首页 > 最新文献

CSEE Journal of Power and Energy Systems最新文献

英文 中文
Zero-Phase CARIMA Filtering and Application in Wind-Storage System Sizing and Power Dispatch Optimization 零相 CARIMA 滤波及在风能-储能系统选型和电力调度优化中的应用
IF 6.9 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2022.06930
Wei Wang;Peng Chen;Guorui Ren;Jizhen Liu;Fang Fang;Zhe Chen
Hybrid energy storage system (HESS) is an effective way to mitigate wind power fluctuations on multi-time scale, and can improve influence of large-scale grid-connected wind power on stability and reliability of power system. A novel methodology named zero-phase controlled auto-regressive integrated moving-average (CARIMA) filter is proposed to integrate HESS to smooth wind power fluctuations. First, a design method for zero-phase CARIMA filter is provided, and then used to determine grid-connected power for a wind storage system and size HESS. The reasons, direct current (DC) component caused by energy storage efficiency and grid-connected power delay caused by phase shift, for causing superfluous energy storage configuration are revealed. In addition, a nonlinear programming scheduling strategy considering battery degradation is proposed. Power imbalance caused by efficiency difference during dynamic adjustment of energy storage output power is addressed. Furthermore, thermostatically controlled loads (TCLs) are integrated in sizing and scheduling HESS to reduce energy storage demand and improve operating conditions of energy storage. Finally, effectiveness of the proposed strategy is verified by a case study.
混合储能系统(HESS)是缓解风电在多时间尺度波动的有效途径,可以改善大规模风电并网对电力系统稳定性和可靠性的影响。提出了一种零相位控制自回归积分移动平均(CARIMA)滤波方法,将HESS集成到风电波动平滑中。首先给出了一种零相CARIMA滤波器的设计方法,然后利用该方法确定了风电系统并网功率和HESS的大小。揭示了储能效率引起的直流分量和相移引起的并网功率延迟导致储能配置冗余的原因。此外,提出了考虑电池退化的非线性规划调度策略。解决了储能输出功率动态调节过程中由于效率差异引起的功率不平衡问题。此外,将恒温控制负荷(tcl)集成到HESS的规模和调度中,以减少储能需求,改善储能运行条件。最后,通过案例分析验证了该策略的有效性。
{"title":"Zero-Phase CARIMA Filtering and Application in Wind-Storage System Sizing and Power Dispatch Optimization","authors":"Wei Wang;Peng Chen;Guorui Ren;Jizhen Liu;Fang Fang;Zhe Chen","doi":"10.17775/CSEEJPES.2022.06930","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.06930","url":null,"abstract":"Hybrid energy storage system (HESS) is an effective way to mitigate wind power fluctuations on multi-time scale, and can improve influence of large-scale grid-connected wind power on stability and reliability of power system. A novel methodology named zero-phase controlled auto-regressive integrated moving-average (CARIMA) filter is proposed to integrate HESS to smooth wind power fluctuations. First, a design method for zero-phase CARIMA filter is provided, and then used to determine grid-connected power for a wind storage system and size HESS. The reasons, direct current (DC) component caused by energy storage efficiency and grid-connected power delay caused by phase shift, for causing superfluous energy storage configuration are revealed. In addition, a nonlinear programming scheduling strategy considering battery degradation is proposed. Power imbalance caused by efficiency difference during dynamic adjustment of energy storage output power is addressed. Furthermore, thermostatically controlled loads (TCLs) are integrated in sizing and scheduling HESS to reduce energy storage demand and improve operating conditions of energy storage. Finally, effectiveness of the proposed strategy is verified by a case study.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 6","pages":"2283-2295"},"PeriodicalIF":6.9,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Robust Var Reserve Contract for Enhancing Reactive Power Ancillary Service Market Efficiency 设计稳健的变储备合同以提高无功功率辅助服务市场效率
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2023.05250
Yunyang Zou;Yan Xu
In a deregulated Var market, market power issue is more serious than in an energy market since reactive power cannot be transmitted over long distances. This letter designs a multi-timescale Var market framework, where market power that may arise in the hourly-ahead Var support service market due to system configuration deficiency and market structure flaws can be eliminated by day-ahead contract-based Var reserve service market. Settlement of day-ahead Var reserve contract is formulated as a two-stage robust optimization (TSRO) model considering worst case of uncertainty realization and potential market power that may arise in hourly-ahead market. TSRO with integer recourses is then solved by a new column and constraint generation algorithm. Results show a robust Var reserve contract can fully eliminate market power, and prevent suppliers from manipulating market prices.
在放松管制的 Var 市场中,由于无功功率不能远距离传输,市场力量问题比能源市场更为严重。本文设计了一个多时间尺度的无功市场框架,通过基于日前合同的无功储备服务市场,可以消除由于系统配置缺陷和市场结构缺陷而可能在小时前无功支持服务市场中产生的市场支配力。考虑到不确定性实现的最坏情况和小时前市场可能出现的潜在市场支配力,将日前变量储备合同的结算制定为两阶段稳健优化(TSRO)模型。然后通过一种新的列和约束生成算法求解了具有整数资源的 TSRO。结果表明,稳健的 Var 储备合同可以完全消除市场力量,防止供应商操纵市场价格。
{"title":"Design of Robust Var Reserve Contract for Enhancing Reactive Power Ancillary Service Market Efficiency","authors":"Yunyang Zou;Yan Xu","doi":"10.17775/CSEEJPES.2023.05250","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.05250","url":null,"abstract":"In a deregulated Var market, market power issue is more serious than in an energy market since reactive power cannot be transmitted over long distances. This letter designs a multi-timescale Var market framework, where market power that may arise in the hourly-ahead Var support service market due to system configuration deficiency and market structure flaws can be eliminated by day-ahead contract-based Var reserve service market. Settlement of day-ahead Var reserve contract is formulated as a two-stage robust optimization (TSRO) model considering worst case of uncertainty realization and potential market power that may arise in hourly-ahead market. TSRO with integer recourses is then solved by a new column and constraint generation algorithm. Results show a robust Var reserve contract can fully eliminate market power, and prevent suppliers from manipulating market prices.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"767-771"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375974","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robustness Assessment of Wind Power Generation Considering Rigorous Security Constraints for Power System: A Hybrid RLO-IGDT Approach 考虑电力系统严格安全约束的风力发电鲁棒性评估:RLO-IGDT 混合方法
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2023.05980
Lianyong Zuo;Shengshi Wang;Yong Sun;Shichang Cui;Jiakun Fang;Xiaomeng Ai;Baoju Li;Chengliang Hao;Jinyu Wen
Fossil fuel depletion and environmental pollution problems promote development of renewable energy (RE) globally. With increasing penetration of RE, operation security and economy of power systems (PS) are greatly impacted by fluctuation and intermittence of renewable power. In this paper, information gap decision theory (IGDT) is adapted to handle uncertainty of wind power generation. Based on conventional IGDT method, linear regulation strategy (LRS) and robust linear optimization (RLO) method are integrated to reformulate the model for rigorously considering security constraints. Then a robustness assessment method based on hybrid RLO-IGDT approach is proposed for analyzing robustness and economic performance of PS. Moreover, a risk-averse linearization method is adapted to convert the proposed assessment model into a mixed integer linear programming (MILP) problem for convenient optimization without robustness loss. Finally, results of case studies validate superiority of proposed method in guaranteeing operation security rigorously and effectiveness in assessment of RSR for PS without overestimation.
化石燃料枯竭和环境污染问题促进了全球可再生能源(RE)的发展。随着可再生能源渗透率的不断提高,电力系统(PS)的运行安全性和经济性受到可再生能源电力波动和间歇性的极大影响。本文采用信息差距决策理论(IGDT)来处理风力发电的不确定性。在传统 IGDT 方法的基础上,融合了线性调节策略(LRS)和鲁棒性线性优化(RLO)方法,重新制定了严格考虑安全约束的模型。然后,提出了一种基于 RLO-IGDT 混合方法的鲁棒性评估方法,用于分析 PS 的鲁棒性和经济性能。此外,还采用了风险规避线性化方法,将提出的评估模型转换为混合整数线性规划(MILP)问题,以便在不损失稳健性的情况下进行便捷优化。最后,案例研究的结果验证了所提方法在严格保证运行安全方面的优越性,以及在评估 PS RSR 时不高估其有效性。
{"title":"Robustness Assessment of Wind Power Generation Considering Rigorous Security Constraints for Power System: A Hybrid RLO-IGDT Approach","authors":"Lianyong Zuo;Shengshi Wang;Yong Sun;Shichang Cui;Jiakun Fang;Xiaomeng Ai;Baoju Li;Chengliang Hao;Jinyu Wen","doi":"10.17775/CSEEJPES.2023.05980","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.05980","url":null,"abstract":"Fossil fuel depletion and environmental pollution problems promote development of renewable energy (RE) globally. With increasing penetration of RE, operation security and economy of power systems (PS) are greatly impacted by fluctuation and intermittence of renewable power. In this paper, information gap decision theory (IGDT) is adapted to handle uncertainty of wind power generation. Based on conventional IGDT method, linear regulation strategy (LRS) and robust linear optimization (RLO) method are integrated to reformulate the model for rigorously considering security constraints. Then a robustness assessment method based on hybrid RLO-IGDT approach is proposed for analyzing robustness and economic performance of PS. Moreover, a risk-averse linearization method is adapted to convert the proposed assessment model into a mixed integer linear programming (MILP) problem for convenient optimization without robustness loss. Finally, results of case studies validate superiority of proposed method in guaranteeing operation security rigorously and effectiveness in assessment of RSR for PS without overestimation.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"518-529"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375963","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Dispatch and Pricing of Industrial Parks Considering CHP Mode Switching and Demand Response 考虑热电联产模式切换和需求响应的工业园区优化调度与定价
IF 6.9 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2022.01080
Yating Zhao;Zhi Wu;Wei Gu;Jingxuan Wang;Fujue Wang;Zhoujun Ma;Minqiang Hu
Industrial parks (IPs) play a crucial role in facilitating economic efficiency and comprehensive energy utilization in the industrial age. At the same time, multi-energy coupling and management of various types of energy in IP have become serious challenges. In this paper, combined heat and power unit (CHP) model considering operation mode switching characteristics is formulated by exploring its internal composition to improve output flexibility of the energy supply side. Then, heat and electricity integrated energy system (HE-IES) optimal dispatch and pricing model are established, taking electricity and heat demand response strategy and steam thermal inertia property into account. Based on the above models, a mixed-integer bilinear programming framework is designed to coordinate the day-ahead operation and pricing strategy of the HE-IES in the IP. The scenario study is carried out on a practical industrial park in Southern China. Numerical results indicate the proposed mechanism can effectively improve IP's energy utilization and economic efficiency.
在工业时代,工业园区(IP)在促进经济效益和能源综合利用方面发挥着至关重要的作用。与此同时,工业园区的多能耦合和各类能源的管理也成为严峻的挑战。本文通过探讨热电联产机组的内部组成,建立了考虑运行模式切换特性的热电联产机组模型,以提高能源供应端的输出灵活性。然后,考虑电力和热力需求响应策略以及蒸汽热惯性特性,建立了热电综合能源系统(HE-IES)优化调度和定价模型。在上述模型的基础上,设计了一个混合整数双线性规划框架,以协调 IP 中热电综合能源系统的日前运行和定价策略。在中国南方的一个实际工业园区进行了情景研究。数值结果表明,所提出的机制能有效提高工业园的能源利用率和经济效益。
{"title":"Optimal Dispatch and Pricing of Industrial Parks Considering CHP Mode Switching and Demand Response","authors":"Yating Zhao;Zhi Wu;Wei Gu;Jingxuan Wang;Fujue Wang;Zhoujun Ma;Minqiang Hu","doi":"10.17775/CSEEJPES.2022.01080","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.01080","url":null,"abstract":"Industrial parks (IPs) play a crucial role in facilitating economic efficiency and comprehensive energy utilization in the industrial age. At the same time, multi-energy coupling and management of various types of energy in IP have become serious challenges. In this paper, combined heat and power unit (CHP) model considering operation mode switching characteristics is formulated by exploring its internal composition to improve output flexibility of the energy supply side. Then, heat and electricity integrated energy system (HE-IES) optimal dispatch and pricing model are established, taking electricity and heat demand response strategy and steam thermal inertia property into account. Based on the above models, a mixed-integer bilinear programming framework is designed to coordinate the day-ahead operation and pricing strategy of the HE-IES in the IP. The scenario study is carried out on a practical industrial park in Southern China. Numerical results indicate the proposed mechanism can effectively improve IP's energy utilization and economic efficiency.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"2174-2185"},"PeriodicalIF":6.9,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375985","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142408829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Method to Estimate Admittance of Black-boxed Inverter-based Resources for Varying Operating Points 估算基于黑盒子逆变器的资源在不同工作点上的导纳的有效方法
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2023.07090
Weihua Zhou;Bin Liu;Nabil Mohammed;Behrooz Bahrani
Traditional analytical approaches for stability assessment of inverter-based resources (IBRs), often requiring detailed knowledge of IBR internals, become impractical due to IBRs' proprietary nature. Admittance measurements, relying on electromagnetic transient simulation or laboratory settings, are not only time-intensive but also operationally inflexible, since various non-linear control loops make IBRs' admittance models operating-point dependent. Therefore, such admittance measurements must be performed repeatedly when operating point changes. To avoid time-consuming and cumbersome measurements, admittance estimation for arbitrary operating points is highly desirable. However, existing admittance estimation algorithms usually face challenges in versatility, data demands, and accuracy. Addressing this challenge, this letter presents a simple and efficient admittance estimation method for black-boxed IBRs, by utilizing a minimal set of seven operating points to solve a homogeneous linear equation system. Case studies demonstrate this proposed method ensures high accuracy across various types of IBRs. Estimation accuracy is satisfying even when non-negligible measurement errors exist.
对逆变器资源(IBR)进行稳定性评估的传统分析方法通常需要详细了解 IBR 的内部结构,但由于 IBR 的专有性质,这种方法已变得不切实际。依靠电磁瞬态模拟或实验室设置进行的导纳测量不仅耗时,而且操作不灵活,因为各种非线性控制回路使 IBR 的导纳模型依赖于操作点。因此,当工作点发生变化时,必须重复进行此类导纳测量。为了避免耗时和繁琐的测量,对任意工作点进行导纳估计是非常理想的。然而,现有的导纳估计算法通常在多功能性、数据需求和准确性方面面临挑战。针对这一挑战,本文提出了一种简单高效的黑盒子 IBR 导纳估计方法,利用最小的七个工作点来求解一个均质线性方程组。案例研究表明,所提出的方法可确保各种类型 IBR 的高精度。即使存在不可忽略的测量误差,估计精度也能令人满意。
{"title":"An Efficient Method to Estimate Admittance of Black-boxed Inverter-based Resources for Varying Operating Points","authors":"Weihua Zhou;Bin Liu;Nabil Mohammed;Behrooz Bahrani","doi":"10.17775/CSEEJPES.2023.07090","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.07090","url":null,"abstract":"Traditional analytical approaches for stability assessment of inverter-based resources (IBRs), often requiring detailed knowledge of IBR internals, become impractical due to IBRs' proprietary nature. Admittance measurements, relying on electromagnetic transient simulation or laboratory settings, are not only time-intensive but also operationally inflexible, since various non-linear control loops make IBRs' admittance models operating-point dependent. Therefore, such admittance measurements must be performed repeatedly when operating point changes. To avoid time-consuming and cumbersome measurements, admittance estimation for arbitrary operating points is highly desirable. However, existing admittance estimation algorithms usually face challenges in versatility, data demands, and accuracy. Addressing this challenge, this letter presents a simple and efficient admittance estimation method for black-boxed IBRs, by utilizing a minimal set of seven operating points to solve a homogeneous linear equation system. Case studies demonstrate this proposed method ensures high accuracy across various types of IBRs. Estimation accuracy is satisfying even when non-negligible measurement errors exist.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"421-426"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DG Hosting Capacity Assessment Considering Dependence Among Wind Speed, Solar Radiation, and Load Demands 考虑风速、太阳辐射和负载需求之间的依赖关系的风电机组托管容量评估
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2021.07270
Junyi Yang;Jiangmin Bao;Yuhan Hou;Han Wu;Qiang Li;Yue Yuan
Dependence of distributed generation (DG) outputs and load plays an essential role in renewable energy accommodation. This paper presents a novel DG hosting capacity (DGHC) evaluation method for distribution networks considering high-dimensional dependence relations among solar radiation, wind speed, and various load types (i.e., commercial, residential, and industrial). First, an advanced dependence modeling method called regular vine (R-vine) is applied to capture the complex dependence structure of solar radiation, wind speed, commercial loads, industrial loads, and residential loads. Then, a chance-constrained DGHC evaluation model is employed to figure out maximum hosting capacity of each DG and its optimal allocation plan with different operational risks. Finally, a Benders decomposition algorithm is also employed to reduce computational burden. The proposed approaches are validated using a set of historical data from China. Results show dependence among different DGs and loads has significant impact on hosting capacity. Results also suggest using the R-vine model to capture dependence among distributed energy resources (DERs) and load. This finding provides useful advice for distribution networks in installing renewable energy generations.
分布式发电(DG)输出与负载之间的依赖关系在可再生能源利用中起着至关重要的作用。考虑到太阳辐射、风速和各种负载类型(即商业、住宅和工业)之间的高维依存关系,本文提出了一种新颖的配电网分布式发电托管能力(DGHC)评估方法。首先,应用一种称为规则藤蔓(R-Vine)的先进依赖关系建模方法来捕捉太阳辐射、风速、商业负荷、工业负荷和居民负荷之间复杂的依赖关系结构。然后,采用机会约束的 DGHC 评估模型,计算出每个 DG 的最大托管容量及其在不同运行风险下的最优分配方案。最后,还采用了本德斯分解算法来减轻计算负担。我们利用中国的一组历史数据对所提出的方法进行了验证。结果表明,不同风电机组和负载之间的依赖性对托管容量有重大影响。结果还建议使用 R-vine 模型来捕捉分布式能源资源 (DER) 和负载之间的依赖关系。这一发现为配电网络安装可再生能源发电提供了有用的建议。
{"title":"DG Hosting Capacity Assessment Considering Dependence Among Wind Speed, Solar Radiation, and Load Demands","authors":"Junyi Yang;Jiangmin Bao;Yuhan Hou;Han Wu;Qiang Li;Yue Yuan","doi":"10.17775/CSEEJPES.2021.07270","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.07270","url":null,"abstract":"Dependence of distributed generation (DG) outputs and load plays an essential role in renewable energy accommodation. This paper presents a novel DG hosting capacity (DGHC) evaluation method for distribution networks considering high-dimensional dependence relations among solar radiation, wind speed, and various load types (i.e., commercial, residential, and industrial). First, an advanced dependence modeling method called regular vine (R-vine) is applied to capture the complex dependence structure of solar radiation, wind speed, commercial loads, industrial loads, and residential loads. Then, a chance-constrained DGHC evaluation model is employed to figure out maximum hosting capacity of each DG and its optimal allocation plan with different operational risks. Finally, a Benders decomposition algorithm is also employed to reduce computational burden. The proposed approaches are validated using a set of historical data from China. Results show dependence among different DGs and loads has significant impact on hosting capacity. Results also suggest using the R-vine model to capture dependence among distributed energy resources (DERs) and load. This finding provides useful advice for distribution networks in installing renewable energy generations.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1011-1025"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Mixed Insulation Oil as Alternative Liquid Dielectric: A Review 开发混合绝缘油作为替代液体电介质:综述
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2023.05960
Jian Hao;Jingwen Zhang;Wenyu Ye;Ruijing Liao;Lijun Yang
Use of traditional mineral oil (MO) as a liquid insulation in transformers has spanned more than 130 years. However, MO has poor heat resistance, a low ignition point, and is a non-renewable resource, which does not meet development requirements for high-performance and environmentally friendly insulation oil. Consequently, researchers have explored alternatives such as natural ester (NE) and synthetic ester (SE) oils, as well as mixed insulation oils. Mixed insulating oil is a blend of diverse insulating oil types, with optimal performance achieved by adjusting proportions of base oils. This article summarizes the innovative achievements and development of mixed insulation oil in terms of development of mixed ratio, basic physical chemical properties, electrical properties, thermal stability, and application including operation and maintenance technology. Through these efforts, this article aims to provide recommendations for future development of mixed insulating oils to advance liquid dielectric research based on enhancement mechanisms.
在变压器中使用传统矿物油(MO)作为液体绝缘材料已有 130 多年的历史。然而,矿物油的耐热性差、燃点低,而且属于不可再生资源,不符合高性能和环保型绝缘油的发展要求。因此,研究人员探索了天然酯(NE)和合成酯(SE)油以及混合绝缘油等替代品。混合绝缘油是不同绝缘油类型的混合物,通过调整基础油的比例可获得最佳性能。本文总结了混合绝缘油在混合比例、基本物理化学性能、电气性能、热稳定性以及包括操作和维护技术在内的应用等方面的创新成果和发展。通过这些努力,本文旨在为混合绝缘油的未来发展提供建议,以推进基于增强机制的液体介电研究。
{"title":"Development of Mixed Insulation Oil as Alternative Liquid Dielectric: A Review","authors":"Jian Hao;Jingwen Zhang;Wenyu Ye;Ruijing Liao;Lijun Yang","doi":"10.17775/CSEEJPES.2023.05960","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.05960","url":null,"abstract":"Use of traditional mineral oil (MO) as a liquid insulation in transformers has spanned more than 130 years. However, MO has poor heat resistance, a low ignition point, and is a non-renewable resource, which does not meet development requirements for high-performance and environmentally friendly insulation oil. Consequently, researchers have explored alternatives such as natural ester (NE) and synthetic ester (SE) oils, as well as mixed insulation oils. Mixed insulating oil is a blend of diverse insulating oil types, with optimal performance achieved by adjusting proportions of base oils. This article summarizes the innovative achievements and development of mixed insulation oil in terms of development of mixed ratio, basic physical chemical properties, electrical properties, thermal stability, and application including operation and maintenance technology. Through these efforts, this article aims to provide recommendations for future development of mixed insulating oils to advance liquid dielectric research based on enhancement mechanisms.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1242-1258"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375972","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communication Resources Allocation for Time Delay Reduction of Frequency Regulation Service in High Renewable Penetrated Power System 在可再生能源高度渗透的电力系统中分配通信资源以减少频率调节服务的时间延迟
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2023.07630
Hongjie He;Ning Zhang;Chongqing Kang;Song Ci;Fei Teng;Goran Strbac
The high renewable penetrated power system has severe frequency regulation problems. Distributed resources can provide frequency regulation services but are limited by communication time delay. This paper proposes a communication resources allocation model to reduce communication time delay in frequency regulation service. Communication device resources and wireless spectrum resources are allocated to distributed resources when they participate in frequency regulation. We reveal impact of communication resources allocation on time delay reduction and frequency regulation performance. Besides, we study communication resources allocation solution in high renewable energy penetrated power systems. We provide a case study based on the HRP-38 system. Results show communication time delay decreases distributed resources' ability to provide frequency regulation service. On the other hand, allocating more communication resources to distributed resources' communication services improves their frequency regulation performance. For power systems with renewable energy penetration above 70%, required communications resources are about five times as many as 30% renewable energy penetrated power systems to keep frequency performance the same.
可再生能源渗透率高的电力系统存在严重的频率调节问题。分布式资源可以提供频率调节服务,但受到通信时延的限制。本文提出了一种通信资源分配模型,以减少频率调节服务中的通信时延。通信设备资源和无线频谱资源被分配给参与频率调节的分布式资源。我们揭示了通信资源分配对减少时延和频率调节性能的影响。此外,我们还研究了可再生能源渗透率高的电力系统中的通信资源分配方案。我们提供了一个基于 HRP-38 系统的案例研究。结果表明,通信时延会降低分布式资源提供频率调节服务的能力。另一方面,将更多的通信资源分配给分布式资源的通信服务可提高其频率调节性能。对于可再生能源渗透率超过 70% 的电力系统,要保持频率性能不变,所需的通信资源约为可再生能源渗透率为 30% 的电力系统的五倍。
{"title":"Communication Resources Allocation for Time Delay Reduction of Frequency Regulation Service in High Renewable Penetrated Power System","authors":"Hongjie He;Ning Zhang;Chongqing Kang;Song Ci;Fei Teng;Goran Strbac","doi":"10.17775/CSEEJPES.2023.07630","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.07630","url":null,"abstract":"The high renewable penetrated power system has severe frequency regulation problems. Distributed resources can provide frequency regulation services but are limited by communication time delay. This paper proposes a communication resources allocation model to reduce communication time delay in frequency regulation service. Communication device resources and wireless spectrum resources are allocated to distributed resources when they participate in frequency regulation. We reveal impact of communication resources allocation on time delay reduction and frequency regulation performance. Besides, we study communication resources allocation solution in high renewable energy penetrated power systems. We provide a case study based on the HRP-38 system. Results show communication time delay decreases distributed resources' ability to provide frequency regulation service. On the other hand, allocating more communication resources to distributed resources' communication services improves their frequency regulation performance. For power systems with renewable energy penetration above 70%, required communications resources are about five times as many as 30% renewable energy penetrated power systems to keep frequency performance the same.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"468-480"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extension of Distribution Transformer Life in the Presence of Smart Inverter-based Distributed Solar Photovoltaic Systems 延长基于智能逆变器的分布式太阳能光伏系统的配电变压器寿命
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-11-17 DOI: 10.17775/CSEEJPES.2022.06060
Kanhaiya Kumar;Saran Satsangi;Ganesh Balu Kumbhar
A transformer is an essential but expensive power delivery equipment for a distribution utility. In many distribution utilities worldwide, a sizable percentage of transformers are near the end of their designed life. At the same time, distribution utilities are adopting smart inverter-based distributed solar photovoltaic (SPV) systems to maximize renewable generation. The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers. The proposed method is first tested on a modified IEEE-123 node distribution feeder. After that, the procedure is applied to a practical distribution system, i.e., the Indian Institute of Technology (IIT) Roorkee campus, India. The transformer aging models, alongside advanced control functionalities of grid-tied smart inverter-based SPV systems, are implemented in MATLAB. The open-source simulation tool (OpenDSS) is used to model distribution net-works. To analyze effectiveness of various inverter functionalities, time-series simulations are performed using exponential load models, considering daily load curves from multiple seasons, load types, current harmonics, etc. Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer. Simulation results demonstrate, simply by incorporating smart inverter-based SPV systems, transformer aging is reduced by 15% to 22% in comparison to SPV systems operating with traditional inverters.
变压器是配电设施中必不可少的电力输送设备,但价格昂贵。在全球许多配电公用事业中,相当大比例的变压器已接近设计寿命。与此同时,配电公司正在采用基于智能逆变器的分布式太阳能光伏 (SPV) 系统,以最大限度地提高可再生能源发电量。本文的核心目标是提出一种方法,量化基于智能逆变器的分布式太阳能光伏系统对配电变压器老化的影响。提出的方法首先在改进的 IEEE-123 节点配电馈线上进行测试。然后,将该程序应用于实际配电系统,即印度印度理工学院(IIT)罗基校区。变压器老化模型以及基于并网智能逆变器的 SPV 系统的高级控制功能均在 MATLAB 中实现。开源仿真工具(OpenDSS)用于配电网建模。为了分析各种逆变器功能的有效性,使用指数负荷模型进行了时间序列模拟,考虑了多个季节的日负荷曲线、负荷类型、电流谐波等。研究结果表明,用基于智能逆变器的 SPV 系统取代传统逆变器可实现本地无功发电,并可延长配电变压器的使用寿命。仿真结果表明,与使用传统逆变器的 SPV 系统相比,只需采用基于智能逆变器的 SPV 系统,变压器的老化程度就可降低 15% 至 22%。
{"title":"Extension of Distribution Transformer Life in the Presence of Smart Inverter-based Distributed Solar Photovoltaic Systems","authors":"Kanhaiya Kumar;Saran Satsangi;Ganesh Balu Kumbhar","doi":"10.17775/CSEEJPES.2022.06060","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.06060","url":null,"abstract":"A transformer is an essential but expensive power delivery equipment for a distribution utility. In many distribution utilities worldwide, a sizable percentage of transformers are near the end of their designed life. At the same time, distribution utilities are adopting smart inverter-based distributed solar photovoltaic (SPV) systems to maximize renewable generation. The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers. The proposed method is first tested on a modified IEEE-123 node distribution feeder. After that, the procedure is applied to a practical distribution system, i.e., the Indian Institute of Technology (IIT) Roorkee campus, India. The transformer aging models, alongside advanced control functionalities of grid-tied smart inverter-based SPV systems, are implemented in MATLAB. The open-source simulation tool (OpenDSS) is used to model distribution net-works. To analyze effectiveness of various inverter functionalities, time-series simulations are performed using exponential load models, considering daily load curves from multiple seasons, load types, current harmonics, etc. Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer. Simulation results demonstrate, simply by incorporating smart inverter-based SPV systems, transformer aging is reduced by 15% to 22% in comparison to SPV systems operating with traditional inverters.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"88-95"},"PeriodicalIF":7.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Location of Asymmetric Ground Fault Using Virtual Injected Current Ratio and Two-stage Recovery Strategy in Distribution Networks 利用配电网络中的虚拟注入电流比和两阶段恢复策略定位非对称接地故障
IF 7.1 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2023-11-17 DOI: 10.17775/CSEEJPES.2021.07900
Haiting Shan;Luliang Zhang;Q. H. Wu;Mengshi Li
Sparse measurements challenge fault location in distribution networks. This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements. A virtual injected current vector is formulated to estimate the fault line, which can be reconstructed from voltage sags measured at a few buses using compressive sensing (CS). The relationship between the virtual injected current ratio (VICR) and fault position is deduced from circuit analysis to pinpoint the fault. Furthermore, a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector, where two different sensing matrixes are utilized to improve the incoherence. The proposed method is validated in IEEE 34 node test feeder. Simulation results show asymmetric ground fault type, resistance, fault position and access of distributed generators (DGs) do not significantly influence performance of our method. In addition, it works effectively under various scenarios of noisy measurement and line parameter error. Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.
稀疏测量对配电网络的故障定位提出了挑战。本文提出了一种在测量有限的配电网络中进行非对称接地故障定位的方法。利用虚拟注入电流矢量来估计故障线路,该矢量可通过压缩传感(CS)从几个总线测量到的电压骤降中重建。通过电路分析推导出虚拟注入电流比(VICR)与故障位置之间的关系,从而精确定位故障点。此外,为提高电流矢量的重建精度,还提出了一种两阶段恢复策略,即利用两种不同的传感矩阵来改善不一致性。提出的方法在 IEEE 34 节点测试馈线上进行了验证。仿真结果表明,非对称接地故障类型、电阻、故障位置和分布式发电机(DG)的接入对我们方法的性能影响不大。此外,该方法还能在各种噪声测量和线路参数误差情况下有效工作。在 134 个节点测试馈线上的验证证明,所提出的方法也适用于结构更为复杂的系统。
{"title":"Location of Asymmetric Ground Fault Using Virtual Injected Current Ratio and Two-stage Recovery Strategy in Distribution Networks","authors":"Haiting Shan;Luliang Zhang;Q. H. Wu;Mengshi Li","doi":"10.17775/CSEEJPES.2021.07900","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.07900","url":null,"abstract":"Sparse measurements challenge fault location in distribution networks. This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements. A virtual injected current vector is formulated to estimate the fault line, which can be reconstructed from voltage sags measured at a few buses using compressive sensing (CS). The relationship between the virtual injected current ratio (VICR) and fault position is deduced from circuit analysis to pinpoint the fault. Furthermore, a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector, where two different sensing matrixes are utilized to improve the incoherence. The proposed method is validated in IEEE 34 node test feeder. Simulation results show asymmetric ground fault type, resistance, fault position and access of distributed generators (DGs) do not significantly influence performance of our method. In addition, it works effectively under various scenarios of noisy measurement and line parameter error. Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"151-161"},"PeriodicalIF":7.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
CSEE Journal of Power and Energy Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1