首页 > 最新文献

Critical reviews in food science and nutrition最新文献

英文 中文
Reassessing the sustainability promise of cultured meat: a critical review with new data perspectives.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-21 DOI: 10.1080/10408398.2025.2461262
Mahya Tavan, Nick W Smith, Warren C McNabb, Paul Wood

There are currently over 170 companies in the field of cultured meat (CM) which have attracted over US$3 Billion in investments since 2019. The CM industry owes much of this success to the many claims around environmental benefits and alleviating animal welfare concerns, while being equally nutritious and as acceptable as conventional meat. This review aims to provide a much needed discussion on the latest research findings concerning the nutritional and environmental sustainability of CM and provide an evidence-based discussion around some of the challenges that the industry faces today. Recent developments in the field have revealed that some of the sustainability claims of the CM industry are overly ambitious and not supported by evidence. Environmental assessments have revealed that CM production is highly energy intensive and its environmental footprint can only be improved if renewable energy sources are used. In terms of nutritional quality of CM, there are many unknowns and gaps in the knowledge that require investigation.

{"title":"Reassessing the sustainability promise of cultured meat: a critical review with new data perspectives.","authors":"Mahya Tavan, Nick W Smith, Warren C McNabb, Paul Wood","doi":"10.1080/10408398.2025.2461262","DOIUrl":"10.1080/10408398.2025.2461262","url":null,"abstract":"<p><p>There are currently over 170 companies in the field of cultured meat (CM) which have attracted over US$3 Billion in investments since 2019. The CM industry owes much of this success to the many claims around environmental benefits and alleviating animal welfare concerns, while being equally nutritious and as acceptable as conventional meat. This review aims to provide a much needed discussion on the latest research findings concerning the nutritional and environmental sustainability of CM and provide an evidence-based discussion around some of the challenges that the industry faces today. Recent developments in the field have revealed that some of the sustainability claims of the CM industry are overly ambitious and not supported by evidence. Environmental assessments have revealed that CM production is highly energy intensive and its environmental footprint can only be improved if renewable energy sources are used. In terms of nutritional quality of CM, there are many unknowns and gaps in the knowledge that require investigation.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-9"},"PeriodicalIF":7.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Food-derived alcohol dehydrogenase activating peptides: production, identification, structure-activity relationship, and mechanism of action.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-17 DOI: 10.1080/10408398.2025.2460622
Mengyao Li, Junjia Zhang, Lilin Cheng, Xiaoyu Chen, Xinya Yin, Ling Zhu, Hui Zhang, Gangcheng Wu

Excessive alcohol consumption can seriously threaten the human health. Alcohol dehydrogenase (ADH), as the crucial alcohol metabolizing enzyme, plays an important role in improving alcohol metabolisms within the human body. Food-derived bioactive peptides, as natural product factors with potentials in regulation of body metabolism, can exhibit diverse bioactivities according to their compositions and amino acid sequences. As a result, bioactive peptides have received increasing research attention, specifically regarding their roles in activating ADH activity and modulating alcohol metabolism. Nevertheless, few academic reviews have summarized the current understanding and discussed existing knowledge gaps of food-derived ADH activating peptides. Therefore, in this review, the preparation, isolation, purification, and identification approach of ADH activating peptides are preliminarily summarized. More importantly, the structure-activity relationship and specific action mechanism of ADH activating peptides are also critically discussed. Meanwhile, the potential limitations of the existing studies are also explicitly pointed out in order to provide theoretical references for future research on the ADH activating peptides.

{"title":"Food-derived alcohol dehydrogenase activating peptides: production, identification, structure-activity relationship, and mechanism of action.","authors":"Mengyao Li, Junjia Zhang, Lilin Cheng, Xiaoyu Chen, Xinya Yin, Ling Zhu, Hui Zhang, Gangcheng Wu","doi":"10.1080/10408398.2025.2460622","DOIUrl":"https://doi.org/10.1080/10408398.2025.2460622","url":null,"abstract":"<p><p>Excessive alcohol consumption can seriously threaten the human health. Alcohol dehydrogenase (ADH), as the crucial alcohol metabolizing enzyme, plays an important role in improving alcohol metabolisms within the human body. Food-derived bioactive peptides, as natural product factors with potentials in regulation of body metabolism, can exhibit diverse bioactivities according to their compositions and amino acid sequences. As a result, bioactive peptides have received increasing research attention, specifically regarding their roles in activating ADH activity and modulating alcohol metabolism. Nevertheless, few academic reviews have summarized the current understanding and discussed existing knowledge gaps of food-derived ADH activating peptides. Therefore, in this review, the preparation, isolation, purification, and identification approach of ADH activating peptides are preliminarily summarized. More importantly, the structure-activity relationship and specific action mechanism of ADH activating peptides are also critically discussed. Meanwhile, the potential limitations of the existing studies are also explicitly pointed out in order to provide theoretical references for future research on the ADH activating peptides.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-14"},"PeriodicalIF":7.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilient foods for preventing global famine: a review of food supply interventions for global catastrophic food shocks including nuclear winter and infrastructure collapse.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-11 DOI: 10.1080/10408398.2024.2431207
Juan B García Martínez, Jeffray Behr, Joshua Pearce, David Denkenberger

Global catastrophic threats to the food system upon which human society depends are numerous. A nuclear war or volcanic eruption could collapse agricultural yields by inhibiting crop growth. Nuclear electromagnetic pulses or extreme pandemics could disrupt industry and mass-scale food supply by unprecedented levels. Global food storage is limited. What can be done?. This article presents the state of the field on interventions to maintain food production in these scenarios, aiming to prevent mass starvation and reduce the chance of civilizational collapse and potential existential catastrophe. The potential for rapid scaling, affordability, and large-scale deployment is reviewed for a portfolio of food production methods over land, water, and industrial systems. Special focus is given to proposing avenues for further research and technology development and to collating policy proposals. Maintaining international trade and prioritizing crops for food instead of animal feed or biofuels is paramount. Both mature, proven methods (crop relocation, plant-residue- and grass-fed ruminants, greenhouses, seaweed, fishing, etc.) and novel resilient foods are characterized. A future research agenda is outlined, including scenario characterization, policy development, production ramp-up and economic analyses, and rapid deployment trials. Governments could implement national plans and task forces to address extreme food system risks, and invest in resilient food solutions to safeguard citizens against global catastrophic food failure.

{"title":"Resilient foods for preventing global famine: a review of food supply interventions for global catastrophic food shocks including nuclear winter and infrastructure collapse.","authors":"Juan B García Martínez, Jeffray Behr, Joshua Pearce, David Denkenberger","doi":"10.1080/10408398.2024.2431207","DOIUrl":"https://doi.org/10.1080/10408398.2024.2431207","url":null,"abstract":"<p><p>Global catastrophic threats to the food system upon which human society depends are numerous. A nuclear war or volcanic eruption could collapse agricultural yields by inhibiting crop growth. Nuclear electromagnetic pulses or extreme pandemics could disrupt industry and mass-scale food supply by unprecedented levels. Global food storage is limited. What can be done?. This article presents the state of the field on interventions to maintain food production in these scenarios, aiming to prevent mass starvation and reduce the chance of civilizational collapse and potential existential catastrophe. The potential for rapid scaling, affordability, and large-scale deployment is reviewed for a portfolio of food production methods over land, water, and industrial systems. Special focus is given to proposing avenues for further research and technology development and to collating policy proposals. Maintaining international trade and prioritizing crops for food instead of animal feed or biofuels is paramount. Both mature, proven methods (crop relocation, plant-residue- and grass-fed ruminants, greenhouses, seaweed, fishing, etc.) and novel resilient foods are characterized. A future research agenda is outlined, including scenario characterization, policy development, production ramp-up and economic analyses, and rapid deployment trials. Governments could implement national plans and task forces to address extreme food system risks, and invest in resilient food solutions to safeguard citizens against global catastrophic food failure.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-27"},"PeriodicalIF":7.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-targeted delivery system: a promising strategy of anthocyanin encapsulation for treating intestinal inflammation.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-07 DOI: 10.1080/10408398.2025.2458741
Hao Zhong, Xin Luo, Abdullah, Xiaofeng Liu, Muhammad Hussain, Rongfa Guan

Anthocyanins are natural flavonoids derived from plants, widely recognized for their health-promoting effects, specifically to treat inflammatory bowel disease (Crohn's disease and ulcerative colitis). However, certain limitations are associated with their use, including instability, low solubility and permeability, poor gastrointestinal digestion, and low bioavailability. In this review, nano-carriers (e.g., liposome, polymersome, exosome, halloysite nanotubes, dendrimer, and nano-niosome, etc.) were summarized as anthocyanins delivery vehicles to treat inflammatory bowel disease. Recent progress on emerging strategies involved surface functionalization, responsive release, magnetic orientation, and self-assembly aggregation to address intestinal inflammation through nano-carriers and potential mechanisms were discussed. Anthocyanins, water-soluble pigments linked by glycoside bonds have attracted attention to alleviate intestinal inflammation related diseases. Anthocyanins can address intestinal inflammation by exerting their health beneficial effects such as anti-oxidative, anti-inflammatory, regulating the intestinal flora, and promoting apoptosis. Moreover, nano-carriers were discussed as oral delivery system for maximized bioefficacy of anthocyanins and to address concerns related to their low solubility and permeability, poor gastrointestinal metabolism, and low bioavailability were discussed. A future perspective is proposed concerning anthocyanin-loaded nano-carriers, different strategies to improve their efficacy, and developing functional food to treat intestinal inflammation.

{"title":"Nano-targeted delivery system: a promising strategy of anthocyanin encapsulation for treating intestinal inflammation.","authors":"Hao Zhong, Xin Luo, Abdullah, Xiaofeng Liu, Muhammad Hussain, Rongfa Guan","doi":"10.1080/10408398.2025.2458741","DOIUrl":"https://doi.org/10.1080/10408398.2025.2458741","url":null,"abstract":"<p><p>Anthocyanins are natural flavonoids derived from plants, widely recognized for their health-promoting effects, specifically to treat inflammatory bowel disease (Crohn's disease and ulcerative colitis). However, certain limitations are associated with their use, including instability, low solubility and permeability, poor gastrointestinal digestion, and low bioavailability. In this review, nano-carriers (e.g., liposome, polymersome, exosome, halloysite nanotubes, dendrimer, and nano-niosome, etc.) were summarized as anthocyanins delivery vehicles to treat inflammatory bowel disease. Recent progress on emerging strategies involved surface functionalization, responsive release, magnetic orientation, and self-assembly aggregation to address intestinal inflammation through nano-carriers and potential mechanisms were discussed. Anthocyanins, water-soluble pigments linked by glycoside bonds have attracted attention to alleviate intestinal inflammation related diseases. Anthocyanins can address intestinal inflammation by exerting their health beneficial effects such as anti-oxidative, anti-inflammatory, regulating the intestinal flora, and promoting apoptosis. Moreover, nano-carriers were discussed as oral delivery system for maximized bioefficacy of anthocyanins and to address concerns related to their low solubility and permeability, poor gastrointestinal metabolism, and low bioavailability were discussed. A future perspective is proposed concerning anthocyanin-loaded nano-carriers, different strategies to improve their efficacy, and developing functional food to treat intestinal inflammation.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-22"},"PeriodicalIF":7.3,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barley fermentation on nutritional constituents: structural changes and structure-function correlations.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-07 DOI: 10.1080/10408398.2025.2461733
Yufeng He, Tao Liu, Danaè S Larsen, Yuexin Lei, Manchun Huang, Lin Zhu, Maria Daglia, Xiang Xiao

Over the past few years, the demand for healthy grains has become increasingly important. Barley is a basic material for food and animal feed, which is considered an excellent source of multiple nutrients. However, due to limitations in processing techniques, the nutritional attributes of barley have not been completely realized. The functional profile of barley nutrients can be effectively improved by fermentation, due in large to the structural alteration of barley nutrients. The current review outlines the structural changes of barley nutrients during fermentation and summarizes the potential mechanisms by which structural alteration occurs. Correlations between the nutrient structures and their nutritional properties are also discussed. In general, fermentation leads to decreased particle size and modified internal structures of macromolecular nutrients. Enzyme action, pH alterations and interactions between nutrient matrices may contribute to these structural alterations. Barley nutrients with modified structure exhibit enhanced health promoting functions and digestive characteristics, which will further contribute to the utilization of barley resources in the food industry.

{"title":"Barley fermentation on nutritional constituents: structural changes and structure-function correlations.","authors":"Yufeng He, Tao Liu, Danaè S Larsen, Yuexin Lei, Manchun Huang, Lin Zhu, Maria Daglia, Xiang Xiao","doi":"10.1080/10408398.2025.2461733","DOIUrl":"https://doi.org/10.1080/10408398.2025.2461733","url":null,"abstract":"<p><p>Over the past few years, the demand for healthy grains has become increasingly important. Barley is a basic material for food and animal feed, which is considered an excellent source of multiple nutrients. However, due to limitations in processing techniques, the nutritional attributes of barley have not been completely realized. The functional profile of barley nutrients can be effectively improved by fermentation, due in large to the structural alteration of barley nutrients. The current review outlines the structural changes of barley nutrients during fermentation and summarizes the potential mechanisms by which structural alteration occurs. Correlations between the nutrient structures and their nutritional properties are also discussed. In general, fermentation leads to decreased particle size and modified internal structures of macromolecular nutrients. Enzyme action, pH alterations and interactions between nutrient matrices may contribute to these structural alterations. Barley nutrients with modified structure exhibit enhanced health promoting functions and digestive characteristics, which will further contribute to the utilization of barley resources in the food industry.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-15"},"PeriodicalIF":7.3,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized nutrition: perspectives on challenges, opportunities, and guiding principles for data use and fusion.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-05 DOI: 10.1080/10408398.2025.2461237
Sharon M Donovan, Mariette Abrahams, Joshua C Anthony, Ying Bao, Maribel Barragan, Kate M Bermingham, Gil Blander, Anna-Sigrid Keck, Bruce Y Lee, Kristin M Nieman, Jose M Ordovas, Victor Penev, Machiel J Reinders, Kris Sollid, Sumeet Thosar, Barbara L Winters

Personalized nutrition (PN) delivers tailored dietary guidance by integrating health, lifestyle, and behavioral data to improve individual health outcomes. Recent technological advances have enhanced access to diverse data sources, yet challenges remain in collecting, integrating, and analyzing complex datasets. To address these, the Personalized Nutrition Initiative at Illinois organized a workshop titled "Personalized Nutrition Data: Challenges & Opportunities," which gathered experts to explore three essential data domains in PN: 1) health and biological, 2) social, behavioral, and environmental, and 3) consumer purchasing data. Discussions underscored the importance of cross-disciplinary collaboration to standardize data collection, enable secure data sharing, and develop data fusion techniques that respect privacy and build trust. Participants emphasized the need for representative datasets that include underserved populations, ensuring that PN services are accessible and equitable. Key principles for responsible data integration were proposed, alongside strategies to overcome barriers to effective data use. By addressing these challenges, PN can enhance health outcomes through precise, personalized recommendations tailored to diverse population needs.

{"title":"Personalized nutrition: perspectives on challenges, opportunities, and guiding principles for data use and fusion.","authors":"Sharon M Donovan, Mariette Abrahams, Joshua C Anthony, Ying Bao, Maribel Barragan, Kate M Bermingham, Gil Blander, Anna-Sigrid Keck, Bruce Y Lee, Kristin M Nieman, Jose M Ordovas, Victor Penev, Machiel J Reinders, Kris Sollid, Sumeet Thosar, Barbara L Winters","doi":"10.1080/10408398.2025.2461237","DOIUrl":"https://doi.org/10.1080/10408398.2025.2461237","url":null,"abstract":"<p><p>Personalized nutrition (PN) delivers tailored dietary guidance by integrating health, lifestyle, and behavioral data to improve individual health outcomes. Recent technological advances have enhanced access to diverse data sources, yet challenges remain in collecting, integrating, and analyzing complex datasets. To address these, the Personalized Nutrition Initiative at Illinois organized a workshop titled \"Personalized Nutrition Data: Challenges & Opportunities,\" which gathered experts to explore three essential data domains in PN: 1) health and biological, 2) social, behavioral, and environmental, and 3) consumer purchasing data. Discussions underscored the importance of cross-disciplinary collaboration to standardize data collection, enable secure data sharing, and develop data fusion techniques that respect privacy and build trust. Participants emphasized the need for representative datasets that include underserved populations, ensuring that PN services are accessible and equitable. Key principles for responsible data integration were proposed, alongside strategies to overcome barriers to effective data use. By addressing these challenges, PN can enhance health outcomes through precise, personalized recommendations tailored to diverse population needs.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-18"},"PeriodicalIF":7.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory mechanisms of the probiotic-targeted gut-liver axis for the alleviation of alcohol-related liver disease: a review. 以益生菌为目标的肠道-肝脏轴对缓解酒精相关肝病的调节机制:综述。
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-05 DOI: 10.1080/10408398.2025.2455954
Feiyu Yang, Xiangfei Li, Jing Sun, Xinyi Pang, Quancai Sun, Yingjian Lu

Alcohol abuse-triggered alcohol-related liver disease (ALD) has become as a global public health concern that substantially affects the well-being and clinical status of patients. Although modern medicine provides various treatments for ALD, their effectiveness is limited and can lead to adverse side effects. Probiotics have been employed to prevent, alleviate, and even treat ALD, with promising results. However, few comprehensive reviews are available on how they mitigate ALD by targeting the gut-liver axis. This review systematically clarifies the specific mediators of the gut-liver axis in healthy states. It also describes the alterations observed in ALD. Furthermore, this review thoroughly summarizes the underlying mechanisms through which probiotics act on the gut-liver axis to relieve ALD. It also discusses the current status and challenges faced in clinical research applications. Finally, we discuss the challenges and future prospects of using probiotics to treat ALD. This review improves our understanding of ALD and supports the development and application of probiotics that target the gut-liver axis for therapeutic use.

{"title":"Regulatory mechanisms of the probiotic-targeted gut-liver axis for the alleviation of alcohol-related liver disease: a review.","authors":"Feiyu Yang, Xiangfei Li, Jing Sun, Xinyi Pang, Quancai Sun, Yingjian Lu","doi":"10.1080/10408398.2025.2455954","DOIUrl":"https://doi.org/10.1080/10408398.2025.2455954","url":null,"abstract":"<p><p>Alcohol abuse-triggered alcohol-related liver disease (ALD) has become as a global public health concern that substantially affects the well-being and clinical status of patients. Although modern medicine provides various treatments for ALD, their effectiveness is limited and can lead to adverse side effects. Probiotics have been employed to prevent, alleviate, and even treat ALD, with promising results. However, few comprehensive reviews are available on how they mitigate ALD by targeting the gut-liver axis. This review systematically clarifies the specific mediators of the gut-liver axis in healthy states. It also describes the alterations observed in ALD. Furthermore, this review thoroughly summarizes the underlying mechanisms through which probiotics act on the gut-liver axis to relieve ALD. It also discusses the current status and challenges faced in clinical research applications. Finally, we discuss the challenges and future prospects of using probiotics to treat ALD. This review improves our understanding of ALD and supports the development and application of probiotics that target the gut-liver axis for therapeutic use.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-22"},"PeriodicalIF":7.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-05 DOI: 10.1080/10408398.2025.2459341
Vincent Owusu Kyei-Baffour, Akshay Kumar Vijaya, Aurelijus Burokas, Eric Banan-Mwine Daliri

Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of Lactobacillus, Bifidobacterium, Streptococcus, Escherichia, and Enterococcus species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.

{"title":"Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health.","authors":"Vincent Owusu Kyei-Baffour, Akshay Kumar Vijaya, Aurelijus Burokas, Eric Banan-Mwine Daliri","doi":"10.1080/10408398.2025.2459341","DOIUrl":"https://doi.org/10.1080/10408398.2025.2459341","url":null,"abstract":"<p><p>Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of <i>Lactobacillus</i>, <i>Bifidobacterium</i>, <i>Streptococcus</i>, <i>Escherichia</i>, and <i>Enterococcus</i> species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-20"},"PeriodicalIF":7.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overview: the food matrix and its role in the diet.
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-04 DOI: 10.1080/10408398.2025.2453074
Connie M Weaver, D Ian Givens

The food matrix which includes the physiochemical structure and interaction with chemical constituents is a focus of investigation that is revealing potentially important influences on diet and health. This paper, the first in an article collection titled, The Important Role of the Dairy Matrix in Diet and Health, serves as an introduction to the food matrix to put into context the subsequent articles specific to the matrix effects of dairy milk, cheese and yogurt on human health. This introductory article describes the effects of processing on the food matrix and implications for diet and health, examines the contribution of nutrients compared to whole foods and food patterns, and characterizes examples of the complexity of the food matrix including current controversies of dairy fat and ultra-processed foods. The gaps in knowledge and research identified in this overview may help guide researchers and funding entities moving forward. Current knowledge indicates that translating research on the food matrix to the consumer through recommendations for the intake of whole foods and food patterns is prudent at this time.

食物基质包括食物的生理化学结构以及与化学成分的相互作用,是研究的重点,揭示了食物基质对饮食和健康的潜在重要影响。本文是题为《乳制品基质在饮食和健康中的重要作用》的文章集中的第一篇文章,主要介绍食品基质,以帮助读者理解后续文章中专门论述牛奶、奶酪和酸奶的基质对人类健康影响的内容。这篇介绍性文章描述了加工过程对食物基质的影响以及对饮食和健康的影响,研究了营养素对整个食物和食物模式的贡献,并举例说明了食物基质的复杂性,包括目前对乳脂和超加工食品的争议。本综述中指出的知识和研究方面的差距可能有助于指导研究人员和资助实体向前迈进。目前的知识表明,通过建议摄入全食物和食物模式,将有关食物矩阵的研究成果转化为消费者的建议,是目前比较谨慎的做法。
{"title":"Overview: the food matrix and its role in the diet.","authors":"Connie M Weaver, D Ian Givens","doi":"10.1080/10408398.2025.2453074","DOIUrl":"https://doi.org/10.1080/10408398.2025.2453074","url":null,"abstract":"<p><p>The food matrix which includes the physiochemical structure and interaction with chemical constituents is a focus of investigation that is revealing potentially important influences on diet and health. This paper, the first in an article collection titled, The Important Role of the Dairy Matrix in Diet and Health, serves as an introduction to the food matrix to put into context the subsequent articles specific to the matrix effects of dairy milk, cheese and yogurt on human health. This introductory article describes the effects of processing on the food matrix and implications for diet and health, examines the contribution of nutrients compared to whole foods and food patterns, and characterizes examples of the complexity of the food matrix including current controversies of dairy fat and ultra-processed foods. The gaps in knowledge and research identified in this overview may help guide researchers and funding entities moving forward. Current knowledge indicates that translating research on the food matrix to the consumer through recommendations for the intake of whole foods and food patterns is prudent at this time.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-18"},"PeriodicalIF":7.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavonoids and their metal complexes as potential agents for diabetes mellitus with future perspectives. 黄酮类化合物及其金属复合物作为治疗糖尿病的潜在药物及未来展望。
IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-04 DOI: 10.1080/10408398.2025.2461238
Shuang Lv, Zhenbao Zhu, Hang Xiao

Type 2 diabetes mellitus (T2DM) is a global health burden, with hyperglycemia as the main hallmark. This review commences with a concise overview of the intricate mechanisms underlying glucose uptake and utilization in organisms. Notably, we emphasize that T2DM management strategies pivot on delaying carbohydrate digestion, augmenting insulin secretion, and enhancing insulin sensitivity in target tissues. Unfortunately, the drugs currently available in the market for the treatment of T2DM have unpleasant side effects, spurring an urgent quest for safer and more efficacious alternatives. Flavonoids, emerging as a promising class of bioactive compounds derived from plants, offer a multi-faceted approach to diabetes treatment. Specifically, they potently inhibit enzymes such as α-amylase, α-glucosidase, dipeptidyl peptidase-4 (DPP-4), glycogen phosphorylase (GP) and protein-tyrosine phosphatase-1B (PTP1B). Through an in-depth analysis, this review not only summarizes these inhibitory actions but also establishes the structure-activity relationship (SAR), providing a blueprint for rational drug design. However, the clinical translation of flavonoids has been hampered by their suboptimal water solubility and bioavailability, attributable to the characteristic carbonyl and hydroxyl groups. Ingeniously, this chemical quirk has been harnessed to engineer metal chelates, which exhibit enhanced pharmacokinetic profiles. Herein, we offer an exhaustive overview of the latest advancements in flavonoid metal complexes research, spotlighting their potential as next-generation diabetes therapeutics. Available data are poised to galvanize the development of novel flavonoid derivatives, be it as potent drugs or functional foods, for combating T2DM.

{"title":"Flavonoids and their metal complexes as potential agents for diabetes mellitus with future perspectives.","authors":"Shuang Lv, Zhenbao Zhu, Hang Xiao","doi":"10.1080/10408398.2025.2461238","DOIUrl":"https://doi.org/10.1080/10408398.2025.2461238","url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is a global health burden, with hyperglycemia as the main hallmark. This review commences with a concise overview of the intricate mechanisms underlying glucose uptake and utilization in organisms. Notably, we emphasize that T2DM management strategies pivot on delaying carbohydrate digestion, augmenting insulin secretion, and enhancing insulin sensitivity in target tissues. Unfortunately, the drugs currently available in the market for the treatment of T2DM have unpleasant side effects, spurring an urgent quest for safer and more efficacious alternatives. Flavonoids, emerging as a promising class of bioactive compounds derived from plants, offer a multi-faceted approach to diabetes treatment. Specifically, they potently inhibit enzymes such as α-amylase, α-glucosidase, dipeptidyl peptidase-4 (DPP-4), glycogen phosphorylase (GP) and protein-tyrosine phosphatase-1B (PTP1B). Through an in-depth analysis, this review not only summarizes these inhibitory actions but also establishes the structure-activity relationship (SAR), providing a blueprint for rational drug design. However, the clinical translation of flavonoids has been hampered by their suboptimal water solubility and bioavailability, attributable to the characteristic carbonyl and hydroxyl groups. Ingeniously, this chemical quirk has been harnessed to engineer metal chelates, which exhibit enhanced pharmacokinetic profiles. Herein, we offer an exhaustive overview of the latest advancements in flavonoid metal complexes research, spotlighting their potential as next-generation diabetes therapeutics. Available data are poised to galvanize the development of novel flavonoid derivatives, be it as potent drugs or functional foods, for combating T2DM.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-31"},"PeriodicalIF":7.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical reviews in food science and nutrition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1