Pub Date : 2021-09-07DOI: 10.3389/frcmn.2021.716618
Alaa Alameer Ahmad, H. Dahrouj, A. Chaaban, T. Al-Naffouri, A. Sezgin, J. Shamma, Mohamed-Slim Alouini
Minimizing the power consumption in mobile communication networks while ensuring a minimum quality of service (QoS) for applications is essential in light of the unprecedented expected increase in the number of connected devices and the associated data traffic beyond the fifth generation of wireless networks (B5G). This paper considers a cloud-radio access network (C-RAN) model where a central processor (CP) is connected to the base stations (BSs) via limited capacity fronthaul links. In the context of our C-RAN setting, we consider the practical case where the CP has only statistical knowledge of channel state information (CSI). While conventional wireless systems adopt the treating interference as noise (TIN) strategy to deal with the interference in the network, this paper instead considers that the CP applies the rate splitting (RS) strategy by dividing each user’s message into two parts: a private part to be decoded by the intended user only and a common part to be decoded by a subset of users, for the sole reason of interference mitigation in the network. To best account for the channel estimation errors, this paper addresses the problem of transmit power minimization under minimum QoS constraints on the achievable ergodic rate per user, so as to determine the beamforming vectors of the private and common messages as well as the rate allocated to all the users. The considered problem is of stochastic, complex, and non-convex nature. This paper addresses the problem intricacies through an iterative approach that leverages both the sample average approximation (SAA) technique and the weighted minimum mean squared error (WMMSE) algorithm to obtain a stationary point of the optimization problem in the asymptotic regime. The numerical results demonstrate the gain achieved with the RS strategy as compared to TIN, especially under high QoS requirements.
{"title":"Power Minimization Using Rate Splitting With Statistical CSI in Cloud-Radio Access Networks","authors":"Alaa Alameer Ahmad, H. Dahrouj, A. Chaaban, T. Al-Naffouri, A. Sezgin, J. Shamma, Mohamed-Slim Alouini","doi":"10.3389/frcmn.2021.716618","DOIUrl":"https://doi.org/10.3389/frcmn.2021.716618","url":null,"abstract":"Minimizing the power consumption in mobile communication networks while ensuring a minimum quality of service (QoS) for applications is essential in light of the unprecedented expected increase in the number of connected devices and the associated data traffic beyond the fifth generation of wireless networks (B5G). This paper considers a cloud-radio access network (C-RAN) model where a central processor (CP) is connected to the base stations (BSs) via limited capacity fronthaul links. In the context of our C-RAN setting, we consider the practical case where the CP has only statistical knowledge of channel state information (CSI). While conventional wireless systems adopt the treating interference as noise (TIN) strategy to deal with the interference in the network, this paper instead considers that the CP applies the rate splitting (RS) strategy by dividing each user’s message into two parts: a private part to be decoded by the intended user only and a common part to be decoded by a subset of users, for the sole reason of interference mitigation in the network. To best account for the channel estimation errors, this paper addresses the problem of transmit power minimization under minimum QoS constraints on the achievable ergodic rate per user, so as to determine the beamforming vectors of the private and common messages as well as the rate allocated to all the users. The considered problem is of stochastic, complex, and non-convex nature. This paper addresses the problem intricacies through an iterative approach that leverages both the sample average approximation (SAA) technique and the weighted minimum mean squared error (WMMSE) algorithm to obtain a stationary point of the optimization problem in the asymptotic regime. The numerical results demonstrate the gain achieved with the RS strategy as compared to TIN, especially under high QoS requirements.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134546820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-06DOI: 10.3389/frcmn.2021.721971
Dick Carrillo, L. Nguyen, P. Nardelli, Evangelos Pournaras, P. Morita, D. Z. Rodríguez, Merim Dzaferagic, H. Šiljak, Alexander Jung, Laurent Hébert-Dufresne, I. Macaluso, Mehar Ullah, G. Fraidenraich, P. Popovski
School of Energy Systems, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland, Department of Communications, University of Campinas, Campinas, Brazil, Department of Electronic Systems, Aalborg University, Aalborg, Denmark, School of Computing, University of Leeds, Leeds, United Kingdom, School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada, Department of Computer Science, Federal University of Lavras, Lavras, Brazil, Department of Electronic and Electrical Engineering, Trinity College Dublin, Dublin, Ireland, Department of Computer Science, Aalto University, Espoo, Finland, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, United States
{"title":"Corrigendum: Containing Future Epidemics With Trustworthy Federated Systems for Ubiquitous Warning and Response","authors":"Dick Carrillo, L. Nguyen, P. Nardelli, Evangelos Pournaras, P. Morita, D. Z. Rodríguez, Merim Dzaferagic, H. Šiljak, Alexander Jung, Laurent Hébert-Dufresne, I. Macaluso, Mehar Ullah, G. Fraidenraich, P. Popovski","doi":"10.3389/frcmn.2021.721971","DOIUrl":"https://doi.org/10.3389/frcmn.2021.721971","url":null,"abstract":"School of Energy Systems, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland, Department of Communications, University of Campinas, Campinas, Brazil, Department of Electronic Systems, Aalborg University, Aalborg, Denmark, School of Computing, University of Leeds, Leeds, United Kingdom, School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada, Department of Computer Science, Federal University of Lavras, Lavras, Brazil, Department of Electronic and Electrical Engineering, Trinity College Dublin, Dublin, Ireland, Department of Computer Science, Aalto University, Espoo, Finland, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, United States","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127700610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-31DOI: 10.3389/frcmn.2021.725976
Yichuan Li, S. Ghafoor, M. F. U. Butt, M. El-Hajjar
Given the increasing demand for high data-rate, high-performance wireless communications services, the demand on the radio access networks (RAN) has been increasing significantly, where optical fiber has been widely used both for the backhaul and fronthaul. Additionally, advances in signal processing such as multiple-input multiple-output (MIMO) techniques, have improved the performance as well as transmission rate of communications networks. Beamforming has been used as an efficient MIMO technique for providing a signal to noise ratio (SNR) gain as well as reducing the multi-user interference. However, beamforming requires the employment of phase-shifters, which suffers from reduced phase resolutions, degraded noise figures as well as beam-squinting in addition to the implementation challenges. Hence, in this paper we employ an analogue radio over fiber (A-RoF) aided architecture for supporting the requirements of the current and future mobile networks, where we design a photonics aided beamforming technique in order to eliminate the bulky electronic phase-shifters and the beam-squinting effect, while also providing a low-cost RAN solution. Additionally, this photonics aided beamforming is combined with a reconfigurable multi-user MIMO technique, where users can communicate with one or multiple remote radio heads (RRHs), while employing stand-alone beamforming, beamforming combined with diversity or with multiplexing depending on the available resources and the user channel information as well as the quality of service requirements.
{"title":"Analog Radio Over Fiber Aided C-RAN: Optical Aided Beamforming for Multi-User Adaptive MIMO Design","authors":"Yichuan Li, S. Ghafoor, M. F. U. Butt, M. El-Hajjar","doi":"10.3389/frcmn.2021.725976","DOIUrl":"https://doi.org/10.3389/frcmn.2021.725976","url":null,"abstract":"Given the increasing demand for high data-rate, high-performance wireless communications services, the demand on the radio access networks (RAN) has been increasing significantly, where optical fiber has been widely used both for the backhaul and fronthaul. Additionally, advances in signal processing such as multiple-input multiple-output (MIMO) techniques, have improved the performance as well as transmission rate of communications networks. Beamforming has been used as an efficient MIMO technique for providing a signal to noise ratio (SNR) gain as well as reducing the multi-user interference. However, beamforming requires the employment of phase-shifters, which suffers from reduced phase resolutions, degraded noise figures as well as beam-squinting in addition to the implementation challenges. Hence, in this paper we employ an analogue radio over fiber (A-RoF) aided architecture for supporting the requirements of the current and future mobile networks, where we design a photonics aided beamforming technique in order to eliminate the bulky electronic phase-shifters and the beam-squinting effect, while also providing a low-cost RAN solution. Additionally, this photonics aided beamforming is combined with a reconfigurable multi-user MIMO technique, where users can communicate with one or multiple remote radio heads (RRHs), while employing stand-alone beamforming, beamforming combined with diversity or with multiplexing depending on the available resources and the user channel information as well as the quality of service requirements.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"220 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115460739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-27DOI: 10.3389/frcmn.2021.729767
Shuja Ansari, Ahmad Taha , K. Dashtipour, Y. Sambo, Qammer H. Abbasi , Muhammad Ali Imran
The increasing popularity of Unmanned Aerial Vehicles (UAV) has resulted in exponential growth of the market owing to numerous applications that have been facilitated by advances in battery technology and wireless communications. Given the successes of UAVs thus far, researchers are already gearing towards aerial transport systems that consist of dense deployment of both UAVs and Personal Aerial Vehicles (PAVs) with human passengers. Although the fifth-generation mobile network (5G) key performance indicators have been optimised to support drone use cases for both high data rates and low latency applications, future aerial transport systems will require stricter network key performance indicators to support the expected massive deployment of aerial vehicles taking into account network capacity and distance between the base station and the aerial vehicles, among others. In this article, we present our perspective, vision, architecture, requirements and key performance indicators for future aerial wireless networks supported by 6G for Urban Air Mobility (UAM). Furthermore, we review key enabling technologies and discuss future challenges for incorporating aerial wireless networks in 6G.
{"title":"Urban Air Mobility—A 6G Use Case?","authors":"Shuja Ansari, Ahmad Taha , K. Dashtipour, Y. Sambo, Qammer H. Abbasi , Muhammad Ali Imran ","doi":"10.3389/frcmn.2021.729767","DOIUrl":"https://doi.org/10.3389/frcmn.2021.729767","url":null,"abstract":"The increasing popularity of Unmanned Aerial Vehicles (UAV) has resulted in exponential growth of the market owing to numerous applications that have been facilitated by advances in battery technology and wireless communications. Given the successes of UAVs thus far, researchers are already gearing towards aerial transport systems that consist of dense deployment of both UAVs and Personal Aerial Vehicles (PAVs) with human passengers. Although the fifth-generation mobile network (5G) key performance indicators have been optimised to support drone use cases for both high data rates and low latency applications, future aerial transport systems will require stricter network key performance indicators to support the expected massive deployment of aerial vehicles taking into account network capacity and distance between the base station and the aerial vehicles, among others. In this article, we present our perspective, vision, architecture, requirements and key performance indicators for future aerial wireless networks supported by 6G for Urban Air Mobility (UAM). Furthermore, we review key enabling technologies and discuss future challenges for incorporating aerial wireless networks in 6G.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"226 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131701292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-26DOI: 10.3389/frcmn.2021.715944
M. M. Şahin, Ilter Erol Gurol, E. Arslan, E. Başar, H. Arslan
The demand for dual-functional wireless systems is on the rise as certain resources become more congested and scarce. Joint communication-radar (JCR) is a promising technology that is becoming very critical and growing in popularity, where communication and radar applications are serviced simultaneously sharing the same hardware/software and the frequency band resources. JCR and its alternatives need to be cleverly integrated into certain waveforms such as orthogonal frequency division multiplexing (OFDM) to function properly without degradation in the performance. With the aid of the promising concepts of index modulation (IM) and Golay complementary sequences, a novel JCR waveform is proposed to serve both communication and radar applications with the same resources. It has been shown by extensive computer simulations that the proposed OFDM with an index modulation (OFDM-IM) waveform outperforms the classical OFDM with fixed pilot design both in bit error rate (BER) performance and radar-based applications by introducing diversity among subcarriers and frequency agility over the whole frequency band.
{"title":"OFDM-IM for Joint Communication and Radar-Sensing: A Promising Waveform for Dual Functionality","authors":"M. M. Şahin, Ilter Erol Gurol, E. Arslan, E. Başar, H. Arslan","doi":"10.3389/frcmn.2021.715944","DOIUrl":"https://doi.org/10.3389/frcmn.2021.715944","url":null,"abstract":"The demand for dual-functional wireless systems is on the rise as certain resources become more congested and scarce. Joint communication-radar (JCR) is a promising technology that is becoming very critical and growing in popularity, where communication and radar applications are serviced simultaneously sharing the same hardware/software and the frequency band resources. JCR and its alternatives need to be cleverly integrated into certain waveforms such as orthogonal frequency division multiplexing (OFDM) to function properly without degradation in the performance. With the aid of the promising concepts of index modulation (IM) and Golay complementary sequences, a novel JCR waveform is proposed to serve both communication and radar applications with the same resources. It has been shown by extensive computer simulations that the proposed OFDM with an index modulation (OFDM-IM) waveform outperforms the classical OFDM with fixed pilot design both in bit error rate (BER) performance and radar-based applications by introducing diversity among subcarriers and frequency agility over the whole frequency band.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122932157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-10DOI: 10.3389/frcmn.2021.721925
K. Foster, Vijayalaxmi
One major source of controversy related to possible health effects of radiofrequency radiation (RFR) is the large number of reported statistically significant effects of exposure, over the entire RF part of the spectrum and over a wide range of exposure levels, even as health agencies do not find clear evidence for health hazards of exposure at levels within current IEEE and ICNIRP exposure limits. This Perspective considers 31 studies related to genetic damage produced by exposure to RFR at frequencies above 6 GHz, including at millimeter-wave (mm-wave) frequencies. Collectively, the papers report many statistically significant effects related to genetic damage, many at exposure levels below current exposure limits. However, application of five risk of bias (RoB) criteria and other considerations suggest that the studies in many cases are vulnerable to false discovery (nonreplicable results). The authors call for improvements in study design, analysis and reporting in future bioeffects research to provide more reliable information for health agencies and regulatory decision makers. This Perspective is a companion to another Perspective by Mattsson et al. elsewhere in this volume (Mattsson et al., 2021) 1 .
{"title":"Needed: More Reliable Bioeffects Studies at “High Band” 5G Frequencies","authors":"K. Foster, Vijayalaxmi","doi":"10.3389/frcmn.2021.721925","DOIUrl":"https://doi.org/10.3389/frcmn.2021.721925","url":null,"abstract":"One major source of controversy related to possible health effects of radiofrequency radiation (RFR) is the large number of reported statistically significant effects of exposure, over the entire RF part of the spectrum and over a wide range of exposure levels, even as health agencies do not find clear evidence for health hazards of exposure at levels within current IEEE and ICNIRP exposure limits. This Perspective considers 31 studies related to genetic damage produced by exposure to RFR at frequencies above 6 GHz, including at millimeter-wave (mm-wave) frequencies. Collectively, the papers report many statistically significant effects related to genetic damage, many at exposure levels below current exposure limits. However, application of five risk of bias (RoB) criteria and other considerations suggest that the studies in many cases are vulnerable to false discovery (nonreplicable results). The authors call for improvements in study design, analysis and reporting in future bioeffects research to provide more reliable information for health agencies and regulatory decision makers. This Perspective is a companion to another Perspective by Mattsson et al. elsewhere in this volume (Mattsson et al., 2021) 1 .","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130699828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-09DOI: 10.3389/frcmn.2021.692002
Ghida Jubran Alqahtani, Fatma Bouabdallah
Recently, there has been an increasing interest in monitoring and exploring underwater environments for scientific applications such as oceanographic data collection, marine surveillance, and pollution detection. Underwater acoustic sensor networks (UASNs) have been proposed as the enabling technology to observe, map, and explore the ocean. The unique characteristics of underwater aquatic environments such as low bandwidth, long propagation delays, and high energy consumption make the data forwarding process very difficult. Moreover, the mobility of the underwater sensors is considered an additional constraint for the success of the data forwarding process. That being said, most of the data forwarding protocols do not realistically consider the dynamic topology of underwater environment as sensor nodes move with the water currents, which is a natural phenomenon. In this research, we propose a mobility prediction optimal data forwarding (MPODF) protocol for UASNs based on mobility prediction. Indeed, by considering a realistic, physically inspired mobility model, our protocol succeeds to forward every generated data packet through one single best path without the need to exchange notification messages, thanks to the mobility prediction module. Simulation results show that our protocol achieves a high packet delivery ratio, high energy efficiency, and reduced end-to-end delay.
{"title":"Energy-Efficient Mobility Prediction Routing Protocol for Freely Floating Underwater Acoustic Sensor Networks","authors":"Ghida Jubran Alqahtani, Fatma Bouabdallah","doi":"10.3389/frcmn.2021.692002","DOIUrl":"https://doi.org/10.3389/frcmn.2021.692002","url":null,"abstract":"Recently, there has been an increasing interest in monitoring and exploring underwater environments for scientific applications such as oceanographic data collection, marine surveillance, and pollution detection. Underwater acoustic sensor networks (UASNs) have been proposed as the enabling technology to observe, map, and explore the ocean. The unique characteristics of underwater aquatic environments such as low bandwidth, long propagation delays, and high energy consumption make the data forwarding process very difficult. Moreover, the mobility of the underwater sensors is considered an additional constraint for the success of the data forwarding process. That being said, most of the data forwarding protocols do not realistically consider the dynamic topology of underwater environment as sensor nodes move with the water currents, which is a natural phenomenon. In this research, we propose a mobility prediction optimal data forwarding (MPODF) protocol for UASNs based on mobility prediction. Indeed, by considering a realistic, physically inspired mobility model, our protocol succeeds to forward every generated data packet through one single best path without the need to exchange notification messages, thanks to the mobility prediction module. Simulation results show that our protocol achieves a high packet delivery ratio, high energy efficiency, and reduced end-to-end delay.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123840523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-09DOI: 10.3389/frcmn.2021.645040
Hussein Kaheel, Ali Hussein, A. Chehab
The COVID-19 pandemic has attracted the attention of big data analysts and artificial intelligence engineers. The classification of computed tomography (CT) chest images into normal or infected requires intensive data collection and an innovative architecture of AI modules. In this article, we propose a platform that covers several levels of analysis and classification of normal and abnormal aspects of COVID-19 by examining CT chest scan images. Specifically, the platform first augments the dataset to be used in the training phase based on a reliable collection of images, segmenting/detecting the suspicious regions in the images, and analyzing these regions in order to output the right classification. Furthermore, we combine AI algorithms, after choosing the best fit module for our study. Finally, we show the effectiveness of this architecture when compared to other techniques in the literature. The obtained results show that the accuracy of the proposed architecture is 95%.
{"title":"AI-Based Image Processing for COVID-19 Detection in Chest CT Scan Images","authors":"Hussein Kaheel, Ali Hussein, A. Chehab","doi":"10.3389/frcmn.2021.645040","DOIUrl":"https://doi.org/10.3389/frcmn.2021.645040","url":null,"abstract":"The COVID-19 pandemic has attracted the attention of big data analysts and artificial intelligence engineers. The classification of computed tomography (CT) chest images into normal or infected requires intensive data collection and an innovative architecture of AI modules. In this article, we propose a platform that covers several levels of analysis and classification of normal and abnormal aspects of COVID-19 by examining CT chest scan images. Specifically, the platform first augments the dataset to be used in the training phase based on a reliable collection of images, segmenting/detecting the suspicious regions in the images, and analyzing these regions in order to output the right classification. Furthermore, we combine AI algorithms, after choosing the best fit module for our study. Finally, we show the effectiveness of this architecture when compared to other techniques in the literature. The obtained results show that the accuracy of the proposed architecture is 95%.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"61 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120817475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-06DOI: 10.3389/frcmn.2021.712973
I. Donevski, Israel Leyva Mayorga, J. Nielsen, P. Popovski
Modern communication devices are often equipped with multiple wireless communication interfaces with diverse characteristics. This enables exploiting a form of multi-connectivity known as interface diversity to provide path diversity with multiple communication interfaces. Interface diversity helps to combat the problems suffered by single-interface systems due to error bursts in the link, which are a consequence of temporal correlation in the wireless channel. The length of an error burst is an essential performance indicator for cyber–physical control applications with periodic traffic, as this defines the period in which the control link is unavailable. However, the available interfaces must be correctly orchestrated to achieve an adequate trade-off between latency, reliability, and energy consumption. This work investigates how the packet error statistics from different interfaces impact the overall latency–reliability characteristics and explores mechanisms to derive adequate interface diversity policies. For this, we model the optimization problem as a partially observable Markov decision process (POMDP), where the state of each interface is determined by a Gilbert–Elliott model whose parameters are estimated based on experimental measurement traces from LTE and Wi-Fi. Our results show that the POMDP approach provides an all-round adaptable solution, whose performance is only 0.1% below the absolute upper bound, dictated by the optimal policy under the impractical assumption of full observability.
{"title":"Performance Trade-Offs in Cyber–Physical Control Applications With Multi-Connectivity","authors":"I. Donevski, Israel Leyva Mayorga, J. Nielsen, P. Popovski","doi":"10.3389/frcmn.2021.712973","DOIUrl":"https://doi.org/10.3389/frcmn.2021.712973","url":null,"abstract":"Modern communication devices are often equipped with multiple wireless communication interfaces with diverse characteristics. This enables exploiting a form of multi-connectivity known as interface diversity to provide path diversity with multiple communication interfaces. Interface diversity helps to combat the problems suffered by single-interface systems due to error bursts in the link, which are a consequence of temporal correlation in the wireless channel. The length of an error burst is an essential performance indicator for cyber–physical control applications with periodic traffic, as this defines the period in which the control link is unavailable. However, the available interfaces must be correctly orchestrated to achieve an adequate trade-off between latency, reliability, and energy consumption. This work investigates how the packet error statistics from different interfaces impact the overall latency–reliability characteristics and explores mechanisms to derive adequate interface diversity policies. For this, we model the optimization problem as a partially observable Markov decision process (POMDP), where the state of each interface is determined by a Gilbert–Elliott model whose parameters are estimated based on experimental measurement traces from LTE and Wi-Fi. Our results show that the POMDP approach provides an all-round adaptable solution, whose performance is only 0.1% below the absolute upper bound, dictated by the optimal policy under the impractical assumption of full observability.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115547856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-02DOI: 10.3389/frcmn.2021.689530
Chunlin Yan, Wei Liu, Hongwei Yuan
Massive machine type communications (mMTC) are one of the critical requirements for beyond fifth generation (B5G) communication systems. Services for a huge number of user terminals should be provided simultaneously due to the explosive development of mMTC. It is proved that non-orthogonal multiple access (NOMA) is effective in satisfying such a requirement. In this paper we evaluate the impacts of numerous factors, such as channel encoding, channel decoding, repetition number, multi-user detector, and number of receiver antennas, on the performance of NOMA. It is surprised to find that some conclusions drawn from orthogonal multiple access system may do not hold anymore for NOMA systems. The factors which have significant impact on the performance of NOMA should be paid more attention to in the system design. The analysis and evaluation results shine more light on how to design an effect NOMA scheme by considering both transmitter and receiver to fulfill the requirements of mMTC for B5G systems.
{"title":"Numerous Factors Affecting Performance of NOMA for Massive Machine Type Communications in B5G Systems","authors":"Chunlin Yan, Wei Liu, Hongwei Yuan","doi":"10.3389/frcmn.2021.689530","DOIUrl":"https://doi.org/10.3389/frcmn.2021.689530","url":null,"abstract":"Massive machine type communications (mMTC) are one of the critical requirements for beyond fifth generation (B5G) communication systems. Services for a huge number of user terminals should be provided simultaneously due to the explosive development of mMTC. It is proved that non-orthogonal multiple access (NOMA) is effective in satisfying such a requirement. In this paper we evaluate the impacts of numerous factors, such as channel encoding, channel decoding, repetition number, multi-user detector, and number of receiver antennas, on the performance of NOMA. It is surprised to find that some conclusions drawn from orthogonal multiple access system may do not hold anymore for NOMA systems. The factors which have significant impact on the performance of NOMA should be paid more attention to in the system design. The analysis and evaluation results shine more light on how to design an effect NOMA scheme by considering both transmitter and receiver to fulfill the requirements of mMTC for B5G systems.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129442646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}