首页 > 最新文献

Compost Science & Utilization最新文献

英文 中文
Composting of Cornstalks Used as Filtering Materials for the Pretreatment of Anaerobically Digested Centrate 玉米秸秆堆肥用作厌氧消化中心酸盐预处理的过滤材料
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-04-03 DOI: 10.1080/1065657X.2019.1571460
Longlong Du, Zhiye Zhang, Guoxue Li, Qiaoping Sun, Bangxi Zhang
Abstract This study investigated the performance of composting cornstalks after used as the filtering materials for the pretreatment of anaerobically digested manure centrate. Results show that cornstalks could effectively remove suspended solids and organic matter in digested centrate. Direct composting of the used cornstalks could be achieved. The composting temperature increased rapidly and maintained at the thermophilic phase for more than 10 days. During 28 days of composting, the used cornstalks could be mature as indicated by the matrix pH of 7.37, electrical conductivity of 1.13 mS/cm, and germination index of higher than 100%. During composting, the carbon/nitrogen ratio of the used cornstalks decreased from 16.81 to 13.62. Moreover, cellulose in the used cornstalks was degraded by approximately 35.4% during composting.
摘要本研究以玉米秸秆为过滤材料,对厌氧消化粪肥浓缩液进行预处理,研究了堆肥玉米秸秆的性能。结果表明,玉米秸秆能有效去除消化液中的悬浮物和有机物。用过的玉米秸秆可以直接堆肥。堆肥温度迅速升高,并在嗜热阶段保持10分钟以上 天。在28 经过几天的堆肥,用过的玉米秸秆可以成熟,基质pH为7.37,电导率为1.13 mS/cm,发芽指数高于100%。在堆肥过程中,使用过的玉米秸秆的碳氮比从16.81下降到13.62。此外,在堆肥过程中,用过的玉米秸秆中的纤维素降解了约35.4%。
{"title":"Composting of Cornstalks Used as Filtering Materials for the Pretreatment of Anaerobically Digested Centrate","authors":"Longlong Du, Zhiye Zhang, Guoxue Li, Qiaoping Sun, Bangxi Zhang","doi":"10.1080/1065657X.2019.1571460","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1571460","url":null,"abstract":"Abstract This study investigated the performance of composting cornstalks after used as the filtering materials for the pretreatment of anaerobically digested manure centrate. Results show that cornstalks could effectively remove suspended solids and organic matter in digested centrate. Direct composting of the used cornstalks could be achieved. The composting temperature increased rapidly and maintained at the thermophilic phase for more than 10 days. During 28 days of composting, the used cornstalks could be mature as indicated by the matrix pH of 7.37, electrical conductivity of 1.13 mS/cm, and germination index of higher than 100%. During composting, the carbon/nitrogen ratio of the used cornstalks decreased from 16.81 to 13.62. Moreover, cellulose in the used cornstalks was degraded by approximately 35.4% during composting.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"81 - 87"},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1571460","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44153857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Phosphate Amendments to Compost for Improving P Bio-Availability 堆肥中添加磷酸盐提高磷的生物利用度
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-04-03 DOI: 10.1080/1065657X.2019.1571461
Y. Redel, P. M. Nkebiwe, R. Schulz, T. Müller
Abstract This study was conducted to investigate changes in P-fractions, bio-available P (CAL-P), citric acid extractable P, acid phosphatase activity and microbial biomass C and N during incubation of mature biogenic compost (MBC), immature biogenic compost (IBC) or immature sheep manure compost (ISC) not amended with P or amended with rock phosphate (RP, 7.6% P) or triple-superphosphate (TSP, 19.5% P). Incubation was performed at 20 °C in darkness under aerobic conditions. Samples were collected for laboratory analysis at the start of incubation (D-0) and after one, six and 26 days during incubation (D-1, D-6, D-26). Addition of soluble P fertilizer (TSP) led to a threefold increase in all P fractions in comparison to compost without TSP; even a “priming effect” could be observed, promoting conversion of non-labile to labile P. Moreover, addition of TSP lowered biological activity, especially acid phosphatase activity (P-ase), due to already high concentrations of readily available P. In general, P fractions (bicarbonate extractable Pi (NaHCO3-Pi) and bicarbonate extractable Po (NaHCO3-Po) and sodium hydroxide extractable Po (NaOH-Po)) increased during incubation until day 6 at the expense of NaOH-Pi fraction, which decreased. Generally, RP-derived P showed little or no effect on P fractions during the entire incubation period and only led to slightly increased CAL-P and Citric-acid-P levels. Fertilizer effects on labile P fractions were most enhanced with ISC. IBC enhanced microbial growth and P-ase, thereby enhancing conversion of labile into moderate labile NaOH-Po.
摘要本研究旨在研究成熟生物堆肥(MBC)培养过程中P组分、生物有效P(CAL-P)、柠檬酸可提取P、酸性磷酸酶活性和微生物生物量C和N的变化,未成熟生物堆肥(IBC)或未用磷改良或用磷酸岩(RP,7.6%P)或过磷酸钙(TSP,19.5%P)改良的未成熟羊粪堆肥(ISC)。培养在20 在有氧条件下的黑暗中为°C。在培养开始时(D-0)以及1、6和26天后采集样本进行实验室分析 培养期间的天数(D-1,D-6,D-26)。与不添加可溶性磷的堆肥相比,添加可溶性磷使所有磷组分增加了三倍;甚至可以观察到“启动效应”,促进不稳定P向不稳定P的转化。此外,TSP的添加降低了生物活性,特别是酸性磷酸酶活性(P-ase),这是由于现成的P的浓度已经很高。一般来说,P组分(碳酸氢盐可提取的Pi(NaHCO3 Pi)和碳酸氢根可提取的Po(NaHCO3 Po)以及氢氧化钠可提取的P0(NaOH-Po))在培养至第6天期间增加,而NaOH-Pi组分减少。通常,RP衍生的P在整个培养期内对P组分几乎没有影响,仅导致CAL-P和柠檬酸-P水平略有增加。ISC对不稳定磷组分的施肥效果最为显著。IBC增强了微生物的生长和P-ase,从而增强了不稳定的NaOH-Po向中等不稳定的NaOH的转化。
{"title":"Phosphate Amendments to Compost for Improving P Bio-Availability","authors":"Y. Redel, P. M. Nkebiwe, R. Schulz, T. Müller","doi":"10.1080/1065657X.2019.1571461","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1571461","url":null,"abstract":"Abstract This study was conducted to investigate changes in P-fractions, bio-available P (CAL-P), citric acid extractable P, acid phosphatase activity and microbial biomass C and N during incubation of mature biogenic compost (MBC), immature biogenic compost (IBC) or immature sheep manure compost (ISC) not amended with P or amended with rock phosphate (RP, 7.6% P) or triple-superphosphate (TSP, 19.5% P). Incubation was performed at 20 °C in darkness under aerobic conditions. Samples were collected for laboratory analysis at the start of incubation (D-0) and after one, six and 26 days during incubation (D-1, D-6, D-26). Addition of soluble P fertilizer (TSP) led to a threefold increase in all P fractions in comparison to compost without TSP; even a “priming effect” could be observed, promoting conversion of non-labile to labile P. Moreover, addition of TSP lowered biological activity, especially acid phosphatase activity (P-ase), due to already high concentrations of readily available P. In general, P fractions (bicarbonate extractable Pi (NaHCO3-Pi) and bicarbonate extractable Po (NaHCO3-Po) and sodium hydroxide extractable Po (NaOH-Po)) increased during incubation until day 6 at the expense of NaOH-Pi fraction, which decreased. Generally, RP-derived P showed little or no effect on P fractions during the entire incubation period and only led to slightly increased CAL-P and Citric-acid-P levels. Fertilizer effects on labile P fractions were most enhanced with ISC. IBC enhanced microbial growth and P-ase, thereby enhancing conversion of labile into moderate labile NaOH-Po.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"88 - 96"},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1571461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47843802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Impact of Composting Food Waste with Green Waste on Greenhouse Gas Emissions from Compost Windrows 食物垃圾与绿色垃圾堆肥对堆肥堆温室气体排放的影响
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-01-02 DOI: 10.1080/1065657X.2018.1550023
S. R. Williams, X. Zhu-Barker, S. Lew, Benjamin James Croze, Kenna R. Fallan, W. Horwath
Abstract Windrow composting of green waste as an alternative to green waste disposal in landfills requires an understanding of the impacts on greenhouse gas (GHG) emissions and the development of effective and efficient management strategies to reduce these emissions. The addition of food waste to green waste compost operations is becoming more common, but its effect on GHG emissions is less understood. As more food waste diversion occurs as a result of recent implementation of climate smart policies in California, more information is needed to address the sustainability of composting different combinations of waste types. We monitored GHG emissions from compost windrows comprised of green waste alone and a green/food waste mixture (green waste : food waste = 9:1, by wet weight) at the University of California, Davis Student Farm in 2016 using a modified, open, flow-through chamber technique. When comparing total emissions of nitrous oxide (N2O) and methane (CH4), the green/food waste mixture produced 110 kg CO2 eq./ton DM (dry matter, std error = 12.2), which were slightly lower than emissions produced by the green waste alone (152 kg CO2 eq./ton DM, std error = 15.9). Methane was a large contributor to global warming potential (GWP) of both composting treatments, suggesting that management practices that optimize porosity and air flow in compost piles are promising in reducing emissions from both green waste and green/food waste mixtures.
摘要作为垃圾填埋场绿色废物处理的替代方案,绿色废物的Windrow堆肥需要了解对温室气体(GHG)排放的影响,并制定有效的管理策略来减少这些排放。在绿色垃圾堆肥作业中添加食物垃圾越来越普遍,但其对温室气体排放的影响却鲜为人知。由于加州最近实施了气候智能政策,导致更多的食物垃圾被转移,因此需要更多的信息来解决不同垃圾类型组合堆肥的可持续性问题。2016年,我们在加州大学戴维斯分校学生农场使用改良的开放式流通室技术监测了堆肥堆的温室气体排放,堆肥堆由单独的绿色废物和绿色/食物废物混合物组成(绿色废物:食物废物=9:1,按湿重计)。当比较一氧化二氮(N2O)和甲烷(CH4)的总排放量时,绿色/食物垃圾混合物产生110 kg CO2当量/吨DM(干物质,标准误差=12.2),略低于单独的绿色废物产生的排放量(152 kg CO2当量/吨DM,标准误差=15.9)。甲烷是两种堆肥处理的全球变暖潜力(GWP)的主要因素,这表明优化堆肥堆中孔隙率和空气流动的管理实践有希望减少绿色废物和绿色/食物废物混合物的排放。
{"title":"Impact of Composting Food Waste with Green Waste on Greenhouse Gas Emissions from Compost Windrows","authors":"S. R. Williams, X. Zhu-Barker, S. Lew, Benjamin James Croze, Kenna R. Fallan, W. Horwath","doi":"10.1080/1065657X.2018.1550023","DOIUrl":"https://doi.org/10.1080/1065657X.2018.1550023","url":null,"abstract":"Abstract Windrow composting of green waste as an alternative to green waste disposal in landfills requires an understanding of the impacts on greenhouse gas (GHG) emissions and the development of effective and efficient management strategies to reduce these emissions. The addition of food waste to green waste compost operations is becoming more common, but its effect on GHG emissions is less understood. As more food waste diversion occurs as a result of recent implementation of climate smart policies in California, more information is needed to address the sustainability of composting different combinations of waste types. We monitored GHG emissions from compost windrows comprised of green waste alone and a green/food waste mixture (green waste : food waste = 9:1, by wet weight) at the University of California, Davis Student Farm in 2016 using a modified, open, flow-through chamber technique. When comparing total emissions of nitrous oxide (N2O) and methane (CH4), the green/food waste mixture produced 110 kg CO2 eq./ton DM (dry matter, std error = 12.2), which were slightly lower than emissions produced by the green waste alone (152 kg CO2 eq./ton DM, std error = 15.9). Methane was a large contributor to global warming potential (GWP) of both composting treatments, suggesting that management practices that optimize porosity and air flow in compost piles are promising in reducing emissions from both green waste and green/food waste mixtures.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"35 - 45"},"PeriodicalIF":0.0,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2018.1550023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42120687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Municipal Waste and Poultry Manure Compost Affect Biomass Production, Nitrate Reductase Activity and Heavy Metals in Tomato Plants 城市垃圾和家禽粪便堆肥对番茄生物量、硝酸盐还原酶活性和重金属的影响
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-01-02 DOI: 10.1080/1065657X.2018.1524316
M. Aylaj, E. Lhadi, F. Adani
Abstract Organic wastes can be usefully recovered to produce organic amendments, for example, compost, to be used for crop production, thus reducing impacts through efficient waste management. The aim of this work was to study the effects of compost obtained from municipal waste in combination with poultry manure on plant growth, nitrate reductase (NR) activity and absorption and distribution of heavy metals (HM) in plant tissues of tomatoes, grown in pots in greenhouses. Two compost types obtained from municipal waste mixed with poultry manure (C1 = 3:2 and C2 = 2:3) were used at two different ages (105 d and 173 d) and at two mix rates with soil (32.5 g pot−1 and 65 g pot−1); soil with no compost amendment was used as control. The experiment was conducted using tomato plants in pots and plant growth and nutrient plant uptake was determined after 65 days from plant transplanting. Results obtained indicated that compost type and compost rate affected biomass production. However, compost age did not influence the development of plants. Nutrient status of tomato plants was also investigated with reference to the N cycle. Nitrite accumulation in the leaves increased with the increase in compost doses. The accumulation of NO2− was associated with a significant increase in NR activity. HM content in leaves decreased with compost use. HM accumulated preferentially in roots and leaves and the soil to root metals transfer was in this order: Fe (1.08–2.14)> Co (0.53–4.10)>Cu (0.28–2.28) >Mn (0.3–1.34) >Zn (0.87–1.21)>Cr (0.12–1.64). The highest and lowest dynamic bioaccumulation factors (BAFdyn) were observed in roots and stems, respectively. The root system acted as a barrier for Cd and Pb. It was concluded that compost use is beneficial for tomato plants, with particular reference to the compost obtained by using a higher amount of poultry manure (C2) in the mix.
有机废物可以有效地回收以生产有机改良剂,例如堆肥,用于作物生产,从而通过有效的废物管理减少影响。本试验旨在研究城市垃圾堆肥与禽畜粪便复合处理对温室盆栽番茄植株生长、硝酸盐还原酶(NR)活性和重金属(HM)吸收与分布的影响。从城市垃圾中获得的两种堆肥(C1 = 3:2和C2 = 2:3)与禽粪混合,在两个不同的日龄(105 d和173 d)和两种混合率(32.5 g pot - 1和65 g pot - 1)下使用;以不加堆肥改良剂的土壤为对照。本试验以盆栽番茄植株为试验材料,在植株移栽65 d后测定植株生长和养分吸收情况。结果表明,堆肥类型和堆肥率影响生物量产量。然而,堆肥年龄对植物的发育没有影响。并结合氮素循环研究了番茄植株的营养状况。随着堆肥用量的增加,叶片亚硝酸盐积累量增加。NO2−的积累与NR活性的显著增加有关。随着堆肥的使用,叶片中HM含量降低。HM优先在根系和叶片中积累,土壤向根系的金属迁移顺序为:Fe (1.08 ~ 2.14)> Co (0.53 ~ 4.10)>Cu (0.28 ~ 2.28) >Mn (0.3 ~ 1.34) >Zn (0.87 ~ 1.21)>Cr(0.12 ~ 1.64)。动态生物积累因子(BAFdyn)在根和茎中分别最高和最低。根系对Cd和Pb起屏障作用。综上所述,堆肥的使用对番茄植株有益,特别是在混合料中使用较多的禽粪(C2)所获得的堆肥。
{"title":"Municipal Waste and Poultry Manure Compost Affect Biomass Production, Nitrate Reductase Activity and Heavy Metals in Tomato Plants","authors":"M. Aylaj, E. Lhadi, F. Adani","doi":"10.1080/1065657X.2018.1524316","DOIUrl":"https://doi.org/10.1080/1065657X.2018.1524316","url":null,"abstract":"Abstract Organic wastes can be usefully recovered to produce organic amendments, for example, compost, to be used for crop production, thus reducing impacts through efficient waste management. The aim of this work was to study the effects of compost obtained from municipal waste in combination with poultry manure on plant growth, nitrate reductase (NR) activity and absorption and distribution of heavy metals (HM) in plant tissues of tomatoes, grown in pots in greenhouses. Two compost types obtained from municipal waste mixed with poultry manure (C1 = 3:2 and C2 = 2:3) were used at two different ages (105 d and 173 d) and at two mix rates with soil (32.5 g pot−1 and 65 g pot−1); soil with no compost amendment was used as control. The experiment was conducted using tomato plants in pots and plant growth and nutrient plant uptake was determined after 65 days from plant transplanting. Results obtained indicated that compost type and compost rate affected biomass production. However, compost age did not influence the development of plants. Nutrient status of tomato plants was also investigated with reference to the N cycle. Nitrite accumulation in the leaves increased with the increase in compost doses. The accumulation of NO2− was associated with a significant increase in NR activity. HM content in leaves decreased with compost use. HM accumulated preferentially in roots and leaves and the soil to root metals transfer was in this order: Fe (1.08–2.14)> Co (0.53–4.10)>Cu (0.28–2.28) >Mn (0.3–1.34) >Zn (0.87–1.21)>Cr (0.12–1.64). The highest and lowest dynamic bioaccumulation factors (BAFdyn) were observed in roots and stems, respectively. The root system acted as a barrier for Cd and Pb. It was concluded that compost use is beneficial for tomato plants, with particular reference to the compost obtained by using a higher amount of poultry manure (C2) in the mix.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"11 - 23"},"PeriodicalIF":0.0,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2018.1524316","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48530735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Changes in Physical, Chemical, and Microbiological Properties During the Two-Stage Composting of Green Waste due to the Addition of β-cyclodextrin 添加β-环糊精对绿色垃圾两阶段堆肥过程中物理、化学和微生物特性的影响
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-01-02 DOI: 10.1080/1065657X.2019.1585304
Lu Zhang, Xiangyang Sun
Abstract This research determined whether addition of β-cyclodextrin (β-CD; 0, 0.15, or 0.25%) improved the two-stage composting of green waste (GW). The following parameters were measured during composting or in the final product: moisture content; volume; biochemical and chemical oxygen demand; humic substances; C/Nsolid and C/Nsoluble; microbial numbers (culturable bacteria, actinomycetes, and fungi); enzyme activities (pectinase and xylanase); microbial biomass carbon and nitrogen; degradation of organic components; contents of phosphorus (available and total), potassium, sodium, calcium, and magnesium; and toxicity to germinating seeds. The two-stage composting of GW was optimal with the addition of 0.15% β-CD. A mature and stable compost was obtained in only 28 days with the optimized two-stage composting rather than in the 90–270 days typically required for traditional composting.
摘要本研究确定了添加β-环糊精(β-CD;0、0.15或0.25%)是否能改善绿色垃圾的两阶段堆肥。在堆肥过程中或在最终产品中测量以下参数:水分含量;体积生化和化学需氧量;腐殖物质;C/Nsolid和C/Ns可溶性;微生物数量(可培养细菌、放线菌和真菌);酶活性(果胶酶和木聚糖酶);微生物生物量碳和氮;有机成分的降解;磷(有效和总)、钾、钠、钙和镁的含量;以及对发芽种子的毒性。添加0.15%β-CD的GW两阶段堆肥效果最佳。仅在28天内就获得了成熟稳定的堆肥 优化的两阶段堆肥天数,而不是90–270天 传统堆肥通常需要几天。
{"title":"Changes in Physical, Chemical, and Microbiological Properties During the Two-Stage Composting of Green Waste due to the Addition of β-cyclodextrin","authors":"Lu Zhang, Xiangyang Sun","doi":"10.1080/1065657X.2019.1585304","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1585304","url":null,"abstract":"Abstract This research determined whether addition of β-cyclodextrin (β-CD; 0, 0.15, or 0.25%) improved the two-stage composting of green waste (GW). The following parameters were measured during composting or in the final product: moisture content; volume; biochemical and chemical oxygen demand; humic substances; C/Nsolid and C/Nsoluble; microbial numbers (culturable bacteria, actinomycetes, and fungi); enzyme activities (pectinase and xylanase); microbial biomass carbon and nitrogen; degradation of organic components; contents of phosphorus (available and total), potassium, sodium, calcium, and magnesium; and toxicity to germinating seeds. The two-stage composting of GW was optimal with the addition of 0.15% β-CD. A mature and stable compost was obtained in only 28 days with the optimized two-stage composting rather than in the 90–270 days typically required for traditional composting.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"46 - 60"},"PeriodicalIF":0.0,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1585304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48793319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Vermicompost and Manure Compost Reduce Water-Deficit Stress in Pot Marigold (Calendula officinalis L. cv. Candyman Orange) 蚯蚓堆肥和粪肥堆肥降低盆栽万寿菊水分亏缺胁迫。甜心宝贝橙色)
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-01-02 DOI: 10.1080/1065657X.2019.1602489
Ali Khosravi Shakib, A. Rezaei Nejad, Azizollah Khandan Mirkohi, Sepideh Kalate Jari
Abstract This study was carried out to evaluate the impact of irrigation regime and potting media on morpho-physiological and biochemical characteristics of pot marigold. The experiment was arranged factorially based on a completely randomized design. The first factor was irrigation regime in three levels of 80, 60 and 40% available water content and the second factor was potting media in five levels of 20% vermicompost, 30% vermicompost, 20% manure compost, 30% manure compost and control (sand and soil in equal proportions). Morpho-physiological traits (plant height, stem diameter, number of flowering stem, root diameter, root length, root dry weight, aerial dry weight, total dry weight, relative water content, ionic stability and water use efficiency) and biochemical traits (malondialdehyde content, catalase and peroxidase activity, chlorophyll and carotenoid contents) were measured. Morpho-physiological parameters, chlorophyll and carotenoid decreased under water deficit, while increased with application of vermicompost and manure compost. Also, lipid peroxidation, catalase and peroxidase activity enhanced under water deficit, while decreased with application of vermicompost and manure compost. In other words, the application of vermicompost and manure compost in potting media reduced the harmful effects of water deficit. Total dry mass and water use efficiency were about 3-fold higher in plants grown in 30% vermicompost or 30% manure compost substrate compared to those in control plants. The results suggest that the application of 30% manure compost could be recommended as suitable potting media due to reducing the negative effects of water shortages, helping to nourish the plant, cheapness and accessibility compared with 30% vermicompost.
摘要本研究旨在评价灌溉制度和盆栽介质对盆栽万寿菊形态生理生化特性的影响。实验是在完全随机设计的基础上按因素安排的。第一个因素是三个水平的灌溉制度,即80%、60%和40%的有效含水量,第二个因素是五个水平的盆栽介质,即20%的蚯蚓堆肥、30%的蚯蚓堆肥,20%的粪肥堆肥、30%粪肥堆肥和对照(沙和土壤比例相等)。测定了形态生理性状(株高、茎径、花茎数、根径、根长、根干重、地上干重、总干重、相对含水量、离子稳定性和水分利用效率)和生化性状(丙二醛含量、过氧化氢酶和过氧化物酶活性、叶绿素和类胡萝卜素含量)。形态生理参数、叶绿素和类胡萝卜素在缺水条件下降低,而随着施用蚯蚓粪和粪肥的增加而增加。水分亏缺时,脂质过氧化、过氧化氢酶和过氧化物酶活性增强,而施用蚯蚓粪和粪肥时,脂质过氧化物酶、过氧化氢酶、过氧化物酶活性降低。换句话说,在盆栽介质中应用蚯蚓堆肥和粪肥堆肥减少了缺水的有害影响。与对照植物相比,在30%蚯蚓堆肥或30%粪肥堆肥基质中生长的植物的总干质量和水分利用效率高出约3倍。结果表明,与30%的蚯蚓堆肥相比,30%的粪肥堆肥可以作为合适的盆栽介质,因为它可以减少缺水的负面影响,有助于滋养植物,价格低廉,易于接近。
{"title":"Vermicompost and Manure Compost Reduce Water-Deficit Stress in Pot Marigold (Calendula officinalis L. cv. Candyman Orange)","authors":"Ali Khosravi Shakib, A. Rezaei Nejad, Azizollah Khandan Mirkohi, Sepideh Kalate Jari","doi":"10.1080/1065657X.2019.1602489","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1602489","url":null,"abstract":"Abstract This study was carried out to evaluate the impact of irrigation regime and potting media on morpho-physiological and biochemical characteristics of pot marigold. The experiment was arranged factorially based on a completely randomized design. The first factor was irrigation regime in three levels of 80, 60 and 40% available water content and the second factor was potting media in five levels of 20% vermicompost, 30% vermicompost, 20% manure compost, 30% manure compost and control (sand and soil in equal proportions). Morpho-physiological traits (plant height, stem diameter, number of flowering stem, root diameter, root length, root dry weight, aerial dry weight, total dry weight, relative water content, ionic stability and water use efficiency) and biochemical traits (malondialdehyde content, catalase and peroxidase activity, chlorophyll and carotenoid contents) were measured. Morpho-physiological parameters, chlorophyll and carotenoid decreased under water deficit, while increased with application of vermicompost and manure compost. Also, lipid peroxidation, catalase and peroxidase activity enhanced under water deficit, while decreased with application of vermicompost and manure compost. In other words, the application of vermicompost and manure compost in potting media reduced the harmful effects of water deficit. Total dry mass and water use efficiency were about 3-fold higher in plants grown in 30% vermicompost or 30% manure compost substrate compared to those in control plants. The results suggest that the application of 30% manure compost could be recommended as suitable potting media due to reducing the negative effects of water shortages, helping to nourish the plant, cheapness and accessibility compared with 30% vermicompost.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"61 - 68"},"PeriodicalIF":0.0,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1602489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45817576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Survival of Lab Grown Calonectria pseudonaviculata Microsclerotia During Small-Scale Composting 小规模堆肥过程中实验室培育的拟舟花Calonectria pseudonaculata Microsclerotia的存活
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-01-02 DOI: 10.1080/1065657X.2018.1536865
R. Harvey, D. Davis, N. Shishkoff, J. Pecchia
Abstract Boxwood blight, caused by Calonectria pseudonaviculata, is a devastating fungal disease of Buxus spp., first observed in the United States in 2011. Due to the persistent nature of the produced microsclerotia, concern arose over the potential for compost to serve as a disease vector. Previous work demonstrated that C. pseudonaviculata is very stable at mesophilic temperatures, however, no previous work has evaluated C. pseudonaviculata during composting. Our objective was to evaluate the survival of C. pseudonaviculata microsclerotia after being composted for 24, 48, and 72 h at temperatures of 40, 50, and 60 °C. Composting was performed using a newly created bioreactor system, allowing for precise control of the composting process. In conjunction with the composting evaluations, the same temperature/time combinations were evaluated in incubators. While the pathogen survived 40 °C through 72 h in an incubator, compost survival was minimal, with only some survival observed at 24 h at the same temperature. We were able to determine that exposure to temperatures ≥50 °C for 24 h or longer, and that exposure in a composting system for 48 h or longer at 40 °C would kill the microsclerotia.
黄杨疫病(Calonectria pseudonaviculata)是黄杨属(Buxus spp.)的一种破坏性真菌病,于2011年在美国首次发现。由于所产生的微菌核的持久性,人们担心堆肥可能成为病媒。以往的研究表明,假曲霉在中温环境下是非常稳定的,但在堆肥过程中没有对假曲霉进行评价。我们的目的是评估在40、50和60°C的温度下堆肥24、48和72小时后假小木犀草的存活率。堆肥使用新创建的生物反应器系统进行,允许精确控制堆肥过程。结合堆肥评价,在孵化器中评价了相同的温度/时间组合。虽然病原菌在40°C培养箱中存活72 h,但堆肥存活率极低,在相同温度下24 h仅观察到一些存活率。我们能够确定在≥50°C的温度下暴露24小时或更长时间,并且在40°C的堆肥系统中暴露48小时或更长时间会杀死微菌核。
{"title":"Survival of Lab Grown Calonectria pseudonaviculata Microsclerotia During Small-Scale Composting","authors":"R. Harvey, D. Davis, N. Shishkoff, J. Pecchia","doi":"10.1080/1065657X.2018.1536865","DOIUrl":"https://doi.org/10.1080/1065657X.2018.1536865","url":null,"abstract":"Abstract Boxwood blight, caused by Calonectria pseudonaviculata, is a devastating fungal disease of Buxus spp., first observed in the United States in 2011. Due to the persistent nature of the produced microsclerotia, concern arose over the potential for compost to serve as a disease vector. Previous work demonstrated that C. pseudonaviculata is very stable at mesophilic temperatures, however, no previous work has evaluated C. pseudonaviculata during composting. Our objective was to evaluate the survival of C. pseudonaviculata microsclerotia after being composted for 24, 48, and 72 h at temperatures of 40, 50, and 60 °C. Composting was performed using a newly created bioreactor system, allowing for precise control of the composting process. In conjunction with the composting evaluations, the same temperature/time combinations were evaluated in incubators. While the pathogen survived 40 °C through 72 h in an incubator, compost survival was minimal, with only some survival observed at 24 h at the same temperature. We were able to determine that exposure to temperatures ≥50 °C for 24 h or longer, and that exposure in a composting system for 48 h or longer at 40 °C would kill the microsclerotia.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"24 - 34"},"PeriodicalIF":0.0,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2018.1536865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41516293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Monitoring: Physic‐Chemical, Microbiological, and Phytotoxic Parameters of Mixed Oil Mill Waste and Green Waste Composts Moistened with Treated Urban Wastewater and Tap Water 监测:经处理的城市污水和自来水润湿的混合油厂废物和绿色废物堆肥的物理化学、微生物和植物毒性参数
4区 农林科学 Q3 ECOLOGY Pub Date : 2019-01-02 DOI: 10.1080/1065657X.2016.1172055
D. Tangour, Hamouda Aichi, Nizar Yeddes, A. Jrad, M. Trabelsi-ayadi
Abstract In Tunisia, on‐site co‐composting of oil mill waste would overcome environmental issues and valorize renewable resources. The authors' goal was to determine the physic‐chemical and microbiological properties and nutrient supply characteristics of mixed oil mill waste and green waste compost. Two piles of the same raw materials (2/3 oil mill waste–1/3 green waste, w/w) were moistened with two kinds of water: treated urban wastewater (A1) and tap water (A2). Results showed the following: (i) produced compost decreased in C/N from 32 to 12.30 ± 0.89 (A1) and 11 ± 0.89 (A2); (ii) major elements (P and K) were within acceptable limits; (iii) A1 and A2 had potentially lower heavy metal contents than the limits established by the second draft of the Biological Treatment of Biowaste of the European Commission and microbial load values below the limit N FU 44‐051 values; (iv) A1 and A2 had, respectively, 93 and 89.67% as germination index Gl values, which confirmed the composts' maturity and safety; (v) for both composts, A1 and A2, culture potting made up of half compost and half soil revealed the highest bean leaves' number; and (vi) the less richness in minerals and organic compounds of A2 compared to A1 gave better germination results for white wheat and bean leaves' number for A2. Even moistened with treated urban waste water, oil mill wastes proved to be very interesting for co‐composting with green waste.
在突尼斯,现场共同堆肥的油厂废物将克服环境问题和价值可再生资源。作者的目的是确定混合油厂废弃物和绿色废弃物堆肥的理化、微生物特性和养分供应特性。用处理过的城市污水(A1)和自来水(A2)两种水润湿两堆相同的原料(2/3油厂废水- 1/3绿色废弃物,w/w)。结果表明:(1)产堆肥C/N由32降至12.30±0.89 (A1)和11±0.89 (A2);(ii)主要元素(磷和钾)在可接受范围内;(iii) A1和A2的重金属含量可能低于欧盟委员会生物废物生物处理第二稿确定的限值,微生物负荷值低于限值N FU 44‐051;(iv) A1和A2的萌发指数Gl值分别为93和89.67%,表明堆肥的成熟度和安全性较高;(v)对于A1和A2两种堆肥,一半堆肥一半土壤的栽培盆栽显示出最高的豆叶数;(6)由于A2土壤中矿物质和有机物的丰富度低于A1,因此A2的白小麦和豆类叶片数量萌发效果较好。即使用处理过的城市废水进行润湿处理,油厂废物也被证明是非常有趣的,可以与绿色废物共同堆肥。
{"title":"Monitoring: Physic‐Chemical, Microbiological, and Phytotoxic Parameters of Mixed Oil Mill Waste and Green Waste Composts Moistened with Treated Urban Wastewater and Tap Water","authors":"D. Tangour, Hamouda Aichi, Nizar Yeddes, A. Jrad, M. Trabelsi-ayadi","doi":"10.1080/1065657X.2016.1172055","DOIUrl":"https://doi.org/10.1080/1065657X.2016.1172055","url":null,"abstract":"Abstract In Tunisia, on‐site co‐composting of oil mill waste would overcome environmental issues and valorize renewable resources. The authors' goal was to determine the physic‐chemical and microbiological properties and nutrient supply characteristics of mixed oil mill waste and green waste compost. Two piles of the same raw materials (2/3 oil mill waste–1/3 green waste, w/w) were moistened with two kinds of water: treated urban wastewater (A1) and tap water (A2). Results showed the following: (i) produced compost decreased in C/N from 32 to 12.30 ± 0.89 (A1) and 11 ± 0.89 (A2); (ii) major elements (P and K) were within acceptable limits; (iii) A1 and A2 had potentially lower heavy metal contents than the limits established by the second draft of the Biological Treatment of Biowaste of the European Commission and microbial load values below the limit N FU 44‐051 values; (iv) A1 and A2 had, respectively, 93 and 89.67% as germination index Gl values, which confirmed the composts' maturity and safety; (v) for both composts, A1 and A2, culture potting made up of half compost and half soil revealed the highest bean leaves' number; and (vi) the less richness in minerals and organic compounds of A2 compared to A1 gave better germination results for white wheat and bean leaves' number for A2. Even moistened with treated urban waste water, oil mill wastes proved to be very interesting for co‐composting with green waste.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"27 1","pages":"1 - 10"},"PeriodicalIF":0.0,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2016.1172055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48902789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Development and Assessment of Exceptional Quality Biosolids Products for Urban Gardens 城市园林用优质生物固体产品的开发与评价
4区 农林科学 Q3 ECOLOGY Pub Date : 2018-10-02 DOI: 10.1080/1065657X.2018.1488636
O. Alvarez-Campos, G. Evanylo, Mike J. Badzmierowski
Abstract Exceptional Quality (EQ) biosolids may be developed into products that can rehabilitate disturbed urban soils for the production of garden vegetables. The objectives of this study were to compare newly developed EQ biosolids products specially tailored for urban soil use with those of established products for the purpose of identifying their capability to support germination and plant growth, as well as to quantify their plant available nitrogen (N) and phosphorus (P). Seven EQ biosolids products and an inorganic fertilizer control were compared in greenhouse bioassays employing soybean (Glycine max L.) and tall fescue (Festuca arundinacea Schreb.) to assess product quality and nutrient availability. The EQ biosolids were derived from treatment processes such as thermal drying, composting, and blending with complementary organic and mineral materials. The EQ biosolids products applied at an estimated equivalent agronomic N rate enabled adequate germination and plant growth. The N uptake by tall fescue grown with the biosolids amendments compared with known rates of inorganic N confirmed organic N availability to be approximately 40%, 20%, and 15% for thermally dried, blended, and composted EQ biosolids products, respectively. The application of these products at agronomic N rates to a soil testing adequate in P increased soil P saturation to 20%–35%, a normal range for soil not excessively enriched with P. The availability of N and P in the EQ biosolids products will permit their agronomically beneficial and environmentally sound use in urban soils.
摘要优质(EQ)生物固体可以开发成可以修复受干扰的城市土壤的产品,用于生产花园蔬菜。本研究的目的是将专门为城市土壤使用而开发的新EQ生物固体产品与现有产品进行比较,以确定其支持发芽和植物生长的能力,并量化其植物有效氮(N)和磷(P)。在温室生物测定中,使用大豆(Glycine max L.)和高羊茅(Festuca arundinacea Schreb.)对七种EQ生物固体产品和一种无机肥料对照进行了比较,以评估产品质量和养分有效性。EQ生物固体来源于热干燥、堆肥以及与互补有机和矿物材料混合等处理过程。EQ生物固体产品以估计的等效农艺氮率施用,能够使植物充分发芽和生长。与已知的无机氮吸收率相比,用生物固体改良剂生长的高羊茅对氮的吸收证实,对于热干燥、混合和堆肥的EQ生物固体产品,有机氮的有效性分别约为40%、20%和15%。在磷含量充足的土壤中,以农艺氮含量施用这些产品,可将土壤磷饱和度提高到20%-35%,这是不过度富含磷的土壤的正常范围。EQ生物固体产品中氮和磷的可用性将使其在城市土壤中具有农业效益和环境无害的用途。
{"title":"Development and Assessment of Exceptional Quality Biosolids Products for Urban Gardens","authors":"O. Alvarez-Campos, G. Evanylo, Mike J. Badzmierowski","doi":"10.1080/1065657X.2018.1488636","DOIUrl":"https://doi.org/10.1080/1065657X.2018.1488636","url":null,"abstract":"Abstract Exceptional Quality (EQ) biosolids may be developed into products that can rehabilitate disturbed urban soils for the production of garden vegetables. The objectives of this study were to compare newly developed EQ biosolids products specially tailored for urban soil use with those of established products for the purpose of identifying their capability to support germination and plant growth, as well as to quantify their plant available nitrogen (N) and phosphorus (P). Seven EQ biosolids products and an inorganic fertilizer control were compared in greenhouse bioassays employing soybean (Glycine max L.) and tall fescue (Festuca arundinacea Schreb.) to assess product quality and nutrient availability. The EQ biosolids were derived from treatment processes such as thermal drying, composting, and blending with complementary organic and mineral materials. The EQ biosolids products applied at an estimated equivalent agronomic N rate enabled adequate germination and plant growth. The N uptake by tall fescue grown with the biosolids amendments compared with known rates of inorganic N confirmed organic N availability to be approximately 40%, 20%, and 15% for thermally dried, blended, and composted EQ biosolids products, respectively. The application of these products at agronomic N rates to a soil testing adequate in P increased soil P saturation to 20%–35%, a normal range for soil not excessively enriched with P. The availability of N and P in the EQ biosolids products will permit their agronomically beneficial and environmentally sound use in urban soils.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"26 1","pages":"232 - 243"},"PeriodicalIF":0.0,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2018.1488636","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44344363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Compost Cation Exchange Capacity via Portable X-Ray Fluorescence (PXRF) Spectrometry 便携式X射线荧光光谱法测定堆肥阳离子交换能力
4区 农林科学 Q3 ECOLOGY Pub Date : 2018-10-02 DOI: 10.1080/1065657X.2018.1522280
Bin Li, S. Chakraborty, Maria Fernanda Godoy Sosa, N. Y. Kusi, D. Weindorf
Abstract Compost is a valuable organic amendment which affords substantive fertility to soils where applied. A common component of compost fertility is cation exchange capacity (CEC), which has traditionally been determined via standard wet chemistry laboratory methods. This research utilized portable X-ray fluorescence (PXRF) spectrometry to evaluate 74 compost samples from the USA and Canada. PXRF elemental data were used for predicting compost CEC via random forest (RF) regression. Comparison between laboratory-determined vs. PXRF predicted CEC produced the following relationships: R2=0.90, RMSE = 5.41 meq 100 g−1 (model calibration) and R2=0.60, RMSE = 8.07 meq 100 g−1 (model validation). A key advantage of this technique is that the same data used for CEC prediction can also yield insight into other compost parameters of interest such as heavy metal content, plant essential nutrient content, salinity, and pH. Taken collectively, the PXRF approach can provide rapid, on-site analysis of compost which was previously not feasible with conventional methods. Our initial study has established the viability of PXRF for compost CEC determination, with further development on a wider array of feedstocks suggested for future study.
摘要堆肥是一种有价值的有机改良剂,在施用时可为土壤提供实质性的肥力。堆肥肥力的一个常见组成部分是阳离子交换容量(CEC),传统上通过标准的湿化学实验室方法来确定。本研究利用便携式X射线荧光光谱法对来自美国和加拿大的74个堆肥样品进行了评估。PXRF元素数据用于通过随机森林(RF)回归预测堆肥CEC。实验室测定的CEC与PXRF预测的CEC之间的比较产生了以下关系:R2=0.90,RMSE = 5.41毫克当量100 g−1(模型校准),R2=0.60,RMSE = 8.07毫克当量100 g−1(模型验证)。该技术的一个关键优势是,用于CEC预测的相同数据也可以深入了解其他感兴趣的堆肥参数,如重金属含量、植物必需营养素含量、盐度和pH。综合来看,PXRF方法可以提供堆肥的快速现场分析,这在以前传统方法中是不可行的。我们的初步研究已经确定了PXRF用于堆肥CEC测定的可行性,并建议在未来的研究中进一步开发更广泛的原料。
{"title":"Compost Cation Exchange Capacity via Portable X-Ray Fluorescence (PXRF) Spectrometry","authors":"Bin Li, S. Chakraborty, Maria Fernanda Godoy Sosa, N. Y. Kusi, D. Weindorf","doi":"10.1080/1065657X.2018.1522280","DOIUrl":"https://doi.org/10.1080/1065657X.2018.1522280","url":null,"abstract":"Abstract Compost is a valuable organic amendment which affords substantive fertility to soils where applied. A common component of compost fertility is cation exchange capacity (CEC), which has traditionally been determined via standard wet chemistry laboratory methods. This research utilized portable X-ray fluorescence (PXRF) spectrometry to evaluate 74 compost samples from the USA and Canada. PXRF elemental data were used for predicting compost CEC via random forest (RF) regression. Comparison between laboratory-determined vs. PXRF predicted CEC produced the following relationships: R2=0.90, RMSE = 5.41 meq 100 g−1 (model calibration) and R2=0.60, RMSE = 8.07 meq 100 g−1 (model validation). A key advantage of this technique is that the same data used for CEC prediction can also yield insight into other compost parameters of interest such as heavy metal content, plant essential nutrient content, salinity, and pH. Taken collectively, the PXRF approach can provide rapid, on-site analysis of compost which was previously not feasible with conventional methods. Our initial study has established the viability of PXRF for compost CEC determination, with further development on a wider array of feedstocks suggested for future study.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"26 1","pages":"271 - 278"},"PeriodicalIF":0.0,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2018.1522280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42528199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Compost Science & Utilization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1