Abstract This paper reports a novel approach in the study of trace-element mobility during the argillization of volcanic glass that is based on in situ laser ablation inductively coupled plasma mass spectrometry glass analyses and that of spatially related illite-smectite collected in the form of fraction separates. The material studied originates from lacustrine sediments of the Dinaride Lake System that bear evidence of intensive weathering of distal tephra during the Miocene climatic optimum. Yttrium and HREE were probably mobilized from decomposing glass in the form of carbonate complexes and were consequently depleted significantly in the clays studied. On the other hand, the Mg-rich illite-smectite demonstrates an elevated adsorption potential of solvated LREE complexes. This may be explained through clay surface geochemistry controlled largely by Mg for Al octahedral substitution. This paper highlights the role of eogenetic 2:1 clay aluminosilicates that, under favourable geological conditions, may be conducive to secondary REE enrichment and the formation of potential ion adsorption-type deposits.
{"title":"Assessing trace-element mobility during alteration of rhyolite tephra from the Dinaride Lake System using glass-phase and clay-separate laser ablation inductively coupled plasma mass spectrometry","authors":"L. Badurina, B. Šegvić","doi":"10.1180/clm.2022.12","DOIUrl":"https://doi.org/10.1180/clm.2022.12","url":null,"abstract":"Abstract This paper reports a novel approach in the study of trace-element mobility during the argillization of volcanic glass that is based on in situ laser ablation inductively coupled plasma mass spectrometry glass analyses and that of spatially related illite-smectite collected in the form of fraction separates. The material studied originates from lacustrine sediments of the Dinaride Lake System that bear evidence of intensive weathering of distal tephra during the Miocene climatic optimum. Yttrium and HREE were probably mobilized from decomposing glass in the form of carbonate complexes and were consequently depleted significantly in the clays studied. On the other hand, the Mg-rich illite-smectite demonstrates an elevated adsorption potential of solvated LREE complexes. This may be explained through clay surface geochemistry controlled largely by Mg for Al octahedral substitution. This paper highlights the role of eogenetic 2:1 clay aluminosilicates that, under favourable geological conditions, may be conducive to secondary REE enrichment and the formation of potential ion adsorption-type deposits.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"57 1","pages":"1 - 6"},"PeriodicalIF":1.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45287091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Clay minerals are essential components of soil systems and understanding their role in soil structure and function is critical for soil environmental quality management and sustainable agricultural development. An in-depth study of clay minerals and the development of related materials is essential for a complete understanding and effective management of soil systems. This review is a detailed compilation of relevant studies over the past decade in this area, focusing on an overview of clay minerals and their modified materials and their regulation of soil structure and function. We focus on the direct influence of clay minerals on the physical, chemical and biological properties of soils, such as soil structure, soil fertility, plant growth, soil microbial activity and soil carbon sequestration. Finally, we concluded by summarizing the existing issues with clay mineral materials in soil improvement and by outlining potential future development trends and strategies.
{"title":"Engineering clay minerals to manage the functions of soils","authors":"Menghan Yu, Sarwar Muhammad Tariq, Huaming Yang","doi":"10.1180/clm.2022.19","DOIUrl":"https://doi.org/10.1180/clm.2022.19","url":null,"abstract":"Abstract Clay minerals are essential components of soil systems and understanding their role in soil structure and function is critical for soil environmental quality management and sustainable agricultural development. An in-depth study of clay minerals and the development of related materials is essential for a complete understanding and effective management of soil systems. This review is a detailed compilation of relevant studies over the past decade in this area, focusing on an overview of clay minerals and their modified materials and their regulation of soil structure and function. We focus on the direct influence of clay minerals on the physical, chemical and biological properties of soils, such as soil structure, soil fertility, plant growth, soil microbial activity and soil carbon sequestration. Finally, we concluded by summarizing the existing issues with clay mineral materials in soil improvement and by outlining potential future development trends and strategies.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"57 1","pages":"51 - 69"},"PeriodicalIF":1.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46241122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. P. Nippes, P. D. Macruz, Thaísa Frossard Coslop, Deise Molinari, M. H. N. O. Scaliante
Abstract The worldwide use of pharmaceuticals is of concern to those researchers who develop new techniques for the removal of these compounds from the aquatic medium. The objective of the present work was to characterize and evaluate the performance of a commercial, bentonite-based organophilic clay in removing ivermectin from aqueous solution. The adsorbent was characterized by nitrogen physisorption, thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Batch-scale adsorption experiments were performed to evaluate the kinetics, isotherms, thermodynamics and effect of pH on removal of this drug and reuse of the clay. The bentonite has a small specific surface area with an irregular surface. The Elovich kinetic model fits the experimental data better than other models, indicating that chemisorption contributes to drug removal in this case. The Langmuir and Sips isothermal models best fit the experimental equilibrium data. The process was shown to be favorable (ΔG°ads<0), endothermic (ΔH°ads>0), with an increase in the degrees of freedom at the solid–liquid interface (ΔS°ads>0), and with characteristics of a physical-chemical adsorption process (Ea = 11.065 kJ mol–1) under the study conditions. Adsorption was favored at the natural pH of the solution and the organophilic clay could be regenerated with water and reused in consecutive adsorption cycles. The amount of ivermectin adsorbed on the organophilic clay ranged from 1.78 to 3.88 mg g–1. The organophilic clay was shown to be a cost-effective potential adsorbent for ivermectin-contaminated water-treatment applications.
{"title":"Removal of ivermectin from aqueous media using commercial, bentonite-based organophilic clay as an adsorbent","authors":"R. P. Nippes, P. D. Macruz, Thaísa Frossard Coslop, Deise Molinari, M. H. N. O. Scaliante","doi":"10.1180/clm.2022.16","DOIUrl":"https://doi.org/10.1180/clm.2022.16","url":null,"abstract":"Abstract The worldwide use of pharmaceuticals is of concern to those researchers who develop new techniques for the removal of these compounds from the aquatic medium. The objective of the present work was to characterize and evaluate the performance of a commercial, bentonite-based organophilic clay in removing ivermectin from aqueous solution. The adsorbent was characterized by nitrogen physisorption, thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Batch-scale adsorption experiments were performed to evaluate the kinetics, isotherms, thermodynamics and effect of pH on removal of this drug and reuse of the clay. The bentonite has a small specific surface area with an irregular surface. The Elovich kinetic model fits the experimental data better than other models, indicating that chemisorption contributes to drug removal in this case. The Langmuir and Sips isothermal models best fit the experimental equilibrium data. The process was shown to be favorable (ΔG°ads<0), endothermic (ΔH°ads>0), with an increase in the degrees of freedom at the solid–liquid interface (ΔS°ads>0), and with characteristics of a physical-chemical adsorption process (Ea = 11.065 kJ mol–1) under the study conditions. Adsorption was favored at the natural pH of the solution and the organophilic clay could be regenerated with water and reused in consecutive adsorption cycles. The amount of ivermectin adsorbed on the organophilic clay ranged from 1.78 to 3.88 mg g–1. The organophilic clay was shown to be a cost-effective potential adsorbent for ivermectin-contaminated water-treatment applications.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"57 1","pages":"21 - 30"},"PeriodicalIF":1.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46884436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Boukhemkhem, Bamhammed Aissa-Ouaissi-Sekkouti, J. Bedia, C. Belver, C. B. Molina
Abstract This work studied the efficiency of Tamazert kaolinite clay for adsorbing the cationic dye crystal violet from an aqueous solution in a batch system. The kinetics of the process and the equilibrium of adsorption were studied using non-linear models. The characterization of Tamazert kaolinite clay showed that it has structural, textural and surface properties that are suitable for adsorption. The effects of various process parameters such as contact time, initial dye concentration, initial pH, adsorbent dose and temperature were tested. The kinetic study using non-linear regression showed that the pseudo-second order model best fitted the experimental data. The intra-particle model was also used to estimate the contribution of intra-particle diffusion to this process. The adsorption isotherms were fitted to Freundlich, Langmuir and Redlich–Peterson models, showing that the adsorption is limited to a monolayer with a monolayer adsorption capacity of 44.2 mg g–1. The thermodynamic study indicated that the process is exothermic, spontaneous and accompanied by a decrease in entropy.
{"title":"Adsorption of crystal violet on kaolinite clay: kinetic and equilibrium study using non-linear models","authors":"A. Boukhemkhem, Bamhammed Aissa-Ouaissi-Sekkouti, J. Bedia, C. Belver, C. B. Molina","doi":"10.1180/clm.2022.18","DOIUrl":"https://doi.org/10.1180/clm.2022.18","url":null,"abstract":"Abstract This work studied the efficiency of Tamazert kaolinite clay for adsorbing the cationic dye crystal violet from an aqueous solution in a batch system. The kinetics of the process and the equilibrium of adsorption were studied using non-linear models. The characterization of Tamazert kaolinite clay showed that it has structural, textural and surface properties that are suitable for adsorption. The effects of various process parameters such as contact time, initial dye concentration, initial pH, adsorbent dose and temperature were tested. The kinetic study using non-linear regression showed that the pseudo-second order model best fitted the experimental data. The intra-particle model was also used to estimate the contribution of intra-particle diffusion to this process. The adsorption isotherms were fitted to Freundlich, Langmuir and Redlich–Peterson models, showing that the adsorption is limited to a monolayer with a monolayer adsorption capacity of 44.2 mg g–1. The thermodynamic study indicated that the process is exothermic, spontaneous and accompanied by a decrease in entropy.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"57 1","pages":"41 - 50"},"PeriodicalIF":1.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48187153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Mineral reactions in soils demonstrably take place on a human timescale. The weathering of silicate ‘rock-forming’ minerals releases nutrients that are essential for plant growth, including silica. This process consumes CO2, which is ultimately derived from the atmosphere, through enhanced rock weathering. From a human perspective, the weathering process has two beneficial functions – crop nutrition and climate mitigation – through the removal of atmospheric CO2. By considering these as a coupled process, the release of silica during weathering can be matched to what is taken from the soil by a crop (e.g. wheat). A simple analysis shows that the amount of silica that accumulates in wheat during a 4 month growing period is readily released by the weathering of pyroxene and plagioclase, minerals that commonly occur in basaltic igneous rocks. In contrast, the dissolution rate for quartz is so low that it cannot supply the silica taken up by the crop and is inert. Similarly, dissolution of clay minerals releases sufficient silica for plant uptake. Rapid weathering of silicate minerals within soils is evident from images of surfaces of grains exposed in soils for periods of 10–100 years. The evidence for silicate rock weathering as part of the soil system that sustains humanity is provided by the vegetation that we see around us.
{"title":"Mineral stabilities in soils: how minerals can feed the world and mitigate climate change","authors":"D. A. C. Manning","doi":"10.1180/clm.2022.17","DOIUrl":"https://doi.org/10.1180/clm.2022.17","url":null,"abstract":"Abstract Mineral reactions in soils demonstrably take place on a human timescale. The weathering of silicate ‘rock-forming’ minerals releases nutrients that are essential for plant growth, including silica. This process consumes CO2, which is ultimately derived from the atmosphere, through enhanced rock weathering. From a human perspective, the weathering process has two beneficial functions – crop nutrition and climate mitigation – through the removal of atmospheric CO2. By considering these as a coupled process, the release of silica during weathering can be matched to what is taken from the soil by a crop (e.g. wheat). A simple analysis shows that the amount of silica that accumulates in wheat during a 4 month growing period is readily released by the weathering of pyroxene and plagioclase, minerals that commonly occur in basaltic igneous rocks. In contrast, the dissolution rate for quartz is so low that it cannot supply the silica taken up by the crop and is inert. Similarly, dissolution of clay minerals releases sufficient silica for plant uptake. Rapid weathering of silicate minerals within soils is evident from images of surfaces of grains exposed in soils for periods of 10–100 years. The evidence for silicate rock weathering as part of the soil system that sustains humanity is provided by the vegetation that we see around us.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"57 1","pages":"31 - 40"},"PeriodicalIF":1.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42777443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Two novel modified montmorillonite (Mnt) components were prepared using Mnt nanoparticles and two surfactants: docosyl-trimethylammonium chloride (BTAC) and sodium dodecyl sulfate (SDS). These modified Mnts were used to remove a carcinogenic and harmful dye, crystal violet (CV), from solution. Optimization and modelling studies of the adsorption of these two modified Mnts were performed using response surface methodology. Four influential variables (concentration of adsorbent, temperature, pH and CV concentration) were studied to obtain the optimum conditions for CV removal. The optimal values of these variables for the two modified Mnts yielded 100% dye-removal efficiency. The optimum conditions for CV adsorption on Mnt-BTAC and Mnt-BTAC-SDS, respectively, are temperatures of 25.00 and 33.29°C, pH values of 9 and 10.1, CV concentrations of 50.00 and 10.44 mg L–1 and adsorbent concentrations of 1.00 and 0.98 g L–1. In equilibrium studies of the two modified Mnts, the Temkin isotherm was selected as an appropriate model, and in kinetic studies of these Mnts, the fractal-like integrated kinetics Langmuir model was found to be the best model. The Mnt-BTAC-SDS component is an affordable adsorbent with high adsorption capacity for CV.
摘要采用纳米Mnt和两种表面活性剂:二十二烷基三甲基氯化铵(BTAC)和十二烷基硫酸钠(SDS)制备了两种新型改性蒙脱土(Mnt)组分。这些改性的Mnts用于从溶液中去除致癌有害染料结晶紫(CV)。使用响应面方法对这两种改性Mnts的吸附进行了优化和建模研究。研究了四个影响因素(吸附剂浓度、温度、pH和CV浓度),以获得去除CV的最佳条件。两种改性Mnts的这些变量的最佳值产生100%的染料去除效率。在Mnt-BTAC和Mnt-BTAC-SDS上吸附CV的最佳条件分别为温度25.00和33.29°C,pH值9和10.1,CV浓度50.00和10.44 mg L–1,吸附剂浓度1.00和0.98 g L–1。在对两种改性Mnts的平衡研究中,选择Temkin等温线作为合适的模型,在对这些Mnts的动力学研究中,发现分形积分动力学Langmuir模型是最好的模型。Mnt BTAC SDS组分是一种价格合理的吸附剂,对CV具有高吸附能力。
{"title":"Efficient removal of crystal violet from solution by montmorillonite modified with docosyl-trimethylammonium chloride and sodium dodecyl sulfate: modelling, kinetics and equilibrium studies","authors":"Malihe Sarabadan, H. Bashiri, S. Mousavi","doi":"10.1180/clm.2022.15","DOIUrl":"https://doi.org/10.1180/clm.2022.15","url":null,"abstract":"Abstract Two novel modified montmorillonite (Mnt) components were prepared using Mnt nanoparticles and two surfactants: docosyl-trimethylammonium chloride (BTAC) and sodium dodecyl sulfate (SDS). These modified Mnts were used to remove a carcinogenic and harmful dye, crystal violet (CV), from solution. Optimization and modelling studies of the adsorption of these two modified Mnts were performed using response surface methodology. Four influential variables (concentration of adsorbent, temperature, pH and CV concentration) were studied to obtain the optimum conditions for CV removal. The optimal values of these variables for the two modified Mnts yielded 100% dye-removal efficiency. The optimum conditions for CV adsorption on Mnt-BTAC and Mnt-BTAC-SDS, respectively, are temperatures of 25.00 and 33.29°C, pH values of 9 and 10.1, CV concentrations of 50.00 and 10.44 mg L–1 and adsorbent concentrations of 1.00 and 0.98 g L–1. In equilibrium studies of the two modified Mnts, the Temkin isotherm was selected as an appropriate model, and in kinetic studies of these Mnts, the fractal-like integrated kinetics Langmuir model was found to be the best model. The Mnt-BTAC-SDS component is an affordable adsorbent with high adsorption capacity for CV.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"57 1","pages":"7 - 20"},"PeriodicalIF":1.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41716245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Sonoyama, Shizuka Yamada, T. Ota, Haruna Inagaki, Patrick K. Dedetemo, Satoshi Yoshida
Abstract The surface coating of a gas reaction electrode with layered double hydroxides (LDHs) featuring various electrode catalyst activities was prepared via electrodeposition and the subsequent crystal growth of LDHs. LDH formation was confirmed by X-ray diffraction and Raman scattering measurements after subsequent crystal growth on respective electrodeposited precursor films in Ni-Fe and Zn-Al LDH systems. However, the crystal growth of LDHs in Ni-Mn and Cu-Mn systems was observed on the Mg-Al LDH-electrodeposited films. LDH films were also deposited on the surface of a carbon paper electrode with a rugged surface via electrodeposition and subsequent crystal growth. Using the prepared LDH-coated carbon paper electrodes, the electrode catalytic activity for the oxygen reduction reaction (ORR) was examined. For Ni-Mn, Ni-Al and Ni-Fe LDH-coated carbon paper electrodes, the threshold voltages of the ORR decreased. Hence, the LDHs electrodeposited on a gas reaction electrode have high electrochemical catalytic activity for the ORR.
{"title":"Preparation of layered double hydroxide films using an electrodeposition and subsequent crystal growth method","authors":"N. Sonoyama, Shizuka Yamada, T. Ota, Haruna Inagaki, Patrick K. Dedetemo, Satoshi Yoshida","doi":"10.1180/clm.2022.8","DOIUrl":"https://doi.org/10.1180/clm.2022.8","url":null,"abstract":"Abstract The surface coating of a gas reaction electrode with layered double hydroxides (LDHs) featuring various electrode catalyst activities was prepared via electrodeposition and the subsequent crystal growth of LDHs. LDH formation was confirmed by X-ray diffraction and Raman scattering measurements after subsequent crystal growth on respective electrodeposited precursor films in Ni-Fe and Zn-Al LDH systems. However, the crystal growth of LDHs in Ni-Mn and Cu-Mn systems was observed on the Mg-Al LDH-electrodeposited films. LDH films were also deposited on the surface of a carbon paper electrode with a rugged surface via electrodeposition and subsequent crystal growth. Using the prepared LDH-coated carbon paper electrodes, the electrode catalytic activity for the oxygen reduction reaction (ORR) was examined. For Ni-Mn, Ni-Al and Ni-Fe LDH-coated carbon paper electrodes, the threshold voltages of the ORR decreased. Hence, the LDHs electrodeposited on a gas reaction electrode have high electrochemical catalytic activity for the ORR.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"284 - 291"},"PeriodicalIF":1.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46866448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the chemical composition and phase structure of ‘Ru-type ware’ bodies under the influence of firing temperature – CORRIGENDUM","authors":"Bo Wu, Wei-jie Zhao","doi":"10.1180/clm.2022.9","DOIUrl":"https://doi.org/10.1180/clm.2022.9","url":null,"abstract":"","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"306 - 306"},"PeriodicalIF":1.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42429087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Comin, Alexandre Zaccaron, Vítor de Souza Nandi, J. Inocente, Thuani Gesser Muller, A. D. Dal Bó, A. Bernardin, Michael Peterson
Abstract Clays are raw materials with properties that are necessary for the manufacture of ceramic tiles. The characteristics of clay ceramic raw materials may vary within the same mineral deposit. Clay blending promotes better use of clay reserves, thereby increasing the applicability and life cycle of raw materials. Therefore, it is important to understand the mechanisms controlling the firing of ceramic tiles. In this study, three different clays from a clay deposit were assessed and ten formulations were prepared using the mixture design method. The formulations were analysed using differential thermal and thermogravimetric analyses and dilatometric analysis. Subsequently, the most refractory and fluxing formulations were subjected to thermal tests under various heating rates, similar to the process used for the calculation of apparent sintering activation energy for the densification of clays and for pyroplasticity tests. It is suggested that a mineral deposit can be assessed based on activation energy and thermal kinetics, expanding the alternatives available to the miner through the planning of mixtures with various clays and thus reducing the energy costs of the industrial process.
{"title":"Measurement of apparent sintering activation energy for densification of clays","authors":"Andrea Comin, Alexandre Zaccaron, Vítor de Souza Nandi, J. Inocente, Thuani Gesser Muller, A. D. Dal Bó, A. Bernardin, Michael Peterson","doi":"10.1180/clm.2022.11","DOIUrl":"https://doi.org/10.1180/clm.2022.11","url":null,"abstract":"Abstract Clays are raw materials with properties that are necessary for the manufacture of ceramic tiles. The characteristics of clay ceramic raw materials may vary within the same mineral deposit. Clay blending promotes better use of clay reserves, thereby increasing the applicability and life cycle of raw materials. Therefore, it is important to understand the mechanisms controlling the firing of ceramic tiles. In this study, three different clays from a clay deposit were assessed and ten formulations were prepared using the mixture design method. The formulations were analysed using differential thermal and thermogravimetric analyses and dilatometric analysis. Subsequently, the most refractory and fluxing formulations were subjected to thermal tests under various heating rates, similar to the process used for the calculation of apparent sintering activation energy for the densification of clays and for pyroplasticity tests. It is suggested that a mineral deposit can be assessed based on activation energy and thermal kinetics, expanding the alternatives available to the miner through the planning of mixtures with various clays and thus reducing the energy costs of the industrial process.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"299 - 305"},"PeriodicalIF":1.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47560560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}