首页 > 最新文献

CSEE Journal of Power and Energy Systems最新文献

英文 中文
Observability Analysis of Integrated Electricity and Heating Systems with Thermal Quasi-Dynamics in Pipelines 管道热准动力学综合电力和供热系统的可观测性分析
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2024-02-14 DOI: 10.17775/CSEEJPES.2022.04860
Zhigang Li;Wenjian Zheng;Junbo Zhao;J. H. Zheng;Q. H. Wu
Observability analysis (OA) is vital to obtaining the available input measurements of state estimation (SE) in an integrated electricity and heating system (IEHS). Considering the thermal quasi-dynamics in pipelines, the measurement equations in heating systems are dependent on the estimated results, leading to an interdependency between OA and SE. Conventional OA methods require measurement equations be known exactly before SE is performed, and they are not applicable to IEHSs. To bridge this gap, a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency. As its core procedure, the observable state identification and observability restoration are formulated in terms of integer linear programming. Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.
可观测性分析(OA)对于获得综合电力和供热系统(IEHS)中状态估计(SE)的可用输入测量值至关重要。考虑到管道中的热准动力学,供热系统中的测量方程取决于估计结果,从而导致 OA 和 SE 之间的相互依存关系。传统的 OA 方法要求在执行 SE 之前准确知道测量方程,因此不适用于 IEHS。为了弥补这一缺陷,我们为 IEHS 设计了一种基于情景的 OA 方案,该方案可为一组预定义的时延情景提供可靠的分析结果,以应对这种相互依赖关系。作为其核心程序,可观测状态识别和可观测性恢复是通过整数线性规划来实现的。为证明所提方案的有效性和优越性,进行了数值测试。
{"title":"Observability Analysis of Integrated Electricity and Heating Systems with Thermal Quasi-Dynamics in Pipelines","authors":"Zhigang Li;Wenjian Zheng;Junbo Zhao;J. H. Zheng;Q. H. Wu","doi":"10.17775/CSEEJPES.2022.04860","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.04860","url":null,"abstract":"Observability analysis (OA) is vital to obtaining the available input measurements of state estimation (SE) in an integrated electricity and heating system (IEHS). Considering the thermal quasi-dynamics in pipelines, the measurement equations in heating systems are dependent on the estimated results, leading to an interdependency between OA and SE. Conventional OA methods require measurement equations be known exactly before SE is performed, and they are not applicable to IEHSs. To bridge this gap, a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency. As its core procedure, the observable state identification and observability restoration are formulated in terms of integer linear programming. Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributed Energy and Reserve Scheduling in Local Energy Communities Using L-BFGS Optimization 利用 L-BFGS 优化本地能源社区的分布式能源和储备调度
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2024-02-14 DOI: 10.17775/CSEEJPES.2023.06270
Mohammad Dolatabadi;Alireza Zakariazadeh;Alberto Borghetti;Pierluigi Siano
Encouraging citizens to invest in small-scale renewable resources is crucial for transitioning towards a sustainable and clean energy system. Local energy communities (LECs) are expected to play a vital role in this context. However, energy scheduling in LECs presents various challenges, including the preservation of customer privacy, adherence to distribution network constraints, and the management of computational burdens. This paper introduces a novel approach for energy scheduling in renewable-based LECs using a decentralized optimization method. The proposed approach uses the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, significantly reducing the computational effort required for solving the mixed integer programming (MIP) problem. It incorporates network constraints, evaluates energy losses, and enables community participants to provide ancillary services like a regulation reserve to the grid utility. To assess its robustness and efficiency, the proposed approach is tested on an 84-bus radial distribution network. Results indicate that the proposed distributed approach not only matches the accuracy of the corresponding centralized model but also exhibits scalability and preserves participant privacy.
鼓励公民投资小型可再生资源对于向可持续和清洁能源系统过渡至关重要。地方能源社区有望在这方面发挥重要作用。然而,LEC 中的能源调度面临着各种挑战,包括保护客户隐私、遵守配电网络限制以及管理计算负担。本文介绍了一种在基于可再生能源的 LEC 中使用分散优化方法进行能源调度的新方法。所提出的方法采用了有限内存 Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 方法,大大减少了解决混合整数编程 (MIP) 问题所需的计算量。它纳入了网络约束条件,评估了能源损失,并使社区参与者能够向电网公用事业公司提供辅助服务,如调节储备。为了评估该方法的稳健性和效率,我们在一个 84 总线的径向配电网络上对所提出的方法进行了测试。结果表明,所提出的分布式方法不仅与相应的集中式模型的准确性相匹配,而且还具有可扩展性,并能保护参与者的隐私。
{"title":"Distributed Energy and Reserve Scheduling in Local Energy Communities Using L-BFGS Optimization","authors":"Mohammad Dolatabadi;Alireza Zakariazadeh;Alberto Borghetti;Pierluigi Siano","doi":"10.17775/CSEEJPES.2023.06270","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.06270","url":null,"abstract":"Encouraging citizens to invest in small-scale renewable resources is crucial for transitioning towards a sustainable and clean energy system. Local energy communities (LECs) are expected to play a vital role in this context. However, energy scheduling in LECs presents various challenges, including the preservation of customer privacy, adherence to distribution network constraints, and the management of computational burdens. This paper introduces a novel approach for energy scheduling in renewable-based LECs using a decentralized optimization method. The proposed approach uses the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, significantly reducing the computational effort required for solving the mixed integer programming (MIP) problem. It incorporates network constraints, evaluates energy losses, and enables community participants to provide ancillary services like a regulation reserve to the grid utility. To assess its robustness and efficiency, the proposed approach is tested on an 84-bus radial distribution network. Results indicate that the proposed distributed approach not only matches the accuracy of the corresponding centralized model but also exhibits scalability and preserves participant privacy.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilient Smart Power Grid Synchronization Estimation Method for System Resilience with Partial Missing Measurements 针对部分缺失测量的系统弹性智能电网同步估计方法
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2024-02-14 DOI: 10.17775/CSEEJPES.2023.06900
Yi Wang;Yanxin Liu;Mingdong Wang;Venkata Dinavahi;Jun Liang;Yonghui Sun
With the increasing demand for power system stability and resilience, effective real-time tracking plays a crucial role in smart grid synchronization. However, most studies have focused on measurement noise, while they seldom think about the problem of measurement data loss in smart power grid synchronization. To solve this problem, a resilient fault-tolerant extended Kalman filter (RFTEKF) is proposed to track voltage amplitude, voltage phase angle and frequency dynamically. First, a three-phase unbalanced network's positive sequence fast estimation model is established. Then, the loss phenomenon of measurements occurs randomly, and the randomness of data loss's randomness is defined by discrete interval distribution [0], [1]. Subsequently, a resilient fault-tolerant extended Kalman filter based on the real-time estimation framework is designed using the time-stamp technique to acquire partial data loss information. Finally, extensive simulation results manifest the proposed RFTEKF can synchronize the smart grid more effectively than the traditional extended Kalman filter (EKF).
随着对电力系统稳定性和恢复能力的要求越来越高,有效的实时跟踪在智能电网同步中发挥着至关重要的作用。然而,大多数研究都侧重于测量噪声,而很少考虑智能电网同步中的测量数据丢失问题。为解决这一问题,本文提出了一种弹性容错扩展卡尔曼滤波器(RFTEKF)来动态跟踪电压幅值、电压相位角和频率。首先,建立了三相不平衡电网的正序快速估计模型。然后,随机发生测量丢失现象,数据丢失的随机性由离散区间分布 [0]、[1] 定义。随后,利用时间戳技术获取部分数据丢失信息,设计了基于实时估计框架的弹性容错扩展卡尔曼滤波器。最后,大量仿真结果表明,与传统的扩展卡尔曼滤波器(EKF)相比,所提出的 RFTEKF 能更有效地同步智能电网。
{"title":"Resilient Smart Power Grid Synchronization Estimation Method for System Resilience with Partial Missing Measurements","authors":"Yi Wang;Yanxin Liu;Mingdong Wang;Venkata Dinavahi;Jun Liang;Yonghui Sun","doi":"10.17775/CSEEJPES.2023.06900","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.06900","url":null,"abstract":"With the increasing demand for power system stability and resilience, effective real-time tracking plays a crucial role in smart grid synchronization. However, most studies have focused on measurement noise, while they seldom think about the problem of measurement data loss in smart power grid synchronization. To solve this problem, a resilient fault-tolerant extended Kalman filter (RFTEKF) is proposed to track voltage amplitude, voltage phase angle and frequency dynamically. First, a three-phase unbalanced network's positive sequence fast estimation model is established. Then, the loss phenomenon of measurements occurs randomly, and the randomness of data loss's randomness is defined by discrete interval distribution [0], [1]. Subsequently, a resilient fault-tolerant extended Kalman filter based on the real-time estimation framework is designed using the time-stamp technique to acquire partial data loss information. Finally, extensive simulation results manifest the proposed RFTEKF can synchronize the smart grid more effectively than the traditional extended Kalman filter (EKF).","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjugate Vectors Method Applied to Asymmetrical Fault Analysis of Power Electronized Power Systems 共轭矢量法在电力电子化系统非对称故障分析中的应用
IF 6.9 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-14 DOI: 10.17775/CSEEJPES.2023.04790
Yingbiao Li;Xing Liu;Jiabing Hu;Jianhang Zhu;Jianbo Guo
With the wide application of power electronized resources (PERs), the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults. As a result, the traditional phasor model, impedance model, and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges. Hence, a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency. Furthermore, asymmetrical fault characteristics are extracted. As an application, a faulted phase identification (FPI) strategy is proposed based on the fault characteristics. The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.
随着电力电子资源(PER)的广泛应用,在非对称故障情况下,电压的幅值和频率表现出明显的时变特性。因此,传统的相量模型、阻抗模型和基于电压恒定幅值和频率的对称分量法面临着巨大挑战。因此,本文提出了一种基于共轭矢量的新型非对称故障分析方法,可满足由时变幅值/频率电压激发的网络的建模和分析要求。此外,还提取了非对称故障特征。作为应用,根据故障特征提出了故障相位识别(FPI)策略。时域仿真和实时数字仿真器验证了非对称故障分析方法和 FPI 策略的正确性和优越性。
{"title":"Conjugate Vectors Method Applied to Asymmetrical Fault Analysis of Power Electronized Power Systems","authors":"Yingbiao Li;Xing Liu;Jiabing Hu;Jianhang Zhu;Jianbo Guo","doi":"10.17775/CSEEJPES.2023.04790","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.04790","url":null,"abstract":"With the wide application of power electronized resources (PERs), the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults. As a result, the traditional phasor model, impedance model, and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges. Hence, a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency. Furthermore, asymmetrical fault characteristics are extracted. As an application, a faulted phase identification (FPI) strategy is proposed based on the fault characteristics. The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":6.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436617","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Sustaining of Critical Park Microgrids Integrating Mobile Emergency Generators Subjective to Major Outage 集成移动应急发电机的重要园区微电网在大停电情况下的自我维持能力
IF 6.9 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-14 DOI: 10.17775/CSEEJPES.2023.01670
Quan Sui;Lei Zhang
In the event of a major power outage, critical park microgrids (PMGs) could be self-sustaining if mobile emergency generators (MEGs) are stationed to share energy. However, the need for privacy protection and the value of flexible power support on minute-time scales have not been given enough attention. To address the problem, this paper proposes a new self-sustaining strategy for critical PMGs integrating MEGs. First, to promote the cooperation between PMG and MEG, a bi-level benefit distribution mechanism is designed, where the participants' multiple roles and contributions are identified, and good behaviors are also awarded. Additionally, to increase the alliance benefits, three loss coordination modes are presented to guide the power exchange at the minute level between the MEG and PMG, considering the volatility of renewable generation and load. On this basis, a multi-time scale power-energy scheduling strategy is formulated via the alternating direction method of multipliers (ADMM) to coordinate the PMG and MEG. Finally, a dimensionality reduction technology is designed to equivalently simplify the optimization problem to facilitate the adaptive-step-based ADMM solution. Simulation studies indicate that the proposed strategy achieves the self-sustaining of PMGs integrating MEGs while increasing the economy by no less than 3.1%.
在发生重大停电事件时,如果移动应急发电机(MEG)能够共享能源,关键园区微电网(PMGs)就能自我维持。然而,隐私保护的需求和分钟级灵活电力支持的价值尚未得到足够重视。为解决这一问题,本文提出了一种新的关键永磁发电机整合移动应急发电机的自我维持策略。首先,为促进 PMG 与 MEG 之间的合作,本文设计了一种双层利益分配机制,即对参与者的多重角色和贡献进行识别,并对良好行为进行奖励。此外,考虑到可再生能源发电和负荷的波动性,为提高联盟效益,提出了三种损耗协调模式,以指导 MEG 和 PMG 在分钟级的电力交换。在此基础上,通过乘法交替方向法(ADMM)制定了多时间尺度的电力-能源调度策略,以协调 PMG 和 MEG。最后,设计了一种降维技术来等效简化优化问题,以促进基于自适应步长的 ADMM 求解。仿真研究表明,所提出的策略实现了永磁发电机与多元气体发电机的自我维持,同时提高了不少于 3.1% 的经济效益。
{"title":"Self-Sustaining of Critical Park Microgrids Integrating Mobile Emergency Generators Subjective to Major Outage","authors":"Quan Sui;Lei Zhang","doi":"10.17775/CSEEJPES.2023.01670","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.01670","url":null,"abstract":"In the event of a major power outage, critical park microgrids (PMGs) could be self-sustaining if mobile emergency generators (MEGs) are stationed to share energy. However, the need for privacy protection and the value of flexible power support on minute-time scales have not been given enough attention. To address the problem, this paper proposes a new self-sustaining strategy for critical PMGs integrating MEGs. First, to promote the cooperation between PMG and MEG, a bi-level benefit distribution mechanism is designed, where the participants' multiple roles and contributions are identified, and good behaviors are also awarded. Additionally, to increase the alliance benefits, three loss coordination modes are presented to guide the power exchange at the minute level between the MEG and PMG, considering the volatility of renewable generation and load. On this basis, a multi-time scale power-energy scheduling strategy is formulated via the alternating direction method of multipliers (ADMM) to coordinate the PMG and MEG. Finally, a dimensionality reduction technology is designed to equivalently simplify the optimization problem to facilitate the adaptive-step-based ADMM solution. Simulation studies indicate that the proposed strategy achieves the self-sustaining of PMGs integrating MEGs while increasing the economy by no less than 3.1%.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":6.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Management of Price-Maker Community Energy Storage by Stochastic Dynamic Programming 通过随机动态编程实现定价者社区储能的能源管理
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2023.02720
Lirong Deng;Xuan Zhang;Tianshu Yang;Hongbin Sun;Yang Fu;Qinglai Guo;Shmuel S. Oren
In this paper, we propose an analytical stochastic dynamic programming (SDP) algorithm to address the optimal management problem of price-maker community energy storage. As a price-maker, energy storage smooths price differences, thus decreasing energy arbitrage value. However, this price-smoothing effect can result in significant external welfare changes by reducing consumer costs and producer revenues, which is not negligible for the community with energy storage systems. As such, we formulate community storage management as an SDP that aims to maximize both energy arbitrage and community welfare. To incorporate market interaction into the SDP format, we propose a framework that derives partial but sufficient market information to approximate impact of storage operations on market prices. Then we present an analytical SDP algorithm that does not require state discretization. Apart from computational efficiency, another advantage of the analytical algorithm is to guide energy storage to charge/discharge by directly comparing its current marginal value with expected future marginal value. Case studies indicate community-owned energy storage that maximizes both arbitrage and welfare value gains more benefits than storage that maximizes only arbitrage. The proposed algorithm ensures optimality and largely reduces the computational complexity of the standard SDP.
在本文中,我们提出了一种分析性随机动态编程(SDP)算法,以解决社区储能价格制定者的优化管理问题。作为价格制定者,储能可以平滑价格差异,从而降低能源套利价值。然而,这种价格平滑效应会降低消费者成本和生产者收入,从而带来显著的外部福利变化,这对于拥有储能系统的社区来说是不可忽视的。因此,我们将社区储能管理表述为一个 SDP,旨在实现能源套利和社区福利的最大化。为了将市场互动纳入 SDP 格式,我们提出了一个框架,该框架可获得部分但充分的市场信息,以近似估计储能操作对市场价格的影响。然后,我们提出了一种无需状态离散化的 SDP 分析算法。除计算效率外,分析算法的另一个优势是通过直接比较储能当前边际值和预期未来边际值来指导储能充放电。案例研究表明,同时实现套利和福利价值最大化的社区储能比只实现套利最大化的储能能获得更多收益。所提出的算法确保了最优性,并大大降低了标准 SDP 的计算复杂度。
{"title":"Energy Management of Price-Maker Community Energy Storage by Stochastic Dynamic Programming","authors":"Lirong Deng;Xuan Zhang;Tianshu Yang;Hongbin Sun;Yang Fu;Qinglai Guo;Shmuel S. Oren","doi":"10.17775/CSEEJPES.2023.02720","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.02720","url":null,"abstract":"In this paper, we propose an analytical stochastic dynamic programming (SDP) algorithm to address the optimal management problem of price-maker community energy storage. As a price-maker, energy storage smooths price differences, thus decreasing energy arbitrage value. However, this price-smoothing effect can result in significant external welfare changes by reducing consumer costs and producer revenues, which is not negligible for the community with energy storage systems. As such, we formulate community storage management as an SDP that aims to maximize both energy arbitrage and community welfare. To incorporate market interaction into the SDP format, we propose a framework that derives partial but sufficient market information to approximate impact of storage operations on market prices. Then we present an analytical SDP algorithm that does not require state discretization. Apart from computational efficiency, another advantage of the analytical algorithm is to guide energy storage to charge/discharge by directly comparing its current marginal value with expected future marginal value. Case studies indicate community-owned energy storage that maximizes both arbitrage and welfare value gains more benefits than storage that maximizes only arbitrage. The proposed algorithm ensures optimality and largely reduces the computational complexity of the standard SDP.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375969","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyber-Physical Resilience Enhancement for Power Transmission Systems with Energy Storage Systems 利用储能系统增强输电系统的网络物理复原力
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2022.07570
Wenhao Zhang;Dongyang Rui;Weihong Wang;Yang Guo;Zhaoxia Jing;Wenhu Tang
In a power system, when extreme events occur, such as ice storm, large scale blackouts may be unavoidable. Such small probability but high risk events have huge impact on power systems. Most resilience research in power systems only considers faults on the physical side, which would lead to overly idealistic results. This paper proposes a two-stage cyber-physical resilience enhancement method considering energy storage (ES) systems. The first stage calculates optimal planning of ES systems, and the second stage assesses resilience and enhancement of ES systems during the disaster. In the proposed model, cyber faults indirectly damage the system by disabling monitoring and control function of control center. As a result, when detection and response process of physical faults are blocked by cyber failures, serious load shedding occurs. Such a cyber-physical coupling mechanism of fault, response, restoration process is demonstrated in the modified IEEE Reliable Test System-79 (RTS-79). Simulation results show compared with the physical-only system, the cyber-physical system has a more accurate but degraded resilient performance. Besides, ES systems setting at proper place effectively enhance resilience of the cyber-physical transmission system with less load Shedding.
在电力系统中,当发生冰风暴等极端事件时,大规模停电可能不可避免。这种小概率但高风险的事件会对电力系统产生巨大影响。大多数电力系统复原力研究只考虑物理方面的故障,这将导致过于理想化的结果。本文提出了一种考虑到储能(ES)系统的两阶段网络物理弹性增强方法。第一阶段计算 ES 系统的最优规划,第二阶段评估 ES 系统在灾难期间的恢复能力和增强能力。在所提出的模型中,网络故障会使控制中心的监控功能失效,从而间接损害系统。因此,当物理故障的检测和响应过程被网络故障阻断时,就会出现严重的甩负荷现象。这种故障、响应和恢复过程的网络-物理耦合机制在修改后的 IEEE 可靠性测试系统-79(RTS-79)中得到了验证。仿真结果表明,与纯物理系统相比,网络物理系统具有更高的准确性,但弹性性能有所下降。此外,在适当位置设置 ES 系统可有效提高网络物理输电系统的恢复能力,减少甩负荷。
{"title":"Cyber-Physical Resilience Enhancement for Power Transmission Systems with Energy Storage Systems","authors":"Wenhao Zhang;Dongyang Rui;Weihong Wang;Yang Guo;Zhaoxia Jing;Wenhu Tang","doi":"10.17775/CSEEJPES.2022.07570","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.07570","url":null,"abstract":"In a power system, when extreme events occur, such as ice storm, large scale blackouts may be unavoidable. Such small probability but high risk events have huge impact on power systems. Most resilience research in power systems only considers faults on the physical side, which would lead to overly idealistic results. This paper proposes a two-stage cyber-physical resilience enhancement method considering energy storage (ES) systems. The first stage calculates optimal planning of ES systems, and the second stage assesses resilience and enhancement of ES systems during the disaster. In the proposed model, cyber faults indirectly damage the system by disabling monitoring and control function of control center. As a result, when detection and response process of physical faults are blocked by cyber failures, serious load shedding occurs. Such a cyber-physical coupling mechanism of fault, response, restoration process is demonstrated in the modified IEEE Reliable Test System-79 (RTS-79). Simulation results show compared with the physical-only system, the cyber-physical system has a more accurate but degraded resilient performance. Besides, ES systems setting at proper place effectively enhance resilience of the cyber-physical transmission system with less load Shedding.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generic Modeling and Control Framework for Power Systems Dominated by Power Converters Connected Through a Passive Transmission and Distribution Grid 通过无源输配电网连接的变流器主导电力系统的通用建模和控制框架
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2023.06400
Qing-Chang Zhong;Marcio Stefanello
In this paper, a compact mathematical model having an elegant structure, together with a generic control framework, are proposed for generic power systems dominated by power converters that are interconnected through a passive transmission and distribution (T&D) grid, by adopting the port-Hamiltonian (pH) systems theory and the fundamental circuit theory. The models of generic T&D lines are developed and then the model of a generic T&D grid is established. With the proposed control framework, the controlled converters are proven to be passive and Input-to-State Stable (ISS). The compact mathematical model is scalable and can be applied to power systems with multiple power electronic converters with generic passive controllers, passive local loads, and different types of passive T&D lines connected in a meshed configuration without self-loops, so it is very generic. Moreover, the resulting power system is proven to be ISS as well. The analysis is carried out without assumptions on constant frequency/voltage, constant loads, and/or lossless networks, except the need of passivity for all parts involved, and without using the Clarke/Park transformations or the graph theory. To simplify the presentation, three-phase balanced systems are adopted but the results can be easily adapted for single-phase or unbalanced three-phase systems.
本文采用端口-哈密顿(pH)系统理论和基本电路理论,针对以电力转换器为主、通过无源输配电网互联的通用电力系统,提出了结构优雅的紧凑型数学模型和通用控制框架。首先建立了一般输配电线路的模型,然后建立了一般输配电网的模型。利用所提出的控制框架,受控变流器被证明是无源和输入到状态稳定(ISS)的。该紧凑型数学模型具有可扩展性,可应用于带有通用无源控制器的多个电力电子变流器、无源本地负载以及以无自环网状配置连接的不同类型无源输配电线路的电力系统,因此具有很强的通用性。此外,由此产生的电力系统也被证明是 ISS。除了所有相关部分都需要无源之外,分析中没有假设恒定频率/电压、恒定负载和/或无损网络,也没有使用克拉克/帕克变换或图形理论。为简化表述,本文采用了三相平衡系统,但其结果可轻松适用于单相或不平衡的三相系统。
{"title":"Generic Modeling and Control Framework for Power Systems Dominated by Power Converters Connected Through a Passive Transmission and Distribution Grid","authors":"Qing-Chang Zhong;Marcio Stefanello","doi":"10.17775/CSEEJPES.2023.06400","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.06400","url":null,"abstract":"In this paper, a compact mathematical model having an elegant structure, together with a generic control framework, are proposed for generic power systems dominated by power converters that are interconnected through a passive transmission and distribution (T&D) grid, by adopting the port-Hamiltonian (pH) systems theory and the fundamental circuit theory. The models of generic T&D lines are developed and then the model of a generic T&D grid is established. With the proposed control framework, the controlled converters are proven to be passive and Input-to-State Stable (ISS). The compact mathematical model is scalable and can be applied to power systems with multiple power electronic converters with generic passive controllers, passive local loads, and different types of passive T&D lines connected in a meshed configuration without self-loops, so it is very generic. Moreover, the resulting power system is proven to be ISS as well. The analysis is carried out without assumptions on constant frequency/voltage, constant loads, and/or lossless networks, except the need of passivity for all parts involved, and without using the Clarke/Park transformations or the graph theory. To simplify the presentation, three-phase balanced systems are adopted but the results can be easily adapted for single-phase or unbalanced three-phase systems.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent Predetermination of Generator Tripping Scheme: Knowledge Fusion-based Deep Reinforcement Learning Framework 发电机跳闸方案的智能预测:基于知识融合的深度强化学习框架
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2022.08970
Lingkang Zeng;Wei Yao;Ze Hu;Hang Shuai;Zhouping Li;Jinyu Wen;Shijie Cheng
Generator tripping scheme (GTS) is the most commonly used scheme to prevent power systems from losing safety and stability. Usually, GTS is composed of offline predetermination and real-time scenario match. However, it is extremely time-consuming and labor-intensive for manual predetermination for a large-scale modern power system. To improve efficiency of predetermination, this paper proposes a framework of knowledge fusion-based deep reinforcement learning (KF-DRL) for intelligent predetermination of GTS. First, the Markov Decision Process (MDP) for GTS problem is formulated based on transient instability events. Then, linear action space is developed to reduce dimensionality of action space for multiple controllable generators. Especially, KF-DRL leverages domain knowledge about GTS to mask invalid actions during the decision-making process. This can enhance the efficiency and learning process. Moreover, the graph convolutional network (GCN) is introduced to the policy network for enhanced learning ability. Numerical simulation results obtained on New England power system demonstrate superiority of the proposed KF-DRL framework for GTS over the purely data-driven DRL method.
发电机跳闸方案(GTS)是防止电力系统失去安全性和稳定性的最常用方案。通常,GTS 由离线预判和实时情景匹配两部分组成。然而,对于大型现代电力系统来说,人工预判非常耗时耗力。为提高预判效率,本文提出了一种基于知识融合的深度强化学习(KF-DRL)框架,用于 GTS 的智能预判。首先,基于暂态不稳定事件,建立了 GTS 问题的马尔可夫决策过程(Markov Decision Process,MDP)。然后,开发了线性行动空间,以降低多个可控发电机的行动空间维度。特别是,KF-DRL 利用有关 GTS 的领域知识来掩盖决策过程中的无效行动。这可以提高效率,改善学习过程。此外,还在策略网络中引入了图卷积网络(GCN),以增强学习能力。在新英格兰电力系统上获得的数值模拟结果表明,针对 GTS 提出的 KF-DRL 框架优于纯数据驱动的 DRL 方法。
{"title":"Intelligent Predetermination of Generator Tripping Scheme: Knowledge Fusion-based Deep Reinforcement Learning Framework","authors":"Lingkang Zeng;Wei Yao;Ze Hu;Hang Shuai;Zhouping Li;Jinyu Wen;Shijie Cheng","doi":"10.17775/CSEEJPES.2022.08970","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.08970","url":null,"abstract":"Generator tripping scheme (GTS) is the most commonly used scheme to prevent power systems from losing safety and stability. Usually, GTS is composed of offline predetermination and real-time scenario match. However, it is extremely time-consuming and labor-intensive for manual predetermination for a large-scale modern power system. To improve efficiency of predetermination, this paper proposes a framework of knowledge fusion-based deep reinforcement learning (KF-DRL) for intelligent predetermination of GTS. First, the Markov Decision Process (MDP) for GTS problem is formulated based on transient instability events. Then, linear action space is developed to reduce dimensionality of action space for multiple controllable generators. Especially, KF-DRL leverages domain knowledge about GTS to mask invalid actions during the decision-making process. This can enhance the efficiency and learning process. Moreover, the graph convolutional network (GCN) is introduced to the policy network for enhanced learning ability. Numerical simulation results obtained on New England power system demonstrate superiority of the proposed KF-DRL framework for GTS over the purely data-driven DRL method.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375964","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convexification of Hybrid AC-DC Optimal Power Flow with Line-Commutated Converters 带线路换流器的交直流混合优化功率流的凸化
IF 7.1 2区 工程技术 Q1 Engineering Pub Date : 2023-12-28 DOI: 10.17775/CSEEJPES.2022.05250
Hongyuan Liang;Zhigang Li;J. H. Zheng;Q. H. Wu
Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.
基于线路换流器(LCC)的高压直流(HVDC)系统已与大容量交流电网集成,用于可再生能源电力的跨区域传输。非线性 LCC 模型给交直流混合电网的最优功率流 (OPF) 带来了额外的非凸性。LCC 电站模型的凸化方法可以解决这种非凸性,但很少有人讨论。我们为经典的 LCC 电站模型设计了一种等效的重述方法,有助于对基于 LCC 的交直流电网 OPF 进行二阶锥凸松弛。我们还提出了凸松弛精确性的充分条件及其证明。我们通过四次数值模拟验证了所提出的 LCC 电站模型和凸松弛的等价性、精确性和有效性。仿真结果表明,从松弛模型中可以有效地获得原始 OPF 的全局最优解。
{"title":"Convexification of Hybrid AC-DC Optimal Power Flow with Line-Commutated Converters","authors":"Hongyuan Liang;Zhigang Li;J. H. Zheng;Q. H. Wu","doi":"10.17775/CSEEJPES.2022.05250","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.05250","url":null,"abstract":"Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
CSEE Journal of Power and Energy Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1