首页 > 最新文献

Combinatorics, Probability and Computing最新文献

英文 中文
On a conjecture of Conlon, Fox, and Wigderson 关于康伦、福克斯和维格德森的一个猜想
Pub Date : 2024-02-16 DOI: 10.1017/s0963548324000026
Chunchao Fan, Qizhong Lin, Yuanhui Yan
For graphs $G$ and $H$ , the Ramsey number $r(G,H)$ is the smallest positive integer $N$ such that any red/blue edge colouring of the complete graph $K_N$ contains either a red $G$ or a blue $H$ . A book $B_n$ is a graph consisting of $n$ triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any $0lt alpha lt 1$ , the random lower bound
对于图形 $G$ 和 $H$,拉姆齐数 $r(G,H)$ 是最小的正整数 $N$,使得完整图形 $K_N$ 的任何红/蓝边着色都包含红色 $G$ 或蓝色 $H$。一本书 $B_n$ 是由所有共享一条公共边的 $n$ 三角形组成的图形。最近,Conlon、Fox 和 Wigderson 猜想,对于任意 $0lt alpha lt 1$,随机下界 $r(B_{lceil alpha nrceil },B_n)ge (sqrt{alpha }+1)^2n+o(n)$ 并不严密。换句话说,存在某个常数 $beta gt (sqrt{alpha }+1)^2$ ,使得 $r(B_{lceil alpha nrceil },B_n)ge beta n$ 对于所有足够大的 $n$ 。根据 Nikiforov 和 Rousseau 2005 年的一个结果,这个猜想在每一个 $alpha lt 1/6$ 都成立,这个结果说在这个范围内,对于所有足够大的 $n$ ,$r(B_{lceil alpha nrceil },B_n)=2n+3$ 。我们推翻了康伦、福克斯和维格德森的猜想。事实上,我们证明了随机下界对于每 1/4 美元(α)和 1 美元(leq 1)都是渐近紧密的。此外,我们还证明了对于任意1/6leq alpha le 1/4$和大$n$,$r(B_{lceil alpha nrceil }, B_n)le left (frac 32+3alpha right ) n+o(n)$ ,其中当$alpha =1/6$或1/4$时,不等式是渐近紧密的。我们还给出了 $r(B{lceil alpha nrceil }, B_n)$ 为 $1/6le alpha lt frac{52-16sqrt{3}}{121}approx 0.2007$ 的下界,表明随机下界并不严密,即 Conlon、Fox 和 Wigderson 的猜想在此区间内成立。
{"title":"On a conjecture of Conlon, Fox, and Wigderson","authors":"Chunchao Fan, Qizhong Lin, Yuanhui Yan","doi":"10.1017/s0963548324000026","DOIUrl":"https://doi.org/10.1017/s0963548324000026","url":null,"abstract":"For graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline1.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline2.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Ramsey number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline3.png\" /> <jats:tex-math> $r(G,H)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the smallest positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline4.png\" /> <jats:tex-math> $N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that any red/blue edge colouring of the complete graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline5.png\" /> <jats:tex-math> $K_N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains either a red <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline6.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or a blue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline7.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A book <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline8.png\" /> <jats:tex-math> $B_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a graph consisting of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline9.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline10.png\" /> <jats:tex-math> $0lt alpha lt 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the random lower bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139753811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Percolation on irregular high-dimensional product graphs 不规则高维积图上的循环
Pub Date : 2023-12-20 DOI: 10.1017/s0963548323000469
Sahar Diskin, Joshua Erde, Mihyun Kang, Michael Krivelevich

We consider bond percolation on high-dimensional product graphs $G=square _{i=1}^tG^{(i)}$, where $square$ denotes the Cartesian product. We call the $G^{(i)}$ the base graphs and the product graph $G$ the host graph. Very recently, Lichev (J. Graph Theory, 99(4):651–670, 2022) showed that, under a mild requirement on the isoperimetric properties of the base graphs, the component structure of the percolated graph $G_p$ undergoes a phase transition when $p$ is around $frac{1}{d}$, where $d$ is the average degree of the host graph.

In the supercritical regime, we strengthen Lichev’s result by showing that the giant component is in fact unique, with all other components of order

我们考虑高维积图 $G=square _{i=1}^tG^{(i)}$ 上的键渗,其中 $square$ 表示笛卡尔积。我们称 $G^{(i)}$ 为基图,称积图 $G$ 为主图。最近,Lichev(J. Graph Theory, 99(4):651-670, 2022)指出,在对基图的等周特性有温和要求的情况下,当 $p$ 约为 $frac{1}{d}$(其中 $d$ 是主图的平均度数)时,渗滤图 $G_p$ 的分量结构会发生相变。在超临界体系中,我们证明了巨分量实际上是唯一的,所有其他分量的阶数都是 $o(|G|)$,并确定了巨分量的尖锐渐近阶数,从而加强了利切夫的结果。此外,我们还回答了利切夫提出的两个问题(《图论》,99(4):651-670, 2022 年):首先,我们提供了一个构造,表明有界度要求对于线性阶成分的可能出现是必要的;其次,我们证明了对基图的等度数要求实际上在维数上是超指数小的。最后,在次临界机制中,我们举例说明,在不规则高维积图的情况下,可以高概率地出现一个多项式大的分量,这与厄尔多斯-雷尼随机图和渗滤超立方体中的定量行为非常不同,事实上也与任何规则高维积图中的定量行为非常不同,作者在另一篇论文(Percolation on high-dimensional product graphs. arXiv:2209.03722, 2022)中也证明了这一点。
{"title":"Percolation on irregular high-dimensional product graphs","authors":"Sahar Diskin, Joshua Erde, Mihyun Kang, Michael Krivelevich","doi":"10.1017/s0963548323000469","DOIUrl":"https://doi.org/10.1017/s0963548323000469","url":null,"abstract":"<p>We consider bond percolation on high-dimensional product graphs <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G=square _{i=1}^tG^{(i)}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$square$</span></span></img></span></span> denotes the Cartesian product. We call the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$G^{(i)}$</span></span></img></span></span> the base graphs and the product graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> the host graph. Very recently, Lichev (<span>J. Graph Theory</span>, 99(4):651–670, 2022) showed that, under a mild requirement on the isoperimetric properties of the base graphs, the component structure of the percolated graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$G_p$</span></span></img></span></span> undergoes a phase transition when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> is around <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$frac{1}{d}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$d$</span></span></img></span></span> is the average degree of the host graph.</p><p>In the supercritical regime, we strengthen Lichev’s result by showing that the giant component is in fact unique, with all other components of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"htt","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138820859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Product structure of graph classes with bounded treewidth 有界树宽图类的乘积结构
Pub Date : 2023-12-07 DOI: 10.1017/s0963548323000457
Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood

We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the underlying treewidth of a graph class $mathcal{G}$ to be the minimum non-negative integer $c$ such that, for some function $f$, for every graph $G in mathcal{G}$ there is a graph $H$ with $textrm{tw}(H) leqslant c$ such that $G$ is isomorphic to a subgraph of $H boxtimes K_{f(textrm{tw}(G))}$. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth

我们的研究表明,许多具有有界树宽(treewidth)的图可以被描述为具有较小树宽的图与有界大小的完整图的强积的子图。为此,我们将图类 $mathcal{G}$ 的底层树宽定义为最小非负整数 $c$,使得对于某个函数 $f$、对于每一个在 $mathcal{G}$ 中的图 $G,都有一个具有 $textrm{tw}(H) (leqslant c)的图 $H$,使得 $G$ 与 $H 的一个子图 (boxtimes K_{f(textrm{tw}(G))}$ 同构。我们引入了图的无接缝覆盖,并证明它们决定了任何图类的底层树宽。利用这一结果,我们证明了平面图类的底层树宽为 $3$;$K_{s,t}$-minor-free 图类的底层树宽为 $s$(对于 $t geqslant max {s,3}$);$K_t$-minor-free 图类的底层树宽为 $t-2$。一般来说,我们证明了当且仅当一个单调类排除了某个固定的拓扑次要图时,它才具有有界的底层树宽。我们还研究了由排除子图或排除诱导子图定义的图类的底层树宽。我们证明,当且仅当 $H$ 的每个分量都是细分星形时,没有 $H$ 子图的图类具有有界底层树宽;当且仅当 $H$ 的每个分量都是星形时,没有诱导 $H$ 子图的图类具有有界底层树宽。
{"title":"Product structure of graph classes with bounded treewidth","authors":"Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood","doi":"10.1017/s0963548323000457","DOIUrl":"https://doi.org/10.1017/s0963548323000457","url":null,"abstract":"<p>We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the <span>underlying treewidth</span> of a graph class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal{G}$</span></span></img></span></span> to be the minimum non-negative integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$c$</span></span></img></span></span> such that, for some function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f$</span></span></img></span></span>, for every graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G in mathcal{G}$</span></span></img></span></span> there is a graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{tw}(H) leqslant c$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> is isomorphic to a subgraph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$H boxtimes K_{f(textrm{tw}(G))}$</span></span></img></span></span>. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On minimum spanning trees for random Euclidean bipartite graphs 随机欧几里得二部图的最小生成树
Pub Date : 2023-11-30 DOI: 10.1017/s0963548323000445
Mario Correddu, Dario Trevisan
We consider the minimum spanning tree problem on a weighted complete bipartite graph $K_{n_R, n_B}$ whose $n=n_R+n_B$ vertices are random, i.i.d. uniformly distributed points in the unit cube in $d$ dimensions and edge weights are the $p$ -th power of their Euclidean distance, with $pgt 0$ . In the large $n$ limit with $n_R/n to alpha _R$ and $0lt alpha _Rlt 1$ , we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on $d$ only. Despite this difference, for $plt d$
考虑一个加权完全二部图$K_{n_R, n_B}$上的最小生成树问题,其中$n=n_R+n_B$顶点是随机的,$d$维的单位立方体中有i个均匀分布的点,边权为其欧几里得距离的$p$ -次幂,$pgt 0$。在具有$n_R/n 到$ α _R$和$0lt α _Rlt $ 1$的大$n$极限中,我们证明了树的最大顶点度是对数增长的,与经典的,非二部的情况相反,在这种情况下,一致界只依赖于$d$。尽管存在这种差异,对于plt d$,我们能够证明以速率$n^{1-p/d}$归一化的总边代价收敛于一个可以表示为一系列积分的极限常数,从而将Avram和Bertsimas的经典结果推广到二部情况,并证实了Riva, Caracciolo和Malatesta的一个猜想。
{"title":"On minimum spanning trees for random Euclidean bipartite graphs","authors":"Mario Correddu, Dario Trevisan","doi":"10.1017/s0963548323000445","DOIUrl":"https://doi.org/10.1017/s0963548323000445","url":null,"abstract":"We consider the minimum spanning tree problem on a weighted complete bipartite graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline1.png\" /> <jats:tex-math> $K_{n_R, n_B}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline2.png\" /> <jats:tex-math> $n=n_R+n_B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices are random, i.i.d. uniformly distributed points in the unit cube in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline3.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> dimensions and edge weights are the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline4.png\" /> <jats:tex-math> $p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-th power of their Euclidean distance, with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline5.png\" /> <jats:tex-math> $pgt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline6.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> limit with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline7.png\" /> <jats:tex-math> $n_R/n to alpha _R$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline8.png\" /> <jats:tex-math> $0lt alpha _Rlt 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline9.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> only. Despite this difference, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline10.png\" /> <jats:tex-math> $plt d$ </","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threshold graphs maximise homomorphism densities 阈值图最大化同态密度
Pub Date : 2023-11-29 DOI: 10.1017/s096354832300041x
Grigoriy Blekherman, Shyamal Patel
Given a fixed graph $H$ and a constant $c in [0,1]$ , we can ask what graphs $G$ with edge density $c$ asymptotically maximise the homomorphism density of $H$ in $G$ . For all $H$ for which this problem has been solved, the maximum is always asymptotically attained on one of two kinds of graphs: the quasi-star or the quasi-clique. We show that for any $H$ the maximising $G$ is asymptotically a threshold graph, while the quasi-clique and the quasi-star are the simplest threshold graphs, having only two parts. This result gives us a unified framework to derive a number of results on graph homomorphism maximisation, some of which were also found quite recently and independently using several different approaches. We show that there exist graphs
给定一个固定的图$H$和一个常数$c in[0,1]$,我们可以问哪些具有边密度$c$的图$G$渐近地最大化$H$在$G$中的同态密度。对于所有解出这个问题的$H$,最大值总是在拟星形图或拟团形图两类图之一上渐近得到。我们证明了对于任意$H$,最大$G$渐近是一个阈值图,而拟团和拟星形是最简单的阈值图,只有两个部分。这一结果为我们提供了一个统一的框架来推导图同态最大化的一些结果,其中一些结果也是最近发现的,并且是使用几种不同的方法独立发现的。我们证明存在图$H$和密度$c$,使得优化图$G$既不是准星形也不是准团形(Day and Sarkar, SIAM J.离散数学,35(1),294 - 306,2021)。我们还证明了对于足够大的$c$,所有图$H$在拟团上最大化(Gerbner et al., J.图论96(1),34 - 43,2021),并且对于任意$c in [0,1]$, $K_{1,2}$的密度总是在拟星或拟团上最大化(Ahlswede和Katona, Acta Math)。洪。32(1-2),97-120,1978)。最后,我们将结果扩展到一致超图。
{"title":"Threshold graphs maximise homomorphism densities","authors":"Grigoriy Blekherman, Shyamal Patel","doi":"10.1017/s096354832300041x","DOIUrl":"https://doi.org/10.1017/s096354832300041x","url":null,"abstract":"Given a fixed graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline1.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline2.png\" /> <jats:tex-math> $c in [0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we can ask what graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline3.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with edge density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline4.png\" /> <jats:tex-math> $c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> asymptotically maximise the homomorphism density of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline5.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline6.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline7.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which this problem has been solved, the maximum is always asymptotically attained on one of two kinds of graphs: the quasi-star or the quasi-clique. We show that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline8.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the maximising <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline9.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is asymptotically a threshold graph, while the quasi-clique and the quasi-star are the simplest threshold graphs, having only two parts. This result gives us a unified framework to derive a number of results on graph homomorphism maximisation, some of which were also found quite recently and independently using several different approaches. We show that there exist graphs <jats:inline-formu","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spread-out limit of the critical points for lattice trees and lattice animals in dimensions 点阵树和点阵动物在维数上临界点的展开极限
Pub Date : 2023-11-20 DOI: 10.1017/s096354832300038x
Noe Kawamoto, Akira Sakai
A spread-out lattice animal is a finite connected set of edges in ${{x,y}subset mathbb{Z}^d;:;0lt |x-y|le L}$ . A lattice tree is a lattice animal with no loops. The best estimate on the critical point $p_{textrm{c}}$ so far was achieved by Penrose (J. Stat. Phys. 77, 3–15, 1994) : $p_{textrm{c}}=1/e+O(L^{-2d/7}log L)$ for both models for all $dge 1$ . In this paper, we show that $p_{textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$ for all $dgt 8$ , where the model-dependent constant $C$ has the random-walk representation begin{align*} C_{textrm{LT}}=sum _{n=2}^infty frac{n+1}{2e}U^{*n}(o),&& C_{textrm{LA}}=C_{textrm{LT}}-frac 1{2e^2}sum _{n=3}^infty U^{*n}(o), end{align*} where $U^{*n}$ is the <
展开的格子动物是${{x,y}subset mathbb{Z}^d;:;0lt |x-y|le L}$中有限连接边的集合。格子树是一种没有循环的格子动物。迄今为止,Penrose (J. Stat. Phys. 77,3 - 15,1994)对临界点$p_{textrm{c}}$的最佳估计是:$p_{textrm{c}}=1/e+O(L^{-2d/7}log L)$对于所有$dge 1$的两个模型。在本文中,我们证明了$p_{textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$对于所有$dgt 8$,其中模型相关常数$C$具有随机游走表示begin{align*} C_{textrm{LT}}=sum _{n=2}^infty frac{n+1}{2e}U^{*n}(o),&& C_{textrm{LA}}=C_{textrm{LT}}-frac 1{2e^2}sum _{n=3}^infty U^{*n}(o), end{align*},其中$U^{*n}$是$d$维球${xin{mathbb R}^d;: |x|le 1}$上均匀分布的$n$ -fold卷积。该证明基于对2点函数的lace展开的新颖使用和对1点函数在一定值$p$处的详细分析,旨在使分析变得极其简单。
{"title":"Spread-out limit of the critical points for lattice trees and lattice animals in dimensions","authors":"Noe Kawamoto, Akira Sakai","doi":"10.1017/s096354832300038x","DOIUrl":"https://doi.org/10.1017/s096354832300038x","url":null,"abstract":"A spread-out lattice animal is a finite connected set of edges in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline2.png\" /> <jats:tex-math>${{x,y}subset mathbb{Z}^d;:;0lt |x-y|le L}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A lattice tree is a lattice animal with no loops. The best estimate on the critical point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline3.png\" /> <jats:tex-math>$p_{textrm{c}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> so far was achieved by Penrose (<jats:italic>J. Stat. Phys.</jats:italic> 77, 3–15, 1994) : <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline4.png\" /> <jats:tex-math>$p_{textrm{c}}=1/e+O(L^{-2d/7}log L)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for both models for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline5.png\" /> <jats:tex-math>$dge 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline6.png\" /> <jats:tex-math>$p_{textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline7.png\" /> <jats:tex-math>$dgt 8$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where the model-dependent constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline8.png\" /> <jats:tex-math>$C$</jats:tex-math> </jats:alternatives> </jats:inline-formula> has the random-walk representation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S096354832300038X_eqnU1.png\" /> <jats:tex-math>begin{align*} C_{textrm{LT}}=sum _{n=2}^infty frac{n+1}{2e}U^{*n}(o),&amp;&amp; C_{textrm{LA}}=C_{textrm{LT}}-frac 1{2e^2}sum _{n=3}^infty U^{*n}(o), end{align*}</jats:tex-math> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline9.png\" /> <jats:tex-math>$U^{*n}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large cliques or cocliques in hypergraphs with forbidden order-size pairs 具有禁止序大小对的超图中的大团或共团
Pub Date : 2023-11-16 DOI: 10.1017/s0963548323000433
Maria Axenovich, Domagoj Bradač, Lior Gishboliner, Dhruv Mubayi, Lea Weber
The well-known Erdős-Hajnal conjecture states that for any graph $F$ , there exists $epsilon gt 0$ such that every $n$ -vertex graph $G$ that contains no induced copy of $F$ has a homogeneous set of size at least $n^{epsilon }$ . We consider a variant of the Erdős-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on $m$ vertices and $f$ edges for any positive $m$ and $0leq f leq binom{m}{2}$ , then we o
众所周知的Erdős-Hajnal猜想指出,对于任何图$F$,存在$epsilon gt 0$使得每个不包含$F$的诱导副本的$n$顶点图$G$都有一个大小至少为$n^{epsilon }$的齐次集合。我们考虑超图Erdős-Hajnal问题的一个变体,在这个问题中,我们禁止一组由它们的顺序和大小描述的超图。对于图,我们观察到,如果我们对任意正的$m$和$0leq f leq binom{m}{2}$禁止$m$顶点和$f$边上的诱导子图,那么我们得到了大的齐次集。对于三重系统,在第一个非平凡情况$m=4$中,对于每个$S subseteq {0,1,2,3,4}$,我们给出了三重系统中齐次集合的最小大小的边界,其中每四个顶点张成的边的数量不在$S$中。在大多数情况下,边界本质上是紧的。我们还确定,对于所有$S$,增长率是多项式还是多对数。一些悬而未决的问题依然存在。
{"title":"Large cliques or cocliques in hypergraphs with forbidden order-size pairs","authors":"Maria Axenovich, Domagoj Bradač, Lior Gishboliner, Dhruv Mubayi, Lea Weber","doi":"10.1017/s0963548323000433","DOIUrl":"https://doi.org/10.1017/s0963548323000433","url":null,"abstract":"The well-known Erdős-Hajnal conjecture states that for any graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline1.png\" /> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline2.png\" /> <jats:tex-math> $epsilon gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline3.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline4.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that contains no induced copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline5.png\" /> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a homogeneous set of size at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline6.png\" /> <jats:tex-math> $n^{epsilon }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a variant of the Erdős-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline7.png\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline8.png\" /> <jats:tex-math> $f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges for any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline9.png\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline10.png\" /> <jats:tex-math> $0leq f leq binom{m}{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we o","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution 伯努利钟:通过循环卷积对伯努利多项式的概率和组合解释
Pub Date : 2023-11-16 DOI: 10.1017/s0963548323000421
Yassine El Maazouz, Jim Pitman
The factorially normalized Bernoulli polynomials $b_n(x) = B_n(x)/n!$ are known to be characterized by $b_0(x) = 1$ and $b_n(x)$ for $n gt 0$ is the anti-derivative of $b_{n-1}(x)$ subject to $int _0^1 b_n(x) dx = 0$ . We offer a related characterization: $b_1(x) = x - 1/2$ and $({-}1)^{n-1} b_n(x)$ for $n gt 0$ is the $n$ -fold circular convolution of
阶乘归一化伯努利多项式 $b_n(x) = B_n(x)/n!$ 已知的特征是什么 $b_0(x) = 1$ 和 $b_n(x)$ 为了 $n gt 0$ 不定积分是 $b_{n-1}(x)$ 以 $int _0^1 b_n(x) dx = 0$ . 我们提供了一个相关的描述: $b_1(x) = x - 1/2$ 和 $({-}1)^{n-1} b_n(x)$ 为了 $n gt 0$ 是? $n$ 的-次圆卷积 $b_1(x)$ 和它自己。同样地, $1 - 2^n b_n(x)$ 概率密度是多少 $x in (0,1)$ 的和的小数部分的 $n$ 独立随机变量,每个都有 $(1,2)$ 概率密度 $2(1-x)$ 在 $x in (0,1)$ . 这个结果有一个新颖的组合模拟,伯努利钟:标记小时 $2 n$ 小时钟由均匀随机排列的多集组成 ${1,1, 2,2, ldots, n,n}$ ,即从时间中均匀随机地选择两个不同的小时 $2 n$ 并标记它们 $1$ ,然后从剩余时间中均匀随机地选择两个不同的小时 $2 n - 2$ 并标记它们 $2$ 等等。从小时开始 $0 = 2n$ ,顺时针移动到标记的第一个小时 $1$ ,继续顺时针到标记的第一个小时 $2$ 等等,沿着伯努利钟继续顺时针旋转,直到标记的两个小时中的第一个小时 $n$ 是在任意时间遇到的 $I_n$ 在 $1$ 和 $2n$ . 对于每一个正整数 $n$ ,事件 $( I_n = 1)$ 有概率吗 $(1 - 2^n b_n(0))/(2n)$ ,其中 $n! b_n(0) = B_n(0)$ 是? $n$ 伯努利数。因为 $ 1 le k le 2 n$ ,区别 $delta _n(k),:!=, 1/(2n) -{mathbb{P}}( I_n = k)$ 一个多项式函数是 $k$ 有着惊人的对称性 $delta _n( 2 n + 1 - k) = ({-}1)^n delta _n(k)$ 这是一个著名的伯努利多项式对称的组合模拟 $b_n(1-x) = ({-}1)^n b_n(x)$ .
{"title":"The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution","authors":"Yassine El Maazouz, Jim Pitman","doi":"10.1017/s0963548323000421","DOIUrl":"https://doi.org/10.1017/s0963548323000421","url":null,"abstract":"The factorially normalized Bernoulli polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline1.png\" /> <jats:tex-math> $b_n(x) = B_n(x)/n!$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are known to be characterized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline2.png\" /> <jats:tex-math> $b_0(x) = 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline3.png\" /> <jats:tex-math> $b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline4.png\" /> <jats:tex-math> $n gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the anti-derivative of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline5.png\" /> <jats:tex-math> $b_{n-1}(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> subject to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline6.png\" /> <jats:tex-math> $int _0^1 b_n(x) dx = 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We offer a related characterization: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline7.png\" /> <jats:tex-math> $b_1(x) = x - 1/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline8.png\" /> <jats:tex-math> $({-}1)^{n-1} b_n(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline9.png\" /> <jats:tex-math> $n gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline10.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-fold circular convolution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000421_inline11.pn","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forcing generalised quasirandom graphs efficiently 有效地强制广义拟随机图
Pub Date : 2023-09-05 DOI: 10.1017/s0963548323000263
Andrzej Grzesik, Daniel Král’, Oleg Pikhurko
We study generalised quasirandom graphs whose vertex set consists of $q$ parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10q)^q+q$ vertices; subsequently, Lovász refined the argument to show that graphs with $4(2q+3)^8$ vertices suffice. Our results imply that the structure of generalised quasirandom graphs with $qge 2$ parts is forced by homomorphism densities of graphs with at most $4q^2-q$ vertices, and, if vertices in distinct parts have distinct degrees, then $2q+1$ vertices suffice. The latter improves the bound of $8q-4$ due to Spencer.
研究了一类广义拟随机图,其顶点集由$q$个部分组成(这些部分的大小不一定相同),每个部分内部和每对部分之间的边是拟随机分布的;这些图对应于统计学和网络科学中研究的随机块模型。Lovász和Sós表明这种图的结构是由最多$(10q)^q+q$顶点的图的同态密度所强制的;随后,Lovász改进了这个论点,以表明具有$4(2q+3)^8$顶点的图就足够了。我们的结果表明,具有$q 2$部分的广义拟随机图的结构是由最多$4q^2-q$顶点的图的同态密度所强制的,并且,如果不同部分的顶点具有不同的度,则$2q+1$顶点就足够了。后者改善了$8q-4$的边界,这是由于Spencer的原因。
{"title":"Forcing generalised quasirandom graphs efficiently","authors":"Andrzej Grzesik, Daniel Král’, Oleg Pikhurko","doi":"10.1017/s0963548323000263","DOIUrl":"https://doi.org/10.1017/s0963548323000263","url":null,"abstract":"\u0000 We study generalised quasirandom graphs whose vertex set consists of \u0000 \u0000 \u0000 \u0000$q$\u0000\u0000 \u0000 parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most \u0000 \u0000 \u0000 \u0000$(10q)^q+q$\u0000\u0000 \u0000 vertices; subsequently, Lovász refined the argument to show that graphs with \u0000 \u0000 \u0000 \u0000$4(2q+3)^8$\u0000\u0000 \u0000 vertices suffice. Our results imply that the structure of generalised quasirandom graphs with \u0000 \u0000 \u0000 \u0000$qge 2$\u0000\u0000 \u0000 parts is forced by homomorphism densities of graphs with at most \u0000 \u0000 \u0000 \u0000$4q^2-q$\u0000\u0000 \u0000 vertices, and, if vertices in distinct parts have distinct degrees, then \u0000 \u0000 \u0000 \u0000$2q+1$\u0000\u0000 \u0000 vertices suffice. The latter improves the bound of \u0000 \u0000 \u0000 \u0000$8q-4$\u0000\u0000 \u0000 due to Spencer.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91445411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximum number of edges in -critical graphs 关于临界图中边的最大数目
Pub Date : 2023-07-24 DOI: 10.1017/s0963548323000238
Cong Luo, Jie Ma, Tianchi Yang

A graph is called $k$-critical if its chromatic number is $k$ but every proper subgraph has chromatic number less than $k$. An old and important problem in graph theory asks to determine the maximum number of edges in an $n$-vertex $k$-critical graph. This is widely open for every integer $kgeq 4$. Using a structural characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987 that for $kgeq 4$ and sufficiently large $n$, this maximum number is less than the number of edges in the

如果图的色数为$k$,则图称为$k$临界图,但每个固有子图的色数都小于$k$。图论中一个古老而重要的问题是确定$n$ -顶点$k$ -临界图的最大边数。这对所有整数$kgeq 4$都是开放的。1987年,Stiebitz利用Greenwell和Lovász的结构表征以及Simonovits的极值结果证明,对于$kgeq 4$和足够大的$n$,该最大值小于$n$ -顶点平衡的完全$(k-2)$ -部图中的边数。在本文中,我们在过去的35年中首次获得了上述结果的改进。我们的证明结合了极值图论的论证以及一些结构分析。我们使用的一个关键引理表示密集$k$临界图中的部分结构,这可能是独立的兴趣。
{"title":"On the maximum number of edges in -critical graphs","authors":"Cong Luo, Jie Ma, Tianchi Yang","doi":"10.1017/s0963548323000238","DOIUrl":"https://doi.org/10.1017/s0963548323000238","url":null,"abstract":"<p>A graph is called <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-critical if its chromatic number is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> but every proper subgraph has chromatic number less than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>. An old and important problem in graph theory asks to determine the maximum number of edges in an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>-vertex <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-critical graph. This is widely open for every integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$kgeq 4$</span></span></img></span></span>. Using a structural characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987 that for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$kgeq 4$</span></span></img></span></span> and sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>, this maximum number is less than the number of edges in the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline10.png\"><span data-mathjax-type=\"texmat","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combinatorics, Probability and Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1