting the directors of liquid crystals with a digital micromirror device-based exposing system. The thin liquid crystal layer can be further driven by an electric field, and thus the function can be rapidly switched. Amplitude modulation and the lens effect are demonstrated with modulation depths over 50% at 0.94 THz.
空间太赫兹波调制器可以任意调整电磁波前,在无损检测和大容量无线通信中有很高的需求。在此,我们提出一种液晶集成元器件。它在空间上改变环境折射率时,基于可调的电磁诱导透明度模拟来调制太赫兹波。该装置的功能可以通过一个基于数字微镜装置的曝光系统,通过液晶的光定向来任意编程。薄液晶层可进一步由电场驱动,从而实现功能的快速切换。在0.94太赫兹的调制深度超过50%时,证明了振幅调制和透镜效应。
{"title":"Photo-reconfigurable and electrically switchable spatial terahertz wave modulator [Invited]","authors":"Hongguan Yu, Huacai Wang, Zhixiong Shen, Shina Tao, Shijun Ge, Wei Hu","doi":"10.3788/col202321.010002","DOIUrl":"https://doi.org/10.3788/col202321.010002","url":null,"abstract":"Spatial terahertz wave modulators that can arbitrarily tailor the electromagnetic wavefront are in high demand in nondestructive inspections and high-capacity wireless communications. Here, we propose a liquid crystal integrated metadevice. It modulates the terahertz wave based on the adjustable electromagnetically induced transparency analog when spatially changing the environmental refractive index. The functions of the device can be arbitrarily programmed via photo-reorienting the directors of liquid crystals with a digital micromirror device-based exposing system. The thin liquid crystal layer can be further driven by an electric field, and thus the function can be rapidly switched. Amplitude modulation and the lens effect are demonstrated with modulation depths over 50% at 0.94 THz.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83191604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Widely tunable 2 µm optical vortex from a Tm:YAP laser Tm:YAP激光器可宽调谐的2µm光学涡旋
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.021405
Jingjing Zhou, Changsheng Zheng, Bin Chen, Ning Zhang, Qinggang Gao, Hangqi Yuan, D. Jia, Zhanxin Wang, Shande Liu, Yuping Zhang, Huiyun Zhang, Yongguang Zhao
In this paper, we report on a wide wavelength tuning optical vortex carrying orbital angular momentum (OAM) of ± ħ , from a thulium-doped yttrium aluminum perovskite (YAP) laser employing a birefringent filter. The OAM is experimentally found to be well maintained during the whole wavelength tuning process. The Laguerre – Gaussian (LG 0, (cid:1) 1 ) mode with a tuning range of 58 nm from 1934.8 to 1993.0 nm and LG 0, − 1 mode with a range of 76 nm from 1920.4 to 1996.6 nm, are, respectively, obtained. This is, to the best of our knowledge, the first experimental implementation of wavelength tuning for a scalar vortex laser in the 2 μ m spectral range, as well as the broadest tuning range ever reported from the vortex laser cavity. Such a vortex laser with robust structure and straightforward wavelength tuning capability will be an ideal light source for potential applications in the field of optical communication with one additional degree of freedom.
本文报道了采用双折射滤光片的掺铥钇铝钙钛矿(YAP)激光器产生的宽波长调谐光涡旋,其轨道角动量(OAM)为±τ。实验发现,在整个波长调谐过程中,OAM保持良好。得到了在1934.8 ~ 1993.0 nm范围内调谐范围为58 nm的Laguerre - Gaussian (LG 0, (cid:1) 1)模式和1920.4 ~ 1996.6 nm范围内调谐范围为76 nm的Laguerre - Gaussian (LG 0, (cid:1) 1)模式。据我们所知,这是第一次在2 μ m光谱范围内实现标量涡旋激光器波长调谐的实验,也是迄今为止报道的涡旋激光腔最宽的调谐范围。这种涡旋激光器结构坚固,具有直接的波长调谐能力,在光通信领域具有一个额外的自由度,是一种理想的光源。
{"title":"Widely tunable 2 µm optical vortex from a Tm:YAP laser","authors":"Jingjing Zhou, Changsheng Zheng, Bin Chen, Ning Zhang, Qinggang Gao, Hangqi Yuan, D. Jia, Zhanxin Wang, Shande Liu, Yuping Zhang, Huiyun Zhang, Yongguang Zhao","doi":"10.3788/col202321.021405","DOIUrl":"https://doi.org/10.3788/col202321.021405","url":null,"abstract":"In this paper, we report on a wide wavelength tuning optical vortex carrying orbital angular momentum (OAM) of ± ħ , from a thulium-doped yttrium aluminum perovskite (YAP) laser employing a birefringent filter. The OAM is experimentally found to be well maintained during the whole wavelength tuning process. The Laguerre – Gaussian (LG 0, (cid:1) 1 ) mode with a tuning range of 58 nm from 1934.8 to 1993.0 nm and LG 0, − 1 mode with a range of 76 nm from 1920.4 to 1996.6 nm, are, respectively, obtained. This is, to the best of our knowledge, the first experimental implementation of wavelength tuning for a scalar vortex laser in the 2 μ m spectral range, as well as the broadest tuning range ever reported from the vortex laser cavity. Such a vortex laser with robust structure and straightforward wavelength tuning capability will be an ideal light source for potential applications in the field of optical communication with one additional degree of freedom.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82757207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon pair generation in lithium niobate waveguide periodically poled by femtosecond laser 飞秒激光周期性极化铌酸锂波导中光子对的产生
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.042701
{"title":"Photon pair generation in lithium niobate waveguide periodically poled by femtosecond laser","authors":"","doi":"10.3788/col202321.042701","DOIUrl":"https://doi.org/10.3788/col202321.042701","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89748301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station 中国空间站冷却原子云的动量滤波方案
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.080201
Hui Li, Biao Wu, Jiachen Yu, X. Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen
To obtain cold atom samples with temperatures lower than 100 pK in the cold atom physics rack experiment of the Chinese Space Station, we propose to use the momentum filtering method for deep cooling of atoms. This paper introduces the experimental results of the momentum filtering method verified by our ground testing system. In the experiment, we designed a specific experimental sequence of standing-wave light pulses to control the temperature, atomic number, and size of the atomic cloud. The results show that the momentum filter can effectively and conveniently reduce the temperature of the atomic cloud and the energy of Bose – Einstein condensation, and can be flexibly combined with other cooling methods to enhance the cooling effect. This work provides a method for the atomic cooling scheme of the ultra-cold atomic system on the ground and on the space station, and shows a way of deep cooling atoms.
为了在中国空间站冷原子物理架实验中获得温度低于100pk的冷原子样品,我们提出采用动量滤波方法对原子进行深度冷却。本文介绍了动量滤波方法的实验结果,并通过我们的地面测试系统进行了验证。在实验中,我们设计了特定的驻波光脉冲实验序列来控制原子云的温度、原子序数和大小。结果表明,动量过滤器可以有效、方便地降低原子云的温度和玻色-爱因斯坦凝聚的能量,并且可以灵活地与其他冷却方法相结合,以增强冷却效果。本工作为地面和空间站超冷原子系统的原子冷却方案提供了一种方法,展示了一种原子深度冷却的方法。
{"title":"Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station","authors":"Hui Li, Biao Wu, Jiachen Yu, X. Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen","doi":"10.3788/col202321.080201","DOIUrl":"https://doi.org/10.3788/col202321.080201","url":null,"abstract":"To obtain cold atom samples with temperatures lower than 100 pK in the cold atom physics rack experiment of the Chinese Space Station, we propose to use the momentum filtering method for deep cooling of atoms. This paper introduces the experimental results of the momentum filtering method verified by our ground testing system. In the experiment, we designed a specific experimental sequence of standing-wave light pulses to control the temperature, atomic number, and size of the atomic cloud. The results show that the momentum filter can effectively and conveniently reduce the temperature of the atomic cloud and the energy of Bose – Einstein condensation, and can be flexibly combined with other cooling methods to enhance the cooling effect. This work provides a method for the atomic cooling scheme of the ultra-cold atomic system on the ground and on the space station, and shows a way of deep cooling atoms.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86537915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immersed liquid cooling Nd:YAG slab laser oscillator 浸入式液冷Nd:YAG平板激光振荡器
IF 3.5 2区 物理与天体物理 Q2 Engineering Pub Date : 2023-01-01 DOI: 10.3788/col202321.081401
Z. Ye, Xiaolong Zhou, Shushan Jiang, Meng Huang, Fei Wu, Dongge Lei
An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium. Using waveguides, a highly uniform pump beam distribution is achieved, and the flow velocity distribution is also optimized in the channels of the gain module (GM). At various flow velocities, the convective heat transfer coefficient (CHTC) is obtained. Experimentally, a maximum output power of 434 W is obtained with an optical – optical efficiency of 27.1% and a slope efficiency of 36.6%. To the best of our knowledge, it is the highest output power of an immersed liquid cooling laser oscillator with a single Nd:YAG slab.
以去离子水为冷却剂,钕钇铝石榴石为增益介质,研制了浸没式液冷板状激光器。利用波导实现了高度均匀的泵浦光束分布,并优化了增益模块(GM)通道内的流速分布。在不同流速下,得到了对流换热系数。实验结果表明,该激光器的最大输出功率为434 W,光效率为27.1%,斜率效率为36.6%。据我们所知,这是具有单个Nd:YAG板的浸入式液冷激光振荡器的最高输出功率。
{"title":"Immersed liquid cooling Nd:YAG slab laser oscillator","authors":"Z. Ye, Xiaolong Zhou, Shushan Jiang, Meng Huang, Fei Wu, Dongge Lei","doi":"10.3788/col202321.081401","DOIUrl":"https://doi.org/10.3788/col202321.081401","url":null,"abstract":"An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium. Using waveguides, a highly uniform pump beam distribution is achieved, and the flow velocity distribution is also optimized in the channels of the gain module (GM). At various flow velocities, the convective heat transfer coefficient (CHTC) is obtained. Experimentally, a maximum output power of 434 W is obtained with an optical – optical efficiency of 27.1% and a slope efficiency of 36.6%. To the best of our knowledge, it is the highest output power of an immersed liquid cooling laser oscillator with a single Nd:YAG slab.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87577277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Optics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1