首页 > 最新文献

Combinatorics, Probability and Computing最新文献

英文 中文
Polarised random -SAT 偏振随机-SAT
Pub Date : 2023-07-20 DOI: 10.1017/s0963548323000226
Joel Larsson Danielsson, Klas Markström

In this paper we study a variation of the random $k$-SAT problem, called polarised random $k$-SAT, which contains both the classical random $k$-SAT model and the random version of monotone $k$-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter $p$, and in half of the clauses each variable occurs negated with probability $p$ and pure otherwise, while in the other half the probabilities are interchanged. For $p=1/2$ we get the classical random $k$-SAT model, and at the other extreme we have the fully polarised model where

在本文中,我们研究了随机$k$ -SAT问题的一个变体,称为极化随机$k$ -SAT,它既包含经典的随机$k$ -SAT模型,也包含单调的随机版本$k$ -SAT,另一个著名的np完全版本的SAT。在这个模型中,有一个极化参数$p$,在一半的子句中,每个变量都以概率为负$p$和纯否则。而另一半的概率是互换的。对于$p=1/2$,我们得到经典的随机$k$ -SAT模型,而在另一个极端,我们有完全极化的模型,$p=0$,或1。这里只有两种类型的子句:一种是所有$k$变量纯出现的子句,另一种是所有$k$变量为负值的子句。也就是说,对于$p=0$和$p=1$,我们得到一个随机单调的实例$k$ -SAT。我们表明,满意度阈值不会随着$p$远离$frac{1}{2}$而降低,因此,极化随机$k$ -SAT与$pneq frac{1}{2}$的满意度阈值是随机$k$ -SAT阈值的上界。因此,随机单调$k$ -SAT的可满足阈值至少与随机$k$ -SAT一样大,并且我们推测,对于固定的$k$,这两个阈值渐近地重合。
{"title":"Polarised random -SAT","authors":"Joel Larsson Danielsson, Klas Markström","doi":"10.1017/s0963548323000226","DOIUrl":"https://doi.org/10.1017/s0963548323000226","url":null,"abstract":"<p>In this paper we study a variation of the random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT problem, called polarised random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT, which contains both the classical random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT model and the random version of monotone <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>, and in half of the clauses each variable occurs negated with probability <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> and pure otherwise, while in the other half the probabilities are interchanged. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$p=1/2$</span></span></img></span></span> we get the classical random <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-SAT model, and at the other extreme we have the fully polarised model where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000226:S0963548323000226","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The codegree Turán density of tight cycles minus one edge 馀度Turán紧环的密度减去一条边
Pub Date : 2023-07-05 DOI: 10.1017/s0963548323000196
Simón Piga, Marcelo Sales, Bjarne Schülke

Given $alpha gt 0$ and an integer $ell geq 5$, we prove that every sufficiently large $3$-uniform hypergraph $H$ on $n$ vertices in which every two vertices are contained in at least $alpha n$ edges contains a copy of $C_ell ^{-}$, a tight cycle on $ell$ vertices minus one edge. This improves a previous result by Balogh, Clemen, and Lidický.

给定$alpha gt 0$和一个整数$ell geq 5$,我们证明了$n$顶点上每一个足够大的$3$ -均匀超图$H$,其中每两个顶点至少包含$alpha n$条边,其中包含$C_ell ^{-}$的副本,即$ell$顶点上的紧环减去一条边。这改进了先前由Balogh、Clemen和Lidický得出的结果。
{"title":"The codegree Turán density of tight cycles minus one edge","authors":"Simón Piga, Marcelo Sales, Bjarne Schülke","doi":"10.1017/s0963548323000196","DOIUrl":"https://doi.org/10.1017/s0963548323000196","url":null,"abstract":"<p>Given <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$alpha gt 0$</span></span></img></span></span> and an integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$ell geq 5$</span></span></img></span></span>, we prove that every sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> vertices in which every two vertices are contained in at least <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$alpha n$</span></span></img></span></span> edges contains a copy of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$C_ell ^{-}$</span></span></img></span></span>, a tight cycle on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$ell$</span></span></img></span></span> vertices minus one edge. This improves a previous result by Balogh, Clemen, and Lidický.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Unavoidable patterns in locally balanced colourings 不可避免的图案在局部平衡的色彩
Pub Date : 2023-06-01 DOI: 10.1017/s0963548323000160
Nina Kamčev, Alp Müyesser
Which patterns must a two-colouring of $K_n$ contain if each vertex has at least $varepsilon n$ red and $varepsilon n$ blue neighbours? We show that when $varepsilon gt 1/4$ , $K_n$ must contain a complete subgraph on $Omega (log n)$ vertices where one of the colours forms a balanced complete bipartite graph. When $varepsilon leq 1/4$ , this statement is no longer true, as evidenced by the following colouring $chi$ of $K_n$ . Divide the vertex set into
如果一个双色的$K_n$顶点至少有$varepsilon n$红色和$varepsilon n$蓝色相邻,那么它必须包含哪些图案?我们证明当$varepsilon gt 1/4$, $K_n$必须包含$Omega (log n)$顶点上的完全子图,其中一个颜色形成平衡的完全二部图。当$varepsilon leq 1/4$时,这种说法不再是正确的,如下所示$K_n$的着色$chi$。将顶点集分成$4$和$V_1,V_2,V_3, V_4$大小几乎相等的部分,并让蓝色类由$(V_1,V_2)$, $(V_2,V_3)$, $(V_3,V_4)$之间的边以及$V_2$和$V_3$内部包含的边组成。令人惊讶的是,我们发现这种障碍在以下意义上是独特的。任何两个着色的$K_n$,其中每个顶点至少有$varepsilon n$红色和$varepsilon n$蓝色的邻居(与$varepsilon gt 0$)包含一个顶点集$S$,其阶为$Omega _{varepsilon }(log n)$,其中一个颜色类形成一个平衡的完全二部图,或者与$chi$具有相同的着色。
{"title":"Unavoidable patterns in locally balanced colourings","authors":"Nina Kamčev, Alp Müyesser","doi":"10.1017/s0963548323000160","DOIUrl":"https://doi.org/10.1017/s0963548323000160","url":null,"abstract":"\u0000\t <jats:p>Which patterns must a two-colouring of <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline1.png\" />\u0000\t\t<jats:tex-math>\u0000$K_n$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> contain if each vertex has at least <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline2.png\" />\u0000\t\t<jats:tex-math>\u0000$varepsilon n$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> red and <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline3.png\" />\u0000\t\t<jats:tex-math>\u0000$varepsilon n$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> blue neighbours? We show that when <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline4.png\" />\u0000\t\t<jats:tex-math>\u0000$varepsilon gt 1/4$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula>, <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline5.png\" />\u0000\t\t<jats:tex-math>\u0000$K_n$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> must contain a complete subgraph on <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline6.png\" />\u0000\t\t<jats:tex-math>\u0000$Omega (log n)$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> vertices where one of the colours forms a balanced complete bipartite graph.</jats:p>\u0000\t <jats:p>When <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline7.png\" />\u0000\t\t<jats:tex-math>\u0000$varepsilon leq 1/4$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula>, this statement is no longer true, as evidenced by the following colouring <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline8.png\" />\u0000\t\t<jats:tex-math>\u0000$chi$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> of <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000160_inline9.png\" />\u0000\t\t<jats:tex-math>\u0000$K_n$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula>. Divide the vertex set into <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xml","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85325546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The bunkbed conjecture holds in the limit 双层猜想在极限下成立
Pub Date : 2022-12-14 DOI: 10.1017/s096354832200027x
Tom Hutchcroft, Alexander Kent, Petar Nizić-Nikolac

Let $G=(V,E)$ be a countable graph. The Bunkbed graph of $G$ is the product graph $G times K_2$, which has vertex set $Vtimes {0,1}$ with “horizontal” edges inherited from $G$ and additional “vertical” edges connecting $(w,0)$ and $(w,1)$ for each $w in V$. Kasteleyn’s Bunkbed conjecture states that for each $u,v in V$ and

让 $G=(V,E)$ 是一个可数图。的双层图 $G$ 是乘积图 $G times K_2$,它有顶点集 $Vtimes {0,1}$ 的“水平”边缘 $G$ 和额外的“垂直”边连接 $(w,0)$ 和 $(w,1)$ 对于每一个 $w in V$. Kasteleyn的双层床猜想指出,对于每一个 $u,v in V$ 和 $pin [0,1]$,顶点 $(u,0)$ 至少有可能被连接到 $(v,0)$ 至于 $(v,1)$ 在伯努利下$p$ 双层图上的键渗透。我们证明了这个猜想在 $p uparrow 1$ 极限是指对于每一个有限图 $G$ 存在 $varepsilon (G)gt 0$ 这样一来,床铺猜想就成立了 $p geqslant 1-varepsilon (G)$.
{"title":"The bunkbed conjecture holds in the limit","authors":"Tom Hutchcroft, Alexander Kent, Petar Nizić-Nikolac","doi":"10.1017/s096354832200027x","DOIUrl":"https://doi.org/10.1017/s096354832200027x","url":null,"abstract":"<p>Let <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline2.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G=(V,E)$\u0000</span></span>\u0000</span>\u0000</span> be a countable graph. The Bunkbed graph of <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline3.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G$\u0000</span></span>\u0000</span>\u0000</span> is the product graph <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline4.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G times K_2$\u0000</span></span>\u0000</span>\u0000</span>, which has vertex set <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline5.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$Vtimes {0,1}$\u0000</span></span>\u0000</span>\u0000</span> with “horizontal” edges inherited from <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline6.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G$\u0000</span></span>\u0000</span>\u0000</span> and additional “vertical” edges connecting <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline7.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$(w,0)$\u0000</span></span>\u0000</span>\u0000</span> and <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline8.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$(w,1)$\u0000</span></span>\u0000</span>\u0000</span> for each <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline9.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$w in V$\u0000</span></span>\u0000</span>\u0000</span>. Kasteleyn’s Bunkbed conjecture states that for each <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline10.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$u,v in V$\u0000</span></span>\u0000</span>\u0000</span> and <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:2023040","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bipartite version of the Erdős–McKay conjecture Erdős-McKay猜想的二分版本
Pub Date : 2022-12-09 DOI: 10.1017/s0963548322000347
Eoin Long, Laurenţiu Ploscaru

An old conjecture of Erdős and McKay states that if all homogeneous sets in an $n$-vertex graph are of order $O(!log n)$ then the graph contains induced subgraphs of each size from ${0,1,ldots, Omega big(n^2big)}$. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an $n times n$ bipartite graph are of order $O(!log n)$, then the graph contains induced subgraphs of each size from ${0,1,ldots, Omega big(n^2big)}$.

Erdős和McKay的一个老猜想指出,如果一个$n$顶点图中的所有齐次集合都是$O(!log n)$阶的,那么这个图包含来自${0,1,ldots, Omega big(n^2big)}$的各种大小的诱导子图。我们证明了这个猜想的一个二部类比:如果一个$n times n$二部图中所有的平衡齐次集合都是$O(!log n)$阶的,那么这个图包含来自${0,1,ldots, Omega big(n^2big)}$的每个大小的诱导子图。
{"title":"A bipartite version of the Erdős–McKay conjecture","authors":"Eoin Long, Laurenţiu Ploscaru","doi":"10.1017/s0963548322000347","DOIUrl":"https://doi.org/10.1017/s0963548322000347","url":null,"abstract":"<p>An old conjecture of Erdős and McKay states that if all homogeneous sets in an <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline1.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$n$\u0000</span></span>\u0000</span>\u0000</span>-vertex graph are of order <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline2.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$O(!log n)$\u0000</span></span>\u0000</span>\u0000</span> then the graph contains induced subgraphs of each size from <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline3.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000${0,1,ldots, Omega big(n^2big)}$\u0000</span></span>\u0000</span>\u0000</span>. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline4.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$n times n$\u0000</span></span>\u0000</span>\u0000</span> bipartite graph are of order <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline5.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$O(!log n)$\u0000</span></span>\u0000</span>\u0000</span>, then the graph contains induced subgraphs of each size from <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline6.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000${0,1,ldots, Omega big(n^2big)}$\u0000</span></span>\u0000</span>\u0000</span>.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluctuations of subgraph counts in graphon based random graphs 基于图形的随机图中子图计数的波动
Pub Date : 2022-12-09 DOI: 10.1017/s0963548322000335
Bhaswar B. Bhattacharya, Anirban Chatterjee, Svante Janson

Given a graphon $W$ and a finite simple graph $H$, with vertex set $V(H)$, denote by $X_n(H, W)$ the number of copies of $H$ in a $W$-random graph on $n$ vertices. The asymptotic distribution of $X_n(H, W)$ was recently obtained by Hladký, Pelekis, and Šileikis [17] in the case where $H$ is a clique. In this paper, we extend this result to any fixed graph

给定一个图$W$和一个具有顶点集$V(H)$的有限简单图$H$,用$X_n(H, W)$表示$W$随机图$H$在$n$顶点上的拷贝数。最近Hladký、Pelekis和Šileikis[17]得到了$X_n(H, W)$在$H$为团的情况下的渐近分布。本文将此结果推广到任意固定图$H$。为此,我们引入了graphon $H$-正则性的概念,并证明了如果graphon $W$不是$H$-正则,则$X_n(H, W)$具有随缩放$n^{|V(H)|-frac{1}{2}}$的高斯波动。另一方面,如果$W$是$H$-正则,则波动阶为$n^{|V(H)|-1}$,并且$X_n(H, W)$的极限分布可以同时具有高斯和非高斯分量,其中非高斯分量是中心卡方随机变量的一个(可能)无限加权和,其权重由由$W$衍生的石墨的谱性质决定。我们的证明使用了Janson和Nowicki[22]开发的广义$U$-统计的渐近理论。我们还研究了$H$正则图形的结构,其中一个极限分布的高斯或非高斯分量(但不是两者)是简并的。有趣的是,也有$H$-正则图形$W$,其高斯或非高斯分量都是简并的,即$X_n(H, W)$即使在缩放$n^{|V(H)|-1}$下也有简并极限。我们给出了$H=K_{1,3}$(3星)的简并性的一个例子,并在几个例子中建立了非简并性。这自然导致了关于高阶简并的有趣的开放性问题。
{"title":"Fluctuations of subgraph counts in graphon based random graphs","authors":"Bhaswar B. Bhattacharya, Anirban Chatterjee, Svante Janson","doi":"10.1017/s0963548322000335","DOIUrl":"https://doi.org/10.1017/s0963548322000335","url":null,"abstract":"<p>Given a graphon <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline1.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$W$\u0000</span></span>\u0000</span>\u0000</span> and a finite simple graph <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline2.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$H$\u0000</span></span>\u0000</span>\u0000</span>, with vertex set <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline3.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$V(H)$\u0000</span></span>\u0000</span>\u0000</span>, denote by <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline4.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$X_n(H, W)$\u0000</span></span>\u0000</span>\u0000</span> the number of copies of <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline5.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$H$\u0000</span></span>\u0000</span>\u0000</span> in a <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline6.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$W$\u0000</span></span>\u0000</span>\u0000</span>-random graph on <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline7.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$n$\u0000</span></span>\u0000</span>\u0000</span> vertices. The asymptotic distribution of <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline8.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$X_n(H, W)$\u0000</span></span>\u0000</span>\u0000</span> was recently obtained by Hladký, Pelekis, and Šileikis [17] in the case where <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000335:S0963548322000335_inline9.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$H$\u0000</span></span>\u0000</span>\u0000</span> is a clique. In this paper, we extend this result to any fixed graph <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Supercritical site percolation on the hypercube: small components are small 超立方体上的超临界部位渗透:小组分小
Pub Date : 2022-11-25 DOI: 10.1017/s0963548322000323
Sahar Diskin, Michael Krivelevich

We consider supercritical site percolation on the $d$-dimensional hypercube $Q^d$. We show that typically all components in the percolated hypercube, besides the giant, are of size $O(d)$. This resolves a conjecture of Bollobás, Kohayakawa, and Łuczak from 1994.

我们考虑了d维超立方体Q^d上的超临界位置渗流。我们表明,在典型的渗透超立方体中,除了巨体外,所有组件的尺寸都是$O(d)$。这解决了1994年Bollobás、Kohayakawa和Łuczak的猜想。
{"title":"Supercritical site percolation on the hypercube: small components are small","authors":"Sahar Diskin, Michael Krivelevich","doi":"10.1017/s0963548322000323","DOIUrl":"https://doi.org/10.1017/s0963548322000323","url":null,"abstract":"<p>We consider supercritical site percolation on the <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000323:S0963548322000323_inline1.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$d$\u0000</span></span>\u0000</span>\u0000</span>-dimensional hypercube <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000323:S0963548322000323_inline2.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$Q^d$\u0000</span></span>\u0000</span>\u0000</span>. We show that typically all components in the percolated hypercube, besides the giant, are of size <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000323:S0963548322000323_inline3.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$O(d)$\u0000</span></span>\u0000</span>\u0000</span>. This resolves a conjecture of Bollobás, Kohayakawa, and Łuczak from 1994.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
New upper bounds for the Erdős-Gyárfás problem on generalized Ramsey numbers 广义Ramsey数Erdős-Gyárfás问题的新上界
Pub Date : 2022-11-24 DOI: 10.1017/s0963548322000293
Alex Cameron, Emily Heath
A $(p,q)$ -colouring of a graph $G$ is an edge-colouring of $G$ which assigns at least $q$ colours to each $p$ -clique. The problem of determining the minimum number of colours, $f(n,p,q)$ , needed to give a $(p,q)$ -colouring of the complete graph $K_n$ is a natural generalization of the well-known problem of identifying the diagonal Ramsey numbers $r_k(p)$ . The best-known general upper bound on $f(n,p,q)$ was given by Erdős and Gyárfás in 1997 using a probabilistic argument. Since then, improved bounds in the cases where
图$G$的A $(p,q)$ -着色是$G$的边着色,它为每个$p$ -团分配至少$q$颜色。确定颜色的最小数量$f(n,p,q)$的问题,需要给出完全图$K_n$的$(p,q)$着色,这是一个众所周知的识别对角线拉姆齐数$r_k(p)$问题的自然推广。最著名的f(n,p,q)$的一般上界是由Erdős和Gyárfás在1997年使用概率论证给出的。此后,只有在$pin {4,5}$的情况下,才得到了$p=q$的改进界,每一个都是通过给出一个确定性构造来证明的,该构造将使用少量颜色的$(p,p-1)$ -着色与代数着色结合起来。在本文中,我们提供了一个框架来证明f(n,p,p)$的新上界。在Conlon, Fox, Lee和Sudakov的$(p,p-1)$ -着色的改进版本中,我们用$p-1$色来描述$p$ -团的所有着色。这使我们可以大大减少识别$(p,p)$ -着色所需的大小写检查的数量,否则对于大值的$p$将使这个问题变得棘手。此外,我们将p=5的代数着色推广到f(n,6,6)和f(n,8,8)的上界。
{"title":"New upper bounds for the Erdős-Gyárfás problem on generalized Ramsey numbers","authors":"Alex Cameron, Emily Heath","doi":"10.1017/s0963548322000293","DOIUrl":"https://doi.org/10.1017/s0963548322000293","url":null,"abstract":"A <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline1.png\" /><jats:tex-math> $(p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of a graph <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline2.png\" /><jats:tex-math> $G$ </jats:tex-math></jats:alternatives></jats:inline-formula> is an edge-colouring of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline3.png\" /><jats:tex-math> $G$ </jats:tex-math></jats:alternatives></jats:inline-formula> which assigns at least <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline4.png\" /><jats:tex-math> $q$ </jats:tex-math></jats:alternatives></jats:inline-formula> colours to each <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline5.png\" /><jats:tex-math> $p$ </jats:tex-math></jats:alternatives></jats:inline-formula>-clique. The problem of determining the minimum number of colours, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline6.png\" /><jats:tex-math> $f(n,p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>, needed to give a <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline7.png\" /><jats:tex-math> $(p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of the complete graph <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline8.png\" /><jats:tex-math> $K_n$ </jats:tex-math></jats:alternatives></jats:inline-formula> is a natural generalization of the well-known problem of identifying the diagonal Ramsey numbers <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline9.png\" /><jats:tex-math> $r_k(p)$ </jats:tex-math></jats:alternatives></jats:inline-formula>. The best-known general upper bound on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000293_inline10.png\" /><jats:tex-math> $f(n,p,q)$ </jats:tex-math></jats:alternatives></jats:inline-formula> was given by Erdős and Gyárfás in 1997 using a probabilistic argument. Since then, improved bounds in the cases where <jats:inline-formula><jats:alternatives><jat","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
On mappings on the hypercube with small average stretch 关于平均拉伸小的超立方体上的映射
Pub Date : 2022-10-18 DOI: 10.1017/s0963548322000281
Lucas Boczkowski, Igor Shinkar
Let $A subseteq {0,1}^n$ be a set of size $2^{n-1}$ , and let $phi ,:, {0,1}^{n-1} to A$ be a bijection. We define the average stretch of $phi$ as begin{equation*} {sf avgStretch}(phi ) = {mathbb E}[{{sf dist}}(phi (x),phi (x'))], end{equation*} where the expectation is taken over uniformly random $x,x' in {0,1}^{n-1}$ that differ in exactly one coordinate.In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.For any set $A subseteq {0,1}^n$ of density $1/2$ there exists a bijection $phi _A ,:, {0,1}^{n-1} to A$ such that
让 $A subseteq {0,1}^n$ 是一套尺寸 $2^{n-1}$ ,让 $phi ,:, {0,1}^{n-1} to A$ 做个反对的人。我们定义的平均拉伸 $phi$ as begin{equation*} {sf avgStretch}(phi ) = {mathbb E}[{{sf dist}}(phi (x),phi (x'))], end{equation*} 期望是均匀随机的 $x,x' in {0,1}^{n-1}$ 只差一个坐标。本文继续研究具有小平均拉伸的离散超立方体上的映射。我们证明了以下结果。对于任意集合 $A subseteq {0,1}^n$ 密度 $1/2$ 存在一种对立 $phi _A ,:, {0,1}^{n-1} to A$ 这样 ${sf avgStretch}(phi _A) = Oleft(sqrt{n}right)$ .为了 $n = 3^k$ 让 ${A_{textsf{rec-maj}}} = {x in {0,1}^n ,:,{textsf{rec-maj}}(x) = 1}$ ,其中 ${textsf{rec-maj}} ,:, {0,1}^n to {0,1}$ 是函数的递归多数数为3。存在一种对立 $phi _{{textsf{rec-maj}}} ,:, {0,1}^{n-1} to{A_{textsf{rec-maj}}}$ 这样 ${sf avgStretch}(phi _{{textsf{rec-maj}}}) = O(1)$ .让 ${A_{{sf tribes}}} = {x in {0,1}^n ,:,{sf tribes}(x) = 1}$ . 存在一种对立 $phi _{{sf tribes}} ,:, {0,1}^{n-1} to{A_{{sf tribes}}}$ 这样 ${sf avgStretch}(phi _{{sf tribes}}) = O(!log (n))$ 这些结果回答了Benjamini, Cohen和Shinkar(以色列)提出的问题。J. Math 2016)。
{"title":"On mappings on the hypercube with small average stretch","authors":"Lucas Boczkowski, Igor Shinkar","doi":"10.1017/s0963548322000281","DOIUrl":"https://doi.org/10.1017/s0963548322000281","url":null,"abstract":"Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline1.png\" /><jats:tex-math> $A subseteq {0,1}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a set of size <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline2.png\" /><jats:tex-math> $2^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, and let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline3.png\" /><jats:tex-math> $phi ,:, {0,1}^{n-1} to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a bijection. We define <jats:italic>the average stretch</jats:italic> of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline4.png\" /><jats:tex-math> $phi$ </jats:tex-math></jats:alternatives></jats:inline-formula> as<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548322000281_eqnU1.png\" /><jats:tex-math> begin{equation*} {sf avgStretch}(phi ) = {mathbb E}[{{sf dist}}(phi (x),phi (x'))], end{equation*} </jats:tex-math></jats:alternatives></jats:disp-formula>where the expectation is taken over uniformly random <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline5.png\" /><jats:tex-math> $x,x' in {0,1}^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula> that differ in exactly one coordinate.In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.<jats:list list-type=\"bullet\"><jats:list-item>For any set <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline6.png\" /><jats:tex-math> $A subseteq {0,1}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> of density <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline7.png\" /><jats:tex-math> $1/2$ </jats:tex-math></jats:alternatives></jats:inline-formula> there exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline8.png\" /><jats:tex-math> $phi _A ,:, {0,1}^{n-1} to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Towards the 0-statement of the Kohayakawa-Kreuter conjecture 关于Kohayakawa-Kreuter猜想的0陈述
Pub Date : 2022-09-27 DOI: 10.1017/s0963548322000219
Joseph Hyde

In this paper, we study asymmetric Ramsey properties of the random graph $G_{n,p}$. Let $r in mathbb{N}$ and $H_1, ldots, H_r$ be graphs. We write $G_{n,p} to (H_1, ldots, H_r)$ to denote the property that whenever we colour the edges of $G_{n,p}$ with colours from the set $[r] ,{:!=}, {1, ldots, r}$ there exists $i in [r]$ and a copy of $H_i$ in $G_{n,p}$ monochromatic in colour

本文研究了随机图$G_{n,p}$的非对称Ramsey性质。设$r in mathbb{N}$和$H_1, ldots, H_r$为图。我们把$G_{n,p} 写成(H_1, ldots, H_r)$来表示这样一个性质:当我们用集合$[r] ,{:!=}, {1, ldots, r}$在[r]$中存在$i ,在$G_{n,p}$中存在$H_i$的副本。人们对确定这个性质的渐近阈值函数很感兴趣。在几篇论文中,Rödl和Ruciński确定了一般对称情况的阈值函数;即$H_1 = cdots = H_r$。Kohayakawa和Kreuter在1997年提出的一个猜想,如果成立,将完全解决不对称问题。最近,这个猜想的$1$陈述被Mousset, Nenadov和Samotij证实。在Marciniszyn, Skokan, Spöhel和Steger(2009)的工作基础上,我们将Kohayakawa和Kreuter猜想的$0$-表述约简为一个确定性子问题。为了证明这种方法的潜力,我们展示了几乎所有正则图对都可以解决这个子问题。因此,这解决了所有这类图对的$0$-语句。
{"title":"Towards the 0-statement of the Kohayakawa-Kreuter conjecture","authors":"Joseph Hyde","doi":"10.1017/s0963548322000219","DOIUrl":"https://doi.org/10.1017/s0963548322000219","url":null,"abstract":"<p>In this paper, we study asymmetric Ramsey properties of the random graph <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline1.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G_{n,p}$\u0000</span></span>\u0000</span>\u0000</span>. Let <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline2.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$r in mathbb{N}$\u0000</span></span>\u0000</span>\u0000</span> and <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline3.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$H_1, ldots, H_r$\u0000</span></span>\u0000</span>\u0000</span> be graphs. We write <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline4.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G_{n,p} to (H_1, ldots, H_r)$\u0000</span></span>\u0000</span>\u0000</span> to denote the property that whenever we colour the edges of <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline5.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G_{n,p}$\u0000</span></span>\u0000</span>\u0000</span> with colours from the set <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline6.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$[r] ,{:!=}, {1, ldots, r}$\u0000</span></span>\u0000</span>\u0000</span> there exists <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline7.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$i in [r]$\u0000</span></span>\u0000</span>\u0000</span> and a copy of <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline8.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$H_i$\u0000</span></span>\u0000</span>\u0000</span> in <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline9.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$G_{n,p}$\u0000</span></span>\u0000</span>\u0000</span> monochromatic in colour <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Combinatorics, Probability and Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1