首页 > 最新文献

Combinatorics, Probability and Computing最新文献

英文 中文
Central limit theorem for components in meandric systems through high moments 通过高矩阵计算均方差系统成分的中心极限定理
Pub Date : 2024-04-29 DOI: 10.1017/s0963548324000117
Svante Janson, Paul Thévenin

We investigate here the behaviour of a large typical meandric system, proving a central limit theorem for the number of components of a given shape. Our main tool is a theorem of Gao and Wormald that allows us to deduce a central limit theorem from the asymptotics of large moments of our quantities of interest.

我们在此研究了一个典型的大型均方差系统的行为,证明了给定形状分量数量的中心极限定理。我们的主要工具是 Gao 和 Wormald 的一个定理,它允许我们从我们感兴趣的量的大矩渐近线推导出中心极限定理。
{"title":"Central limit theorem for components in meandric systems through high moments","authors":"Svante Janson, Paul Thévenin","doi":"10.1017/s0963548324000117","DOIUrl":"https://doi.org/10.1017/s0963548324000117","url":null,"abstract":"<p>We investigate here the behaviour of a large typical meandric system, proving a central limit theorem for the number of components of a given shape. Our main tool is a theorem of Gao and Wormald that allows us to deduce a central limit theorem from the asymptotics of large moments of our quantities of interest.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behaviour of the minimum degree throughout the -process 在整个过程中最低限度的行为
Pub Date : 2024-04-22 DOI: 10.1017/s0963548324000105
Jakob Hofstad
The $d$ -process generates a graph at random by starting with an empty graph with $n$ vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most $d-1$ and are not mutually joined. We show that, in the evolution of a random graph with $n$ vertices under the $d$ -process with $d$ fixed, with high probability, for each $j in {0,1,dots,d-2}$ , the minimum degree jumps from $j$ to $j+1$ when the number of steps left is on the order of $ln (n)^{d-j-1}$ . This answer
$d$ 过程随机生成一个图,它从一个有 $n$ 顶点的空图开始,然后在所有度数最多为 $d-1$ 且互不相连的顶点对中均匀随机地一次添加一条边。我们证明,在一个有 $n$ 顶点的随机图的演化过程中,在 $d$ 固定的情况下,对于 {0,1,dots,d-2}$ 中的每个 $j ,当剩余步数在 $ln (n)^{d-j-1}$ 的数量级上时,最小度从 $j$ 跳转到 $j+1$ 的概率很高。这回答了鲁辛斯基和沃玛尔德的一个问题。更具体地说,我们证明了当最后一个度数为 $j$ 的顶点消失时,剩余步数除以 $ln (n)^{d-j-1}$ 的分布收敛于均值为 $frac{j!}{2(d-1)!}$ 的指数随机变量;此外,这些 $d-1$ 分布是独立的。
{"title":"Behaviour of the minimum degree throughout the -process","authors":"Jakob Hofstad","doi":"10.1017/s0963548324000105","DOIUrl":"https://doi.org/10.1017/s0963548324000105","url":null,"abstract":"The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline2.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process generates a graph at random by starting with an empty graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline3.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline4.png\" /> <jats:tex-math> $d-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and are not mutually joined. We show that, in the evolution of a random graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline5.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices under the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline6.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline7.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fixed, with high probability, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline8.png\" /> <jats:tex-math> $j in {0,1,dots,d-2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the minimum degree jumps from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline9.png\" /> <jats:tex-math> $j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline10.png\" /> <jats:tex-math> $j+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> when the number of steps left is on the order of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline11.png\" /> <jats:tex-math> $ln (n)^{d-j-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answer","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalization of Bondy’s pancyclicity theorem 邦迪泛周期定理的一般化
Pub Date : 2024-04-17 DOI: 10.1017/s0963548324000075
Nemanja Draganić, David Munhá Correia, Benny Sudakov
The bipartite independence number of a graph $G$ , denoted as $tilde alpha (G)$ , is the minimal number $k$ such that there exist positive integers $a$ and $b$ with $a+b=k+1$ with the property that for any two disjoint sets $A,Bsubseteq V(G)$ with $|A|=a$ and $|B|=b$ , there is an edge between $A$ and $B$
图 $G$ 的双侧独立数表示为 $tilde alpha (G)$,是最小数 $k$,使得存在正整数 $a$ 和 $b$,且 $a+b=k+1$ 具有这样的性质:对于任意两个不相交的集合 $A,Bssubseteq V(G)$,且 $|A|=a$ 和 $|B|=b$ ,在 $A$ 和 $B$ 之间有一条边。McDiarmid 和 Yolov 证明,如果 $delta (G)geq tilde alpha (G)$ 那么 $G$ 是哈密顿的,这扩展了著名的狄拉克定理,即如果 $delta (G)geq |G|/2$ 那么 $G$ 是哈密顿的。1973 年,邦迪证明,除非 $G$ 是一个完整的二叉图,否则狄拉克的哈密顿性条件也意味着泛周期性,即存在从 $3$ 到 $n$ 的所有长度的周期。在本文中,我们证明了 $delta (G)geq tilde alpha (G)$ 意味着 $G$ 是泛周期的,或者说 $G=K_{frac{n}{2},frac{n}{2}$ ,从而扩展了麦克迪尔米德和约洛夫的结果,并推广了邦迪的经典定理。
{"title":"A generalization of Bondy’s pancyclicity theorem","authors":"Nemanja Draganić, David Munhá Correia, Benny Sudakov","doi":"10.1017/s0963548324000075","DOIUrl":"https://doi.org/10.1017/s0963548324000075","url":null,"abstract":"The <jats:italic>bipartite independence number</jats:italic> of a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline1.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, denoted as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline2.png\" /> <jats:tex-math> $tilde alpha (G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, is the minimal number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline3.png\" /> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that there exist positive integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline4.png\" /> <jats:tex-math> $a$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline5.png\" /> <jats:tex-math> $b$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline6.png\" /> <jats:tex-math> $a+b=k+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with the property that for any two disjoint sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline7.png\" /> <jats:tex-math> $A,Bsubseteq V(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline8.png\" /> <jats:tex-math> $|A|=a$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline9.png\" /> <jats:tex-math> $|B|=b$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is an edge between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline10.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000075_inline11.png\" /> <jats:tex-math> $B$ ","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The distribution of the maximum protection number in simply generated trees 简单生成树中最大保护数的分布
Pub Date : 2024-04-12 DOI: 10.1017/s0963548324000099
Clemens Heuberger, Sarah J. Selkirk, Stephan Wagner
The protection number of a vertex $v$ in a tree is the length of the shortest path from $v$ to any leaf contained in the maximal subtree where $v$ is the root. In this paper, we determine the distribution of the maximum protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh, and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree $1$ , then the maximum protection number is on average logarithmic in the tree size, with a discrete double-exponential limiting distribution. If no such vertices are allowed, the maximum protection number is doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained by studying the singular behaviour of the generating functions of trees with bounded protection number. While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a variant of that result in the second case.
树中顶点 $v$ 的保护数是指从 $v$ 到包含在最大子树(其中 $v$ 为根)中任何叶子的最短路径的长度。本文确定了简单生成树中顶点最大保护数的分布,从而完善了 Devroye、Goh 和 Zhao 的最新成果。我们可以观察到两种不同的情况:如果给定的树族允许外度为 1$ 的顶点,那么最大保护数平均与树的大小成对数关系,具有离散的双指数极限分布。如果不允许有这样的顶点,则最大保护数是树大小的双对数,且最多集中在两个值上。这些结果是通过研究具有有界保护数的树的生成函数的奇异行为得到的。在第一种情况下,可以使用普罗丁格和瓦格纳的一般分布结果,而在第二种情况下,我们证明了该结果的一个变体。
{"title":"The distribution of the maximum protection number in simply generated trees","authors":"Clemens Heuberger, Sarah J. Selkirk, Stephan Wagner","doi":"10.1017/s0963548324000099","DOIUrl":"https://doi.org/10.1017/s0963548324000099","url":null,"abstract":"The protection number of a vertex <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline1.png\" /> <jats:tex-math> $v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in a tree is the length of the shortest path from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline2.png\" /> <jats:tex-math> $v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to any leaf contained in the maximal subtree where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline3.png\" /> <jats:tex-math> $v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the root. In this paper, we determine the distribution of the maximum protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh, and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline4.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the maximum protection number is on average logarithmic in the tree size, with a discrete double-exponential limiting distribution. If no such vertices are allowed, the maximum protection number is doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained by studying the singular behaviour of the generating functions of trees with bounded protection number. While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a variant of that result in the second case.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algorithms for the ferromagnetic Potts model on expanders 扩展器上铁磁波茨模型的算法
Pub Date : 2024-04-05 DOI: 10.1017/s0963548324000087
Charlie Carlson, Ewan Davies, Nicolas Fraiman, Alexandra Kolla, Aditya Potukuchi, Corrine Yap
We give algorithms for approximating the partition function of the ferromagnetic $q$ -color Potts model on graphs of maximum degree $d$ . Our primary contribution is a fully polynomial-time approximation scheme for $d$ -regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters $d$ and $q$ .
我们给出了在最大阶数为 $d$ 的图形上近似铁磁 $q$ - color Potts 模型的分割函数的算法。我们的主要贡献是针对 $d$ 不规则图的全多项式时间近似方案,该方案在低温(即远离阶差阈值)下具有扩展条件。扩展条件比以前的工作要弱得多;例如,超立方体表现出的扩展就足够了。主要的改进来自于对标准聚合物模型的更清晰分析;我们利用极值图理论和卡格算法的应用来计算可能具有独立意义的切口。在有界度图上,在低温下逼近分割函数是#BIS-困难的,因此我们的算法可以被视为#BIS-困难实例是罕见的证据。我们还获得了有界度图吉布斯唯一性区域的高效算法。虽然我们的高温证明遵循更标准的聚合物模型分析,但我们的结果在已知的最大参数 $d$ 和 $q$ 范围内成立。
{"title":"Algorithms for the ferromagnetic Potts model on expanders","authors":"Charlie Carlson, Ewan Davies, Nicolas Fraiman, Alexandra Kolla, Aditya Potukuchi, Corrine Yap","doi":"10.1017/s0963548324000087","DOIUrl":"https://doi.org/10.1017/s0963548324000087","url":null,"abstract":"We give algorithms for approximating the partition function of the ferromagnetic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline1.png\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-color Potts model on graphs of maximum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline2.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our primary contribution is a fully polynomial-time approximation scheme for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline3.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline4.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline5.png\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antidirected subgraphs of oriented graphs 定向图的反向子图
Pub Date : 2024-03-06 DOI: 10.1017/s0963548324000038
Maya Stein, Camila Zárate-Guerén

We show that for every $eta gt 0$ every sufficiently large $n$-vertex oriented graph $D$ of minimum semidegree exceeding $(1+eta )frac k2$ contains every balanced antidirected tree with $k$ edges and bounded maximum degree, if $kge eta n$. In particular, this asymptotically confirms a conjecture of the first author for long antidirected paths and dense digraphs.

Further, we show that in the same setting, $D$ contains every $k$-edge antidirected subdivision of a sufficiently small complete graph, if the paths of the subdivision that have length

我们证明,对于每一个 $eta gt 0$,如果 $kge eta n$,每一个足够大的最小半度超过 $(1+eta )frac k2$的 $n$ 顶点定向图 $D$ 包含每一棵具有 $k$ 边和有界最大度的平衡反向树。此外,我们还证明了在同样的情况下,如果细分图中长度为 1$ 或 2$ 的路径跨越了一个森林,那么 $D$ 包含了一个足够小的完整图的每一个 $k$ 边的反向细分图。作为特例,我们可以找到长度最多为 $k$ 的所有反向循环。最后,我们讨论了 Addario-Berry、Havet、Linhares Sales、Reed 和 Thomassé 关于数图中反向树的猜想。我们证明,在 $n$ 有顶点定向图中,对于最大度有界且大小与 $n$ 成线性关系的所有平衡反向树来说,这一猜想近似为真。
{"title":"Antidirected subgraphs of oriented graphs","authors":"Maya Stein, Camila Zárate-Guerén","doi":"10.1017/s0963548324000038","DOIUrl":"https://doi.org/10.1017/s0963548324000038","url":null,"abstract":"<p>We show that for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$eta gt 0$</span></span></img></span></span> every sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>-vertex oriented graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$D$</span></span></img></span></span> of minimum semidegree exceeding <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$(1+eta )frac k2$</span></span></img></span></span> contains every balanced antidirected tree with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> edges and bounded maximum degree, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$kge eta n$</span></span></img></span></span>. In particular, this asymptotically confirms a conjecture of the first author for long antidirected paths and dense digraphs.</p><p>Further, we show that in the same setting, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$D$</span></span></img></span></span> contains every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-edge antidirected subdivision of a sufficiently small complete graph, if the paths of the subdivision that have length <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline9.png\"><spa","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of graphs of zero Turán density in a hypercube 超立方体中图兰密度为零的一类图形
Pub Date : 2024-03-05 DOI: 10.1017/s0963548324000063
Maria Axenovich

For a graph $H$ and a hypercube $Q_n$, $textrm{ex}(Q_n, H)$ is the largest number of edges in an $H$-free subgraph of $Q_n$. If $lim _{n rightarrow infty } textrm{ex}(Q_n, H)/|E(Q_n)| gt 0$, $H$ is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining $textrm{ex}(Q_n, H)$ and even identifying whether $H$ has a positive or zero Turán density remains a widely open question for general

对于图 $H$ 和超立方体 $Q_n$,$textrm{ex}(Q_n, H)$ 是 $Q_n$ 的无 $H$ 子图中最大的边数。如果 $lim _{n rightarrow infty }textrm{ex}(Q_n, H)/|E(Q_n)| gt 0$,$H$在超立方体中具有正图兰密度或简单地说具有正图兰密度;否则,它的图兰密度为零。对于一般的 $H$ 来说,确定 $textrm{ex}(Q_n,H)$,甚至识别 $H$ 是否具有正图兰密度或零图兰密度,仍然是一个广泛悬而未决的问题。通过将超立方体中的极值数与某些相应的超图联系起来,康伦发现了一大类图,即具有所谓的部分表示的图,它们的图兰密度为零。他问这是否给出了一个特征,即如果且仅如果一个图具有部分表示,那么它的图兰密度是否为零。在此,我们证明,正如康伦所怀疑的,情况并非如此。我们举例说明了一类没有部分表示,但另一方面图兰密度为零的图形。此外,我们还证明了在超立方体中,每个图块都有部分表示的图的图兰密度为零。
{"title":"A class of graphs of zero Turán density in a hypercube","authors":"Maria Axenovich","doi":"10.1017/s0963548324000063","DOIUrl":"https://doi.org/10.1017/s0963548324000063","url":null,"abstract":"<p>For a graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> and a hypercube <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{ex}(Q_n, H)$</span></span></img></span></span> is the largest number of edges in an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span>-free subgraph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>. If <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$lim _{n rightarrow infty } textrm{ex}(Q_n, H)/|E(Q_n)| gt 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{ex}(Q_n, H)$</span></span></img></span></span> and even identifying whether <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> has a positive or zero Turán density remains a widely open question for general <span><span><im","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp bounds for a discrete John’s theorem 离散约翰定理的锐界
Pub Date : 2024-03-05 DOI: 10.1017/s0963548324000051
Peter van Hintum, Peter Keevash

Tao and Vu showed that every centrally symmetric convex progression $Csubset mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} # C$. Berg and Henk improved the size bound to $d^{O(dlog d)} # C$. We obtain the bound $d^{O(d)} # C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.

陶和武证明了每个中心对称凸级数 $Csubset mathbb{Z}^d$ 都包含在大小为 $d^{O(d^2)}# C$ 的广义算术级数中。Berg 和 Henk 将大小边界改进为 $d^{O(dlog d)} # C$。我们得到的边界为 $d^{O(d)} # C$,它在隐含常数以内都是尖锐的,与约翰定理给出的连续环境下的边界形式相同。
{"title":"Sharp bounds for a discrete John’s theorem","authors":"Peter van Hintum, Peter Keevash","doi":"10.1017/s0963548324000051","DOIUrl":"https://doi.org/10.1017/s0963548324000051","url":null,"abstract":"<p>Tao and Vu showed that every centrally symmetric convex progression <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$Csubset mathbb{Z}^d$</span></span></img></span></span> is contained in a generalized arithmetic progression of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d^2)} # C$</span></span></img></span></span>. Berg and Henk improved the size bound to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(dlog d)} # C$</span></span></img></span></span>. We obtain the bound <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d)} # C$</span></span></img></span></span>, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large monochromatic components in expansive hypergraphs 扩张超图中的大型单色成分
Pub Date : 2024-03-05 DOI: 10.1017/s096354832400004x
Deepak Bal, Louis DeBiasio

A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary $r$-colouring of the complete $k$-uniform hypergraph $K_n^k$ when $kgeq 2$ and $kin {r-1,r}$. We prove a result which says that if one replaces $K_n^k$ in Gyárfás’ theorem by any ‘expansive’ $k$-uniform hypergraph on $n$ vertices (that is, a $k$-uniform hypergraph

Gyárfás [12] 的一个结果精确地确定了当 $kgeq 2$ 和 $kin{r-1,r}$ 时,完整 $k$ Uniform 超图 $K_n^k$ 的任意 $r$ 着色中最大单色分量的大小。我们证明了这样一个结果:如果把 Gyárfás 定理中的 $K_n^k$ 替换为任何在 $n$ 顶点上的 "扩张性"$k$-匀速超图(即在 $n$ 顶点上的 $k$ 匀速超图 $G$,其中 $e(V_1, ldots、V_k)gt 0$ 对于所有不相邻的集合 $V_1, ldots, V_ksubseteq V(G)$,对于 [k]$ 中的所有 $i 都是 $|V_i|gtalpha$),那么我们会得到一个大小基本相同的最大单色分量(在取决于 $r$ 和 $alpha$ 的小误差范围内)。Gyárfás 的结果等同于一个对偶问题,即确定一个具有 $n$ 边的任意 $r$ 部分 $r$-Uniform 超图 $H$ 的最小最大度,其中每组 $k$ 边都有一个共同交集。用这种语言表达,我们的结果就是说,如果把每组 $k$ 边有共同交集的条件换成这样的条件:对于每组 $k$ 不相交的集合 $E_1, ldots, E_ksubseteq E(H)$ 带有 $|E_i|gt alpha$、存在 $(e_1, ldots, e_k)in E_1times cdots times E_k$,使得 $e_1cap cdots cap e_kneq emptyset$,那么 $H$ 的最小可能最大度基本上是相同的(在取决于 $r$ 和 $alpha$ 的小误差范围内)。我们将在这种对偶设置中证明我们的结果。
{"title":"Large monochromatic components in expansive hypergraphs","authors":"Deepak Bal, Louis DeBiasio","doi":"10.1017/s096354832400004x","DOIUrl":"https://doi.org/10.1017/s096354832400004x","url":null,"abstract":"<p>A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$r$</span></span></img></span></span>-colouring of the complete <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K_n^k$</span></span></img></span></span> when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$kgeq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$kin {r-1,r}$</span></span></img></span></span>. We prove a result which says that if one replaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$K_n^k$</span></span></img></span></span> in Gyárfás’ theorem by any ‘expansive’ <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> vertices (that is, a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambri","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small subsets with large sumset: Beyond the Cauchy–Davenport bound 小子集与大和集:超越考奇-达文波特界限
Pub Date : 2024-02-21 DOI: 10.1017/s0963548324000014
Jacob Fox, Sammy Luo, Huy Tuan Pham, Yunkun Zhou
For a subset $A$ of an abelian group $G$ , given its size $|A|$ , its doubling $kappa =|A+A|/|A|$ , and a parameter $s$ which is small compared to $|A|$ , we study the size of the largest sumset $A+A'$ that can be guaranteed for a subset $A'$ of $A$ of size at most $s$ . We show that a subset $A'subseteq A$
对于无常群 $G$ 的子集 $A$,给定其大小 $|A|$,其倍增 $kappa =|A+A|/|A|$,以及一个与 $|A|$ 相比很小的参数 $s$,我们研究了对于大小最多为 $s$ 的 $A'$ 的子集 $A'$ 可以保证的最大和集 $A+A'$ 的大小。我们证明,可以找到一个大小至多为 $s$ 的子集 $A'subseteq A$,这样 $|A+A'| = Omega (!min!(kappa ^{1/3},s)|A|)$ 。因此,假定倍增 $kappa$ 很大,一个有界大小的子集就可以保证一个明显大于考奇-达文波特约束的和集。基于同样的想法,我们解决了博洛巴斯、利德和蒂巴的一个猜想,即对于大小至多为$alpha p$的$mathbb{F}_p$的子集$A,B$,对于一个合适的常数$alpha gt 0$,只需要B$中的三个元素$b_1,b_2,b_3就能保证$|A+{b_1,b_2,b_3}|ge |A|+|B|-1$。允许使用更大的子集 $A'$,我们证明对于有界倍增的集合 $A$,我们只需要一个具有 $o(|A|)$ 元素的子集 $A'$ 来保证 $A+A'=A+A$ .我们还讨论了 Bollobás、Leader 和 Tiba 提出的另一个猜想和问题,即高维类似集和集不能被有界大小的子集饱和。
{"title":"Small subsets with large sumset: Beyond the Cauchy–Davenport bound","authors":"Jacob Fox, Sammy Luo, Huy Tuan Pham, Yunkun Zhou","doi":"10.1017/s0963548324000014","DOIUrl":"https://doi.org/10.1017/s0963548324000014","url":null,"abstract":"For a subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline1.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of an abelian group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline2.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, given its size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline3.png\" /> <jats:tex-math> $|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, its doubling <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline4.png\" /> <jats:tex-math> $kappa =|A+A|/|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and a parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline5.png\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> which is small compared to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline6.png\" /> <jats:tex-math> $|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we study the size of the largest sumset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline7.png\" /> <jats:tex-math> $A+A'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that can be guaranteed for a subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline8.png\" /> <jats:tex-math> $A'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline9.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of size at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline10.png\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that a subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline11.png\" /> <jats:tex-math> $A'subseteq A$ </jats:tex-math> </jats:alt","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combinatorics, Probability and Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1