Amr B. ElDeeb, V. Brichkin, M. Bertau, M. Awad, Yulia Savinova
Abstract The present work aims to increase the alumina percentage recovery (APR) extracted from kaolin via the addition of 0.5–4.0 wt.% charcoal as a thermochemical fluxing agent in the lime-sintering process at 1260–1360°C. The transformation, microstructural and microtextural changes and self-disintegration performance were characterized using thermogravimetric analysis and differential scanning calorimetry, X-ray diffraction/X-ray fluorescence, scanning electron microscopy coupled with energy-dispersive spectroscopy and laser diffraction particle-size distribution analysis. The optimum enhancement of APR, from 77.7% to 87.40%, was obtained by sintering at 1360°C with the addition of 1.5% charcoal. With further increase of the charcoal content to 4%, the APR reduced to 75.6%. Combustion of ≤1.5% charcoal provided additional heat that amorphized the crystalline calcium aluminate into highly leachable amorphous phases with improved self-disintegration efficiency. Sintering at temperatures of >1360°C or with charcoal contents >4% led to mullite crystallization and decreased alumina leachability, thereby reducing the APR. Charcoal is a cost-effective and energy-efficient activator to increase the APR extracted from kaolin.
{"title":"Enhanced alumina extraction from kaolin by thermochemical activation using charcoal","authors":"Amr B. ElDeeb, V. Brichkin, M. Bertau, M. Awad, Yulia Savinova","doi":"10.1180/clm.2022.7","DOIUrl":"https://doi.org/10.1180/clm.2022.7","url":null,"abstract":"Abstract The present work aims to increase the alumina percentage recovery (APR) extracted from kaolin via the addition of 0.5–4.0 wt.% charcoal as a thermochemical fluxing agent in the lime-sintering process at 1260–1360°C. The transformation, microstructural and microtextural changes and self-disintegration performance were characterized using thermogravimetric analysis and differential scanning calorimetry, X-ray diffraction/X-ray fluorescence, scanning electron microscopy coupled with energy-dispersive spectroscopy and laser diffraction particle-size distribution analysis. The optimum enhancement of APR, from 77.7% to 87.40%, was obtained by sintering at 1360°C with the addition of 1.5% charcoal. With further increase of the charcoal content to 4%, the APR reduced to 75.6%. Combustion of ≤1.5% charcoal provided additional heat that amorphized the crystalline calcium aluminate into highly leachable amorphous phases with improved self-disintegration efficiency. Sintering at temperatures of >1360°C or with charcoal contents >4% led to mullite crystallization and decreased alumina leachability, thereby reducing the APR. Charcoal is a cost-effective and energy-efficient activator to increase the APR extracted from kaolin.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"269 - 283"},"PeriodicalIF":1.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49025637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In order to improve the removal efficiency of clays in oil refining, to explore the related factors and to clarify the removal mechanism of alkaline nitride, a series of modified clays was prepared to test removal of alkaline nitride from lubricating oil. After the addition of 1 wt.% FeCl3, the removal rate of alkaline nitride increased from 33.6% to 43.3%. Furthermore, the acidity and chlorine content did not exceed acceptable levels. The testing methods of N2 adsorption–desorption, particle-size distribution, Fourier-transform infrared spectroscopy and X-ray diffraction were conducted to verify the removal mechanism. The removal rate of alkaline nitride is mainly related to the density of Lewis acid sites. The Fourier-transform infrared spectra confirmed the existence of the complexation reaction. The basic nitrides were removed by chemical adsorption via Fe3+-complexation.
{"title":"Removal of alkaline nitride from lubricating oil by modified clays","authors":"Ming-Rui Chen, Naiwang Liu, Li Shi, Xuan Meng","doi":"10.1180/clm.2022.6","DOIUrl":"https://doi.org/10.1180/clm.2022.6","url":null,"abstract":"Abstract In order to improve the removal efficiency of clays in oil refining, to explore the related factors and to clarify the removal mechanism of alkaline nitride, a series of modified clays was prepared to test removal of alkaline nitride from lubricating oil. After the addition of 1 wt.% FeCl3, the removal rate of alkaline nitride increased from 33.6% to 43.3%. Furthermore, the acidity and chlorine content did not exceed acceptable levels. The testing methods of N2 adsorption–desorption, particle-size distribution, Fourier-transform infrared spectroscopy and X-ray diffraction were conducted to verify the removal mechanism. The removal rate of alkaline nitride is mainly related to the density of Lewis acid sites. The Fourier-transform infrared spectra confirmed the existence of the complexation reaction. The basic nitrides were removed by chemical adsorption via Fe3+-complexation.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"261 - 268"},"PeriodicalIF":1.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45760042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Wu, Shi-Jiang He, Dongmei Li, Yang Li, Hao Wang
Abstract Tungstophosphoric acid-intercalated MgAl layer double hydroxides (LDHs) are active catalysts for removing naphthenic acids (NAs) from petroleum via esterification. Due to their active sites being in the interlayer, the interlayer spacing of LDHs might affect their activity, particularly for NAs with various structures. Herein, two tungstophosphoric acid-intercalated MgAl LDHs with various interlayer spacings (d003 = 1.46 and 1.07 nm) synthesized by varying the ion-exchange time were used as catalysts for esterification between NAs and ethylene glycol. Six NAs with various side chains and rings were used as model compounds to investigate the effects of NA structures and d003 values on the activity of LDHs. In general, NAs with large molecule sizes and steric hindrances are less reactive over the same catalyst. The LDH with a larger d003 value favours the esterification of NAs regardless of their structure, particularly NAs with large molecule sizes and steric hindrances. However, a large d003 is less effective for esterification of NAs with conjugated carboxyl groups. An enlarged interlayer space might facilitate NA molecules to access the interlayer of LDHs so as to come into contact with the catalytic sites, making this process responsible for the enhanced reactivity. The esterification kinetics of cyclohexanecarboxylic acid over these LDHs follow a first-order reaction. The activation energies for the LDHs with large and small d003 values are 26.25 and 32.18 kJ mol–1, respectively.
{"title":"Esterification of naphthenic acids with various structures over tungstophosphoric acid-intercalated layer double hydroxide catalysts with various interlayer spacings","authors":"Yan Wu, Shi-Jiang He, Dongmei Li, Yang Li, Hao Wang","doi":"10.1180/clm.2022.3","DOIUrl":"https://doi.org/10.1180/clm.2022.3","url":null,"abstract":"Abstract Tungstophosphoric acid-intercalated MgAl layer double hydroxides (LDHs) are active catalysts for removing naphthenic acids (NAs) from petroleum via esterification. Due to their active sites being in the interlayer, the interlayer spacing of LDHs might affect their activity, particularly for NAs with various structures. Herein, two tungstophosphoric acid-intercalated MgAl LDHs with various interlayer spacings (d003 = 1.46 and 1.07 nm) synthesized by varying the ion-exchange time were used as catalysts for esterification between NAs and ethylene glycol. Six NAs with various side chains and rings were used as model compounds to investigate the effects of NA structures and d003 values on the activity of LDHs. In general, NAs with large molecule sizes and steric hindrances are less reactive over the same catalyst. The LDH with a larger d003 value favours the esterification of NAs regardless of their structure, particularly NAs with large molecule sizes and steric hindrances. However, a large d003 is less effective for esterification of NAs with conjugated carboxyl groups. An enlarged interlayer space might facilitate NA molecules to access the interlayer of LDHs so as to come into contact with the catalytic sites, making this process responsible for the enhanced reactivity. The esterification kinetics of cyclohexanecarboxylic acid over these LDHs follow a first-order reaction. The activation energies for the LDHs with large and small d003 values are 26.25 and 32.18 kJ mol–1, respectively.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"250 - 259"},"PeriodicalIF":1.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42762724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Rouhani, F. Farhadi, Mahsa Akbari Kenari, Effat Eskandari, S. Ramakrishna
Abstract Acid-activated clays are inexpensive materials that are used extensively in the removal of unsaturated compounds on an industrial scale. The performance of bentonitic clays in removing these compounds relies heavily on the types of raw clays and acids used in the activation process. In this work, we report on the removal of olefins from aromatic streams by bentonitic clays activated via two different routes. After preliminary tests of four different natural clays, the best clay was selected in terms of it having high swelling index, cation-exchange capacity, specific surface area and suspension stability values. Activation was achieved with hydrochloric acid (HCl) and sulfuric acid (H2SO4), and olefin removal was evaluated after holistic clay characterization by means of X-ray diffraction, X-ray fluorescence, Brunauer–Emmett–Teller (BET) specific surface area analysis, ζ-potential analysis, Fourier-transform infrared (FTIR) spectroscopy after treatment with pyridine, scanning electron microscopy and transmission electron microscopy. The increased basal spacing, replacement of H+ with interlayer cations and retained structural stability of the clay after acid treatment contributed to the improvement of olefin removal for HCl-activated clay. The HCl-activated clay was more efficient in terms of olefin removal than its H2SO4-activated counterpart, removing up to 90% of olefin components after 40 h. Based on pyridine-FTIR spectra and quantitative measurement of the acidic properties of the samples, HCl treatment increased the total number acid sites (Brønsted and Lewis) by approximately ninefold compared to the pristine natural clay and by approximately fourfold compared to the H2SO4-activated clay.
{"title":"Selection of suitable bentonite and the influence of various acids on the preparation of a special clay for the removal of trace olefins from aromatics","authors":"H. Rouhani, F. Farhadi, Mahsa Akbari Kenari, Effat Eskandari, S. Ramakrishna","doi":"10.1180/clm.2021.32","DOIUrl":"https://doi.org/10.1180/clm.2021.32","url":null,"abstract":"Abstract Acid-activated clays are inexpensive materials that are used extensively in the removal of unsaturated compounds on an industrial scale. The performance of bentonitic clays in removing these compounds relies heavily on the types of raw clays and acids used in the activation process. In this work, we report on the removal of olefins from aromatic streams by bentonitic clays activated via two different routes. After preliminary tests of four different natural clays, the best clay was selected in terms of it having high swelling index, cation-exchange capacity, specific surface area and suspension stability values. Activation was achieved with hydrochloric acid (HCl) and sulfuric acid (H2SO4), and olefin removal was evaluated after holistic clay characterization by means of X-ray diffraction, X-ray fluorescence, Brunauer–Emmett–Teller (BET) specific surface area analysis, ζ-potential analysis, Fourier-transform infrared (FTIR) spectroscopy after treatment with pyridine, scanning electron microscopy and transmission electron microscopy. The increased basal spacing, replacement of H+ with interlayer cations and retained structural stability of the clay after acid treatment contributed to the improvement of olefin removal for HCl-activated clay. The HCl-activated clay was more efficient in terms of olefin removal than its H2SO4-activated counterpart, removing up to 90% of olefin components after 40 h. Based on pyridine-FTIR spectra and quantitative measurement of the acidic properties of the samples, HCl treatment increased the total number acid sites (Brønsted and Lewis) by approximately ninefold compared to the pristine natural clay and by approximately fourfold compared to the H2SO4-activated clay.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"185 - 196"},"PeriodicalIF":1.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46635647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The interaction between chalcopyrite and illite particles was analysed using ζ-potential measurements and flotation tests. Statistically designed tests were used to examine the factors controlling flotation (frother concentration, dispersant concentration, froth height, airflow rate and amount of clay). Furthermore, the significance levels of the impacts of these factors on responses (chalcopyrite grade/recovery, pyrite grade/recovery, dynamic froth stability and mean bubble diameter) were determined. Chalcopyrite and pyrite ζ-potentials were measured in the presence of illite. The addition of 15% illite to the chalcopyrite, especially between pH 11 and 12, shifted the ζ-potential values closer to that of pure illite, indicating complete surface coating of chalcopyrite with illite. In the flotation experiments, better results were obtained in terms of chalcopyrite grade at a low airflow rate and a high froth height. With increasing froth height there was a decline in the gangue mineral recovery as the residence time of the froth increased. The most significant factor increasing pyrite recovery was the amount of clay. Although illite is considered to be the least problematic clay mineral for flotation, as reported in the literature, an illite content of as low as 5% in the ore decreased chalcopyrite grade by 3.83%. While K and Na contents of 4% were detected after flotation without the addition of illite, their abundance increased to 5.7% after the addition of illite.
{"title":"Study of chalcopyrite flotation in the presence of illite using a design of experiments approach","authors":"H. A. Taner, V. Onen","doi":"10.1180/clm.2021.35","DOIUrl":"https://doi.org/10.1180/clm.2021.35","url":null,"abstract":"Abstract The interaction between chalcopyrite and illite particles was analysed using ζ-potential measurements and flotation tests. Statistically designed tests were used to examine the factors controlling flotation (frother concentration, dispersant concentration, froth height, airflow rate and amount of clay). Furthermore, the significance levels of the impacts of these factors on responses (chalcopyrite grade/recovery, pyrite grade/recovery, dynamic froth stability and mean bubble diameter) were determined. Chalcopyrite and pyrite ζ-potentials were measured in the presence of illite. The addition of 15% illite to the chalcopyrite, especially between pH 11 and 12, shifted the ζ-potential values closer to that of pure illite, indicating complete surface coating of chalcopyrite with illite. In the flotation experiments, better results were obtained in terms of chalcopyrite grade at a low airflow rate and a high froth height. With increasing froth height there was a decline in the gangue mineral recovery as the residence time of the froth increased. The most significant factor increasing pyrite recovery was the amount of clay. Although illite is considered to be the least problematic clay mineral for flotation, as reported in the literature, an illite content of as low as 5% in the ore decreased chalcopyrite grade by 3.83%. While K and Na contents of 4% were detected after flotation without the addition of illite, their abundance increased to 5.7% after the addition of illite.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"197 - 209"},"PeriodicalIF":1.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43665882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Hierarchical layered double hydroxide (HLDH) was synthesized by using sodium dodecyl sulfate (SDS) as a soft-template agent for the removal of two charged organic dyes (i.e. methylene blue (MB; cationic dye) and methyl orange (MO; anionic dye)). The experimental results based on response surface methodology (RSM) demonstrated distinct removal behaviours of HLDH towards these two dyes: (1) the maximum capacity was 416.7 mg g–1 for MO and 58.7 mg g–1 for MB at 25°C; (2) the increase in temperature could enhance MO removal significantly, whereas it had a negligible effect on the MB treatment process; and (3) rapid removal of MB (5 min) compared to MO (480 min) was observed. In addition, the removal process for both dyes was pH-independent. Multiple characterization techniques further revealed the removal mechanisms, demonstrating that SDS played a significant role in the removal of both dyes; that is, MO replaced SDS to be intercalated into the HLDH interlayer via anion exchange. MB could influence the –SO3 group of SDS, resulting in it modifying the electrodensity of SDS. It could then be further combined with an SDS anion (DS–) via hydrophobic and electrostatic interactions to form DS-MB monolayers. This work not only provides an efficient capture agent for charged dyes, but also offers a deep insight into the underlying removal mechanism.
{"title":"Hierarchical layered double hydroxide for the removal of charged dyes: the role of an anionic surfactant","authors":"Xuefen Zhang, Mingxue Xiang, Zhongbang Zhu, Youqin Zou, Ping Zhang","doi":"10.1180/clm.2021.30","DOIUrl":"https://doi.org/10.1180/clm.2021.30","url":null,"abstract":"Abstract Hierarchical layered double hydroxide (HLDH) was synthesized by using sodium dodecyl sulfate (SDS) as a soft-template agent for the removal of two charged organic dyes (i.e. methylene blue (MB; cationic dye) and methyl orange (MO; anionic dye)). The experimental results based on response surface methodology (RSM) demonstrated distinct removal behaviours of HLDH towards these two dyes: (1) the maximum capacity was 416.7 mg g–1 for MO and 58.7 mg g–1 for MB at 25°C; (2) the increase in temperature could enhance MO removal significantly, whereas it had a negligible effect on the MB treatment process; and (3) rapid removal of MB (5 min) compared to MO (480 min) was observed. In addition, the removal process for both dyes was pH-independent. Multiple characterization techniques further revealed the removal mechanisms, demonstrating that SDS played a significant role in the removal of both dyes; that is, MO replaced SDS to be intercalated into the HLDH interlayer via anion exchange. MB could influence the –SO3 group of SDS, resulting in it modifying the electrodensity of SDS. It could then be further combined with an SDS anion (DS–) via hydrophobic and electrostatic interactions to form DS-MB monolayers. This work not only provides an efficient capture agent for charged dyes, but also offers a deep insight into the underlying removal mechanism.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"169 - 177"},"PeriodicalIF":1.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48079671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lihui Liu, Shuai Zhang, Qinfu Liu, Linsong Liu, Youjun Deng
Abstract Palygorskite-bearing claystones and mudstones were deposited in a salt lake in the middle and lower parts of the Neogene Baiyanghe Formation in the Yangtaiwatan Basin, China. The petrological, mineralogical and geochemical characteristics of the sediments were investigated to determine the factors controlling palygorskite formation. The palygorskite claystones and mudstones have distinctly varying mineral compositions. The claystones are composed of detrital minerals, palygorskite and illite, whereas the mudstones consist mainly of mixed-layer illite/smectite and illite. The palygorskite crystals were intact with sharp edges and interwoven with other minerals, indicating an authigenic origin. The chemical characteristics indicate that the palygorskite claystones in the middle part of the Baiyanghe Formation were deposited in a salt lake environment in an arid and hot climate. As the salinity of the lake gradually increased, the detrital minerals such as quartz, feldspar, dolomite and detrital clay minerals dissolved in the alkaline medium, thus providing Si4+, Mg2+ and Al3+ for the crystallization of palygorskite. The palygorskite coexists with certain amounts of detrital quartz and feldspar with limited roundness and sorting, indicating that the shallow lake of the basin under an oxidation environment may represent a favourable environment for the crystallization of palygorskite.
{"title":"Palaeoclimate, palaeosalinity and redox conditions control palygorskite claystone formation: an example from the Yangtaiwatan Basin, northwest China","authors":"Lihui Liu, Shuai Zhang, Qinfu Liu, Linsong Liu, Youjun Deng","doi":"10.1180/clm.2022.1","DOIUrl":"https://doi.org/10.1180/clm.2022.1","url":null,"abstract":"Abstract Palygorskite-bearing claystones and mudstones were deposited in a salt lake in the middle and lower parts of the Neogene Baiyanghe Formation in the Yangtaiwatan Basin, China. The petrological, mineralogical and geochemical characteristics of the sediments were investigated to determine the factors controlling palygorskite formation. The palygorskite claystones and mudstones have distinctly varying mineral compositions. The claystones are composed of detrital minerals, palygorskite and illite, whereas the mudstones consist mainly of mixed-layer illite/smectite and illite. The palygorskite crystals were intact with sharp edges and interwoven with other minerals, indicating an authigenic origin. The chemical characteristics indicate that the palygorskite claystones in the middle part of the Baiyanghe Formation were deposited in a salt lake environment in an arid and hot climate. As the salinity of the lake gradually increased, the detrital minerals such as quartz, feldspar, dolomite and detrital clay minerals dissolved in the alkaline medium, thus providing Si4+, Mg2+ and Al3+ for the crystallization of palygorskite. The palygorskite coexists with certain amounts of detrital quartz and feldspar with limited roundness and sorting, indicating that the shallow lake of the basin under an oxidation environment may represent a favourable environment for the crystallization of palygorskite.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"56 1","pages":"210 - 221"},"PeriodicalIF":1.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46583896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}