首页 > 最新文献

Communications in Theoretical Physics最新文献

英文 中文
Bethe ansatz solutions of the 1D extended Hubbard-model 一维扩展哈伯德模型的贝特解析解
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-04-05 DOI: 10.1088/1572-9494/ad2c77
Haiyang Hou, Pei Sun, Yi Qiao, Xiaotian Xu, Xin Zhang, Tao Yang
We construct an integrable 1D extended Hubbard model within the framework of the quantum inverse scattering method. With the help of the nested algebraic Bethe ansatz method, the eigenvalue Hamiltonian problem is solved by a set of Bethe ansatz equations, whose solutions are supposed to give the correct energy spectrum.
我们在量子反向散射方法的框架内构建了一个可积分的一维扩展哈伯德模型。在嵌套代数贝特安萨特方法的帮助下,特征值哈密顿问题由一组贝特安萨特方程求解,这些方程的解理应给出正确的能谱。
{"title":"Bethe ansatz solutions of the 1D extended Hubbard-model","authors":"Haiyang Hou, Pei Sun, Yi Qiao, Xiaotian Xu, Xin Zhang, Tao Yang","doi":"10.1088/1572-9494/ad2c77","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2c77","url":null,"abstract":"We construct an integrable 1D extended Hubbard model within the framework of the quantum inverse scattering method. With the help of the nested algebraic Bethe ansatz method, the eigenvalue Hamiltonian problem is solved by a set of Bethe ansatz equations, whose solutions are supposed to give the correct energy spectrum.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"29 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor–Melvin-Lambda space-time 通过波诺-梅尔文-兰达时空彩虹引力效应下的克莱因-戈登方程研究标量粒子
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-04-05 DOI: 10.1088/1572-9494/ad2e88
Faizuddin Ahmed, Abdelmalek Bouzenada
In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter <italic toggle="yes">α</italic> of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) <inline-formula><tex-math><?CDATA $f(chi )=tfrac{({{rm{e}}}^{beta ,chi }-1)}{beta ,chi }$?></tex-math><mml:math overflow="scroll"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mstyle displaystyle="false"><mml:mfrac><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="normal">e</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width="0.25em"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width="0.25em"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:mfrac></mml:mstyle></mml:math><inline-graphic xlink:href="ctpad2e88ieqn1.gif" xlink:type="simple"></inline-graphic></inline-formula>, <italic toggle="yes">h</italic>(<italic toggle="yes">χ</italic>) = 1 and (ii) <italic toggle="yes">f</italic>(<italic toggle="yes">χ</italic>) = 1, <inline-formula><tex-math><?CDATA $h(chi )=1+tfrac{beta ,chi }{2}$?></tex-math><mml:math overflow="scroll"><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mstyle displaystyle="false"><mml:mfrac><mml:mrow><mml:mi>β</mml:mi><mml:mspace width="0.25em"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:math><inline-graphic xlink:href="ctpad2e88ieqn2.gif" xlink:type="simple"></inline-graphic></inline-formula>. Here <inline-formula><tex-math><?CDATA $0lt left(chi =tfrac{| E| }{{E}_{p}}right)leqslant 1$?></tex-math><mml:math overflow="scroll"><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mfenced close=")" open="("><mml:mrow><mml:mi>χ</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle="false"><mml:mfrac><mml:mrow><mml:mo stretchy="false">∣</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy="false">∣</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:math><inline-graphic xlink:href="ctpad2e88ieqn3.gif" xlink:type="simple"></inline-graphic></inline-formula> with <italic toggle="yes">E</italic> representing the particle’s energy, <ital
在我们的研究中,考虑到波诺-梅尔文-兰姆达(BML)时空背景,我们在彩虹引力框架内通过克莱因-戈登方程探索了无电荷标量粒子的量子动力学。BML 解法的特点是沿对称轴方向的磁场强度与宇宙学常数Λ和几何拓扑参数α相关。利用两组彩虹函数研究了克莱因-戈登方程描述的无电荷标量粒子的行为:(i) f(χ)=(eβχ-1)βχ, h(χ) = 1 和 (ii) f(χ) = 1, h(χ)=1+βχ2 。这里,0<χ=∣E∣Ep≤1,E 代表粒子的能量,Ep 是普朗克能量,β 是虹参数。我们得到了标量粒子的近似解析解,并对所得结果进行了深入分析。之后,我们利用克莱因-戈登振荡器研究了 BML 时空中量子振荡器场的量子动力学。在这里,我们也选择了相同的彩虹函数集,并得到了振子场的近似特征值解。值得注意的是,我们证明了无电荷标量粒子和振荡场的相对论近似能量剖面会受到几何拓扑和宇宙学常数的影响。此外,我们还证明了标量粒子的能量剖面会受到彩虹参数的影响,而量子振荡场则会受到彩虹参数和振荡频率的影响。
{"title":"Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor–Melvin-Lambda space-time","authors":"Faizuddin Ahmed, Abdelmalek Bouzenada","doi":"10.1088/1572-9494/ad2e88","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2e88","url":null,"abstract":"In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter &lt;italic toggle=\"yes\"&gt;α&lt;/italic&gt; of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA $f(chi )=tfrac{({{rm{e}}}^{beta ,chi }-1)}{beta ,chi }$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;χ&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;mml:mo&gt;=&lt;/mml:mo&gt;&lt;mml:mstyle displaystyle=\"false\"&gt;&lt;mml:mfrac&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;e&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;β&lt;/mml:mi&gt;&lt;mml:mspace width=\"0.25em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mi&gt;χ&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;β&lt;/mml:mi&gt;&lt;mml:mspace width=\"0.25em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mi&gt;χ&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mfrac&gt;&lt;/mml:mstyle&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2e88ieqn1.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;, &lt;italic toggle=\"yes\"&gt;h&lt;/italic&gt;(&lt;italic toggle=\"yes\"&gt;χ&lt;/italic&gt;) = 1 and (ii) &lt;italic toggle=\"yes\"&gt;f&lt;/italic&gt;(&lt;italic toggle=\"yes\"&gt;χ&lt;/italic&gt;) = 1, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA $h(chi )=1+tfrac{beta ,chi }{2}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mi&gt;h&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;χ&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;mml:mo&gt;=&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;mml:mstyle displaystyle=\"false\"&gt;&lt;mml:mfrac&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;β&lt;/mml:mi&gt;&lt;mml:mspace width=\"0.25em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mi&gt;χ&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:mfrac&gt;&lt;/mml:mstyle&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2e88ieqn2.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;. Here &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA $0lt left(chi =tfrac{| E| }{{E}_{p}}right)leqslant 1$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;mml:mo&gt;&lt;&lt;/mml:mo&gt;&lt;mml:mfenced close=\")\" open=\"(\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;χ&lt;/mml:mi&gt;&lt;mml:mo&gt;=&lt;/mml:mo&gt;&lt;mml:mstyle displaystyle=\"false\"&gt;&lt;mml:mfrac&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;∣&lt;/mml:mo&gt;&lt;mml:mi&gt;E&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;∣&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;E&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;p&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mfrac&gt;&lt;/mml:mstyle&gt;&lt;/mml:mrow&gt;&lt;/mml:mfenced&gt;&lt;mml:mo&gt;≤&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2e88ieqn3.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; with &lt;italic toggle=\"yes\"&gt;E&lt;/italic&gt; representing the particle’s energy, &lt;ital","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"15 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissociation cross sections of ψ(3770), ψ(4040), ψ(4160), and ψ(4415) mesons with nucleons ψ(3770)、ψ(4040)、ψ(4160)和ψ(4415)介子与核子的解离截面
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-04-04 DOI: 10.1088/1572-9494/ad2ce1
Ruo-Qing Ding, Xiao-Ming Xu, H J Weber
We study the dissociation of <italic toggle="yes">ψ</italic>(3770), <italic toggle="yes">ψ</italic>(4040), <italic toggle="yes">ψ</italic>(4160), and <italic toggle="yes">ψ</italic>(4415) mesons in collision with nucleons, which takes place in high-energy proton-nucleus collisions. The quark interchange between a nucleon and a <inline-formula><tex-math><?CDATA $cbar{c}$?></tex-math><mml:math overflow="scroll"><mml:mi>c</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math><inline-graphic xlink:href="ctpad2ce1ieqn1.gif" xlink:type="simple"></inline-graphic></inline-formula> meson leads to the dissociation of the <inline-formula><tex-math><?CDATA $cbar{c}$?></tex-math><mml:math overflow="scroll"><mml:mi>c</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math><inline-graphic xlink:href="ctpad2ce1ieqn2.gif" xlink:type="simple"></inline-graphic></inline-formula> meson. We consider the reactions: <inline-formula><tex-math><?CDATA ${pR}to {{rm{Lambda }}}_{c}^{+}{bar{D}}^{0}$?></tex-math><mml:math overflow="scroll"><mml:mi mathvariant="italic">pR</mml:mi><mml:mo>→</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math><inline-graphic xlink:href="ctpad2ce1ieqn3.gif" xlink:type="simple"></inline-graphic></inline-formula>, <inline-formula><tex-math><?CDATA ${pR}to {{rm{Lambda }}}_{c}^{+}{bar{D}}^{* 0}$?></tex-math><mml:math overflow="scroll"><mml:mi mathvariant="italic">pR</mml:mi><mml:mo>→</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math><inline-graphic xlink:href="ctpad2ce1ieqn4.gif" xlink:type="simple"></inline-graphic></inline-formula>, <inline-formula><tex-math><?CDATA ${pR}to {{rm{Sigma }}}_{c}^{++}{D}^{-}$?></tex-math><mml:math overflow="scroll"><mml:mi mathvariant="italic">pR</mml:mi><mml:mo>→</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Σ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>++</mml:mo></mml:mrow></mml:msubsup><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msup></mml:math><inline-graphic xlink:href="ctpad2ce1ieqn5.gif" xlink:type="simple"></inline-graphic></inline-formula>, <inline-formula><tex-math>
我们研究了高能质子-核子碰撞中ψ(3770)、ψ(4040)、ψ(4160)和ψ(4415)介子与核子碰撞时的解离。核子与cc¯介子之间的夸克交换导致cc¯介子的解离。我们考虑以下反应pR→Λc+D¯0、pR→Λc+D¯*0、pR→Σc++D-、pR→Σc++D*-、pR→Σc++D¯0、pR→Σc++D¯*0、pR→Σc*++D¯-、pR→Σc*++D*-、pR→Σc*+D¯0和pR→Σc*+D¯*0,其中R代表ψ(3770)、ψ(4040)、ψ(4160)或ψ(4415)。中子和cc¯介子的反应对应于质子和cc¯介子的反应,将上夸克替换为下夸克,反之亦然。过渡振幅公式来自 S 矩阵元素。非极化截面是用先验形式和后验形式的散射过渡振幅计算出来的。截面与ψ(3770)、ψ(4040)、ψ(4160)和ψ(4415)介子径向波函数的节点有关。
{"title":"Dissociation cross sections of ψ(3770), ψ(4040), ψ(4160), and ψ(4415) mesons with nucleons","authors":"Ruo-Qing Ding, Xiao-Ming Xu, H J Weber","doi":"10.1088/1572-9494/ad2ce1","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2ce1","url":null,"abstract":"We study the dissociation of &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(3770), &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(4040), &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(4160), and &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(4415) mesons in collision with nucleons, which takes place in high-energy proton-nucleus collisions. The quark interchange between a nucleon and a &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA $cbar{c}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mover accent=\"true\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;¯&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:mover&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2ce1ieqn1.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; meson leads to the dissociation of the &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA $cbar{c}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mover accent=\"true\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;¯&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:mover&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2ce1ieqn2.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; meson. We consider the reactions: &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${pR}to {{rm{Lambda }}}_{c}^{+}{bar{D}}^{0}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mi mathvariant=\"italic\"&gt;pR&lt;/mml:mi&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;Λ&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:msubsup&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mover accent=\"true\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;D&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;¯&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:mover&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msup&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2ce1ieqn3.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${pR}to {{rm{Lambda }}}_{c}^{+}{bar{D}}^{* 0}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mi mathvariant=\"italic\"&gt;pR&lt;/mml:mi&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;Λ&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:msubsup&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mover accent=\"true\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;D&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;¯&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:mover&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;*&lt;/mml:mo&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msup&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2ce1ieqn4.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${pR}to {{rm{Sigma }}}_{c}^{++}{D}^{-}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mi mathvariant=\"italic\"&gt;pR&lt;/mml:mi&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;Σ&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;++&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:msubsup&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;D&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:msup&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ctpad2ce1ieqn5.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"22 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rogue waves for the (2+1)-dimensional Myrzakulov–Lakshmanan-IV equation on a periodic background 周期性背景上 (2+1)-dimensional Myrzakulov-Lakshmanan-IV 方程的无规则波
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-28 DOI: 10.1088/1572-9494/ad2c78
Xiao-Hui Wang, Zhaqilao
In this paper, the rogue wave solutions of the (2+1)-dimensional Myrzakulov–Lakshmanan (ML)-IV equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation (DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained. The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.
本文在周期背景下研究了由五分量非线性演化方程描述的 (2+1)-dimensional Myrzakulov-Lakshmanan (ML)-IV 方程的无赖波解。通过雅各布椭圆函数展开法、达布变换(DT)法和拉克斯对的非线性化,得到了由雅各布椭圆函数 dn 和 cn 表示的两种流氓波解。本文系统地总结了这五种势之间的关系。首先得到一种势的周期性无赖波解,然后直接得到其他四种势的周期性无赖波解。我们发现的解呈现出高阶非线性波方程的动态现象。
{"title":"Rogue waves for the (2+1)-dimensional Myrzakulov–Lakshmanan-IV equation on a periodic background","authors":"Xiao-Hui Wang, Zhaqilao","doi":"10.1088/1572-9494/ad2c78","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2c78","url":null,"abstract":"In this paper, the rogue wave solutions of the (2+1)-dimensional Myrzakulov–Lakshmanan (ML)-IV equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation (DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained. The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"23 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planar matrices and arrays of Feynman diagrams: poles for higher k 平面矩阵和费曼图阵列:高 k 的极点
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-26 DOI: 10.1088/1572-9494/ad1095
Alfredo Guevara, Yong Zhang
Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes mn(k) for k > 2. In this follow-up work, we investigate the poles of mn(k) from the perspective of such arrays. For general k, we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles, whose number is drastically less than the number of the full arrays. As an example, we first provide all the poles for the cases (k, n) = (3, 7), (3, 8), (3, 9), (3, 10), (4, 8) and (4, 9) in terms of their planar arrays of degenerate Feynman diagrams. We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases. Along the way, we implement hard and soft kinematical limits, which provide a map between the poles in kinematic space and their combinatoric arrays. We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in (k, n) and (nk, n). We also outline the relation to boundary maps of the hypersimplex Δk,n and rays in the tropical Grassmannian Tr(k,n).
树图的平面阵列作为费曼图的广义引入,可以计算 k > 2 的双关节振幅 mn(k)。在这项后续工作中,我们从这种阵列的角度研究 mn(k) 的极点。对于一般 k,我们将底层多面体表征为旗状复数,并提出了一种完全基于极点知识的振幅计算方法,其数量大大少于完整阵列的数量。作为示例,我们首先根据退化费曼图的平面阵列提供了 (k, n) = (3, 7), (3, 8), (3, 9), (3, 10), (4, 8) 和 (4, 9) 情况下的所有极点。然后,我们实施简单的兼容性标准以及数组之间的加法运算,并恢复出这种情况下的完整集合/数组。在此过程中,我们实现了硬运动学极限和软运动学极限,它们提供了运动学空间中的极点与其组合阵列之间的映射。我们利用该操作证明了之前猜想的 (k, n) 和 (n - k, n) 中阵列的组合对偶性。我们还概述了超复数 Δk,n 的边界映射与热带格拉斯曼 Tr(k,n) 中射线的关系。
{"title":"Planar matrices and arrays of Feynman diagrams: poles for higher k","authors":"Alfredo Guevara, Yong Zhang","doi":"10.1088/1572-9494/ad1095","DOIUrl":"https://doi.org/10.1088/1572-9494/ad1095","url":null,"abstract":"Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes <inline-formula>\u0000<tex-math>\u0000<?CDATA ${m}_{n}^{(k)}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\u0000<inline-graphic xlink:href=\"ctpad1095ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> for <italic toggle=\"yes\">k</italic> &gt; 2. In this follow-up work, we investigate the poles of <inline-formula>\u0000<tex-math>\u0000<?CDATA ${m}_{n}^{(k)}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\u0000<inline-graphic xlink:href=\"ctpad1095ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> from the perspective of such arrays. For general <italic toggle=\"yes\">k</italic>, we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles, whose number is drastically less than the number of the full arrays. As an example, we first provide all the poles for the cases (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) = (3, 7), (3, 8), (3, 9), (3, 10), (4, 8) and (4, 9) in terms of their planar arrays of degenerate Feynman diagrams. We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases. Along the way, we implement hard and soft kinematical limits, which provide a map between the poles in kinematic space and their combinatoric arrays. We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) and (<italic toggle=\"yes\">n</italic> − <italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>). We also outline the relation to boundary maps of the hypersimplex Δ<sub>\u0000<italic toggle=\"yes\">k</italic>,<italic toggle=\"yes\">n</italic>\u0000</sub> and rays in the tropical Grassmannian <inline-formula>\u0000<tex-math>\u0000<?CDATA $mathrm{Tr}(k,n)$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi>Tr</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math>\u0000<inline-graphic xlink:href=\"ctpad1095ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum algorithms for matrix operations and linear systems of equations 矩阵运算和线性方程组的量子算法
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-08 DOI: 10.1088/1572-9494/ad2366
Wentao Qi, Alexandr I Zenchuk, Asutosh Kumar, Junde Wu
Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations. Using the ‘sender-receiver’ model, we propose quantum algorithms for matrix operations such as matrix-vector product, matrix-matrix product, the sum of two matrices, and the calculation of determinant and inverse matrix. We encode the matrix entries into the probability amplitudes of the pure initial states of senders. After applying proper unitary transformation to the complete quantum system, the desired result can be found in certain blocks of the receiver’s density matrix. These quantum protocols can be used as subroutines in other quantum schemes. Furthermore, we present an alternative quantum algorithm for solving linear systems of equations.
基本矩阵运算和线性方程组求解在科学研究中无处不在。利用 "发送者-接收者 "模型,我们提出了矩阵运算的量子算法,如矩阵-向量积、矩阵-矩阵积、两个矩阵之和、行列式和逆矩阵的计算。我们将矩阵项编码为发送者纯初始状态的概率振幅。在对整个量子系统进行适当的单元变换后,就能在接收方密度矩阵的某些块中找到所需的结果。这些量子协议可用作其他量子方案的子程序。此外,我们还提出了另一种求解线性方程组的量子算法。
{"title":"Quantum algorithms for matrix operations and linear systems of equations","authors":"Wentao Qi, Alexandr I Zenchuk, Asutosh Kumar, Junde Wu","doi":"10.1088/1572-9494/ad2366","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2366","url":null,"abstract":"Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations. Using the ‘sender-receiver’ model, we propose quantum algorithms for matrix operations such as matrix-vector product, matrix-matrix product, the sum of two matrices, and the calculation of determinant and inverse matrix. We encode the matrix entries into the probability amplitudes of the pure initial states of senders. After applying proper unitary transformation to the complete quantum system, the desired result can be found in certain blocks of the receiver’s density matrix. These quantum protocols can be used as subroutines in other quantum schemes. Furthermore, we present an alternative quantum algorithm for solving linear systems of equations.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"83 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold plasma-induced effects on electromagnetic wave scattering in waveguides: a mode-matching analysis 冷等离子体对波导中电磁波散射的诱导效应:模式匹配分析
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-07 DOI: 10.1088/1572-9494/ad23db
Shahana Rizvi, Muhammad Afzal
This article presents advancements in an analytical mode-matching technique for studying electromagnetic wave propagation in a parallel-plate metallic rectangular waveguide. This technique involves projecting the solution onto basis functions and solving linear algebraic systems to determine scattering amplitudes. The accuracy of this method is validated via numerical assessments, which involve the reconstruction of matching conditions and conservation laws. The study highlights the impact of geometric and material variations on reflection and transmission phenomena in the waveguide.
本文介绍了研究电磁波在平行板金属矩形波导中传播的分析模式匹配技术的进展。该技术包括将解法投影到基函数上,并求解线性代数系统以确定散射振幅。该方法的准确性通过数值评估得到验证,其中涉及匹配条件和守恒定律的重建。研究强调了几何和材料变化对波导中反射和传输现象的影响。
{"title":"Cold plasma-induced effects on electromagnetic wave scattering in waveguides: a mode-matching analysis","authors":"Shahana Rizvi, Muhammad Afzal","doi":"10.1088/1572-9494/ad23db","DOIUrl":"https://doi.org/10.1088/1572-9494/ad23db","url":null,"abstract":"This article presents advancements in an analytical mode-matching technique for studying electromagnetic wave propagation in a parallel-plate metallic rectangular waveguide. This technique involves projecting the solution onto basis functions and solving linear algebraic systems to determine scattering amplitudes. The accuracy of this method is validated via numerical assessments, which involve the reconstruction of matching conditions and conservation laws. The study highlights the impact of geometric and material variations on reflection and transmission phenomena in the waveguide.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"19 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q-homotopy analysis method for time-fractional Newell–Whitehead equation and time-fractional generalized Hirota–Satsuma coupled KdV system 时分数 Newell-Whitehead 方程和时分数广义 Hirota-Satsuma 耦合 KdV 系统的 Q 同调分析方法
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-07 DOI: 10.1088/1572-9494/ad2364
Di Liu, Qiongya Gu, Lizhen Wang
In this paper, two types of fractional nonlinear equations in Caputo sense, time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS), are investigated by means of the q-homotopy analysis method (q-HAM). The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions. Due to the presence of the auxiliary parameter h in this method, just a few terms of the series solution are required in order to obtain better approximation. For the sake of visualization, the numerical results obtained in this paper are graphically displayed with the help of Maple.
本文通过 q-homotopy 分析方法(q-HAM)研究了 Caputo 意义上的两类分数非线性方程,即时间分数 Newell-Whitehead 方程(FNWE)和时间分数广义 Hirota-Satsuma 耦合 KdV 系统(HS-cKdVS)。所提方程的近似解是以收敛级数的形式构建的,并与相应的精确解进行了比较。由于该方法中存在辅助参数 h,因此只需要数列解中的几个项就能获得较好的近似解。为直观起见,本文借助 Maple 对数值结果进行了图解。
{"title":"Q-homotopy analysis method for time-fractional Newell–Whitehead equation and time-fractional generalized Hirota–Satsuma coupled KdV system","authors":"Di Liu, Qiongya Gu, Lizhen Wang","doi":"10.1088/1572-9494/ad2364","DOIUrl":"https://doi.org/10.1088/1572-9494/ad2364","url":null,"abstract":"In this paper, two types of fractional nonlinear equations in Caputo sense, time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS), are investigated by means of the q-homotopy analysis method (q-HAM). The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions. Due to the presence of the auxiliary parameter <italic toggle=\"yes\">h</italic> in this method, just a few terms of the series solution are required in order to obtain better approximation. For the sake of visualization, the numerical results obtained in this paper are graphically displayed with the help of Maple.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"49 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tighter sum uncertainty relations via (α, β, γ) weighted Wigner–Yanase–Dyson skew information 通过 (α, β, γ) 加权 Wigner-Yanase-Dyson 倾斜信息实现更紧密的总和不确定性关系
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-06 DOI: 10.1088/1572-9494/ad216b
Cong Xu, Zhaoqi Wu, Shao-Ming Fei
We establish tighter uncertainty relations for arbitrary finite observables via (α, β, γ) weighted Wigner–Yanase–Dyson ((α, β, γ) WWYD) skew information. The results are also applicable to the (α, γ) weighted Wigner–Yanase–Dyson ((α, γ) WWYD) skew information and the weighted Wigner–Yanase–Dyson (WWYD) skew information. We also present tighter lower bounds for quantum channels and unitary channels via (α, β, γ) modified weighted Wigner–Yanase–Dyson ((α, β, γ) MWWYD) skew information. Detailed examples are provided to illustrate the tightness of our uncertainty relations.
我们通过 (α, β, γ) 加权维格纳-扬纳-戴森((α, β, γ) WWYD)倾斜信息,为任意有限观测变量建立了更严格的不确定性关系。这些结果也适用于 (α, γ) 加权维格纳-雅纳斯-戴森((α, γ) WWYD)偏斜信息和加权维格纳-雅纳斯-戴森(WWYD)偏斜信息。我们还通过 (α, β, γ) 修正的加权维格纳-雅纳斯-戴森((α, β, γ) MWWYD)偏斜信息,提出了量子信道和单元信道的更严格下界。我们提供了详细的例子来说明我们的不确定性关系的严密性。
{"title":"Tighter sum uncertainty relations via (α, β, γ) weighted Wigner–Yanase–Dyson skew information","authors":"Cong Xu, Zhaoqi Wu, Shao-Ming Fei","doi":"10.1088/1572-9494/ad216b","DOIUrl":"https://doi.org/10.1088/1572-9494/ad216b","url":null,"abstract":"We establish tighter uncertainty relations for arbitrary finite observables via (<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) weighted Wigner–Yanase–Dyson ((<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) WWYD) skew information. The results are also applicable to the (<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">γ</italic>) weighted Wigner–Yanase–Dyson ((<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">γ</italic>) WWYD) skew information and the weighted Wigner–Yanase–Dyson (WWYD) skew information. We also present tighter lower bounds for quantum channels and unitary channels via (<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) modified weighted Wigner–Yanase–Dyson ((<italic toggle=\"yes\">α</italic>, <italic toggle=\"yes\">β</italic>, <italic toggle=\"yes\">γ</italic>) MWWYD) skew information. Detailed examples are provided to illustrate the tightness of our uncertainty relations.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"128 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The quasi-Gramian solution of a non-commutative extension of the higher-order nonlinear Schrödinger equation 高阶非线性薛定谔方程非交换扩展的准伽马解
IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-06 DOI: 10.1088/1572-9494/ad244f
H W A Riaz, J Lin
The nonlinear Schrödinger (NLS) equation, which incorporates higher-order dispersive terms, is widely employed in the theoretical analysis of various physical phenomena. In this study, we explore the non-commutative extension of the higher-order NLS equation. We treat real or complex-valued functions, such as g1 = g1(x, t) and g2 = g2(x, t) as non-commutative, and employ the Lax pair associated with the evolution equation, as in the commutation case. We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation. The soliton solutions are presented explicitly within the framework of quasideterminants. To visually understand the dynamics and solutions in the given example, we also provide simulations illustrating the associated profiles. Moreover, the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.
非线性薛定谔(NLS)方程包含高阶色散项,被广泛应用于各种物理现象的理论分析。在本研究中,我们探讨了高阶 NLS 方程的非交换扩展。我们将实值或复值函数,如 g1 = g1(x, t) 和 g2 = g2(x, t) 视为非交换函数,并采用与演化方程相关的拉克斯对,就像在交换情况下一样。我们通过二元达尔布克斯变换推导出系统的准格拉玛解。孤子解在准决定子框架内明确呈现。为了直观地理解给定例子中的动力学和解,我们还提供了相关剖面的模拟图。此外,该解法还可用于研究平面波的稳定性,并在调制不稳定性的背景下理解周期模式的产生。
{"title":"The quasi-Gramian solution of a non-commutative extension of the higher-order nonlinear Schrödinger equation","authors":"H W A Riaz, J Lin","doi":"10.1088/1572-9494/ad244f","DOIUrl":"https://doi.org/10.1088/1572-9494/ad244f","url":null,"abstract":"The nonlinear Schrödinger (NLS) equation, which incorporates higher-order dispersive terms, is widely employed in the theoretical analysis of various physical phenomena. In this study, we explore the non-commutative extension of the higher-order NLS equation. We treat real or complex-valued functions, such as <italic toggle=\"yes\">g</italic>\u0000<sub>1</sub> = <italic toggle=\"yes\">g</italic>\u0000<sub>1</sub>(<italic toggle=\"yes\">x</italic>, <italic toggle=\"yes\">t</italic>) and <italic toggle=\"yes\">g</italic>\u0000<sub>2</sub> = <italic toggle=\"yes\">g</italic>\u0000<sub>2</sub>(<italic toggle=\"yes\">x</italic>, <italic toggle=\"yes\">t</italic>) as non-commutative, and employ the Lax pair associated with the evolution equation, as in the commutation case. We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation. The soliton solutions are presented explicitly within the framework of quasideterminants. To visually understand the dynamics and solutions in the given example, we also provide simulations illustrating the associated profiles. Moreover, the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"4 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications in Theoretical Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1