The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.
{"title":"The effect of maternal dietary polyphenol consumption on offspring metabolism.","authors":"Jing Zhou, Yaolin Ren, Jie Yu, Yuan Zeng, Jing Ren, Yifan Wu, Qian Zhang, Xinhua Xiao","doi":"10.1080/10408398.2024.2442539","DOIUrl":"https://doi.org/10.1080/10408398.2024.2442539","url":null,"abstract":"<p><p>The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-18"},"PeriodicalIF":7.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><strong>Background: </strong>The current knowledge about the efficacy and safety of dietary polyphenol administration in patients with polycystic ovarian syndrome (PCOS) is divergent.</p><p><strong>Objective: </strong>To evaluate the pooled efficacy and safety of dietary polyphenol administration in the treatment of patients with PCOS.</p><p><strong>Methods: </strong>The pubmed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for randomized controlled trials (RCTs) of dietary polyphenol administration for the treatment of PCOS. English-language RCTs involving adults with PCOS were thoroughly searched in electronic databases from the time of their establishment to May 2024. Random-effects models were used because heterogeneity was derived from differences in intervention materials and study duration, among other confounding factors. The effect sizes of the outcomes in the pooled analysis are expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs).</p><p><strong>Results: </strong>A total of 15 RCTs involving 934 patients were finally included. Compared with control treatments, dietary polyphenol administration significantly reduced luteinizing hormone (LH) (WMD: -0.85, 95% CI [-1.32 to -0.38], <i>p</i> = 0.00), and prolactin levels (WMD: -3.73, 95% CI [-6.73 to -0.74], <i>p</i> = 0.01). Dietary polyphenol administration significantly reduced insulin levels (WMD: -0.85, 95% CI [-1.32 to -0.38], <i>p</i> = 0.00). Regarding lipid metabolism, dietary polyphenol administration only reduced triglyceride levels (WMD: -8.96, 95% CI [-16.44 to -1.49], <i>p</i> = 0.02). Malondialdehyde (MDA) (WMD: -0.65, 95% CI [-0.68 to -0.62], <i>p</i> = 0.00), tumor necrosis factor (TNF-α) (WMD: -1.39, 95% CI [-2.41 to -0.37], <i>p</i> = 0.01) concentrations were significantly reduced by dietary polyphenol administration. None of the interventions significantly affected weight, body mass index (BMI), waist circumference (WC), homeostatic model-insulin resistance (HOMA-IR), fasting blood sugar (FBS), glycated hemoglobin (HBA1c), follicle-stimulating hormone (FSH), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E2), anti-Müllerian hormone (AMH), quantitative insulin-sensitivity check index (QUICKI), sex hormone-binding globulin (SHBG), total antioxidant capacity (TAC), C-peptide, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, cholesterol/HDL, acne score, thyroid-stimulating hormone (TSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) or alkaline phosphatase (ALP).</p><p><strong>Conclusion: </strong>Dietary polyphenol administration was efficacious in patients with PCOS in our study. This review might provide new insight into the treatment of patients with PCOS and the potential of daily polyphenol supplementation in patients with PCOS. Nevertheless, these results must be interpreted carefully as a result of the heterogeneity and ris
背景:目前关于多囊卵巢综合征(PCOS)患者膳食多酚的疗效和安全性的认识存在分歧。目的:评价膳食多酚治疗多囊卵巢综合征的综合疗效和安全性。方法:检索pubmed、Embase、Scopus、Cochrane Library和Web of Science数据库,检索膳食多酚治疗PCOS的随机对照试验(rct)。对涉及成人多囊卵巢综合征的英语随机对照试验从建立之日起至2024年5月在电子数据库中进行全面检索。使用随机效应模型是因为异质性来源于干预材料和研究持续时间的差异,以及其他混杂因素。合并分析结果的效应量用加权平均差(wmd)和95%置信区间(ci)表示。结果:最终纳入15项rct,共934例患者。与对照组相比,饲粮多酚处理显著降低了黄体生成素(LH) (WMD: -0.85, 95% CI [-1.32 ~ -0.38], p = 0.00)和催乳素水平(WMD: -3.73, 95% CI [-6.73 ~ -0.74], p = 0.01)。膳食多酚可显著降低胰岛素水平(WMD: -0.85, 95% CI [-1.32 ~ -0.38], p = 0.00)。在脂质代谢方面,膳食多酚只降低了甘油三酯水平(WMD: -8.96, 95% CI[-16.44至-1.49],p = 0.02)。多酚组丙二醛(MDA) (WMD: -0.65, 95% CI [-0.68 ~ -0.62], p = 0.00)、肿瘤坏死因子(TNF-α) (WMD: -1.39, 95% CI [-2.41 ~ -0.37], p = 0.01)浓度显著降低。所有干预措施均未显著影响体重、体重指数(BMI)、腰围(WC)、稳态模型胰岛素抵抗(HOMA-IR)、空腹血糖(FBS)、糖化血红蛋白(HBA1c)、促卵泡激素(FSH)、睾酮(T)、脱氢表雄酮(DHEA)、雌二醇(E2)、抗勒氏激素(AMH)、胰岛素定量敏感性检查指数(QUICKI)、性激素结合球蛋白(SHBG)、总抗氧化能力(TAC)、c肽、c反应蛋白(CRP)、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)、胆固醇、胆固醇/HDL、痤疮评分、促甲状腺激素(TSH)、天冬氨酸转氨酶(AST)、丙氨酸转氨酶(ALT)或碱性磷酸酶(ALP)。结论:膳食多酚治疗多囊卵巢综合征是有效的。这一综述可能为多囊卵巢综合征患者的治疗和多囊卵巢综合征患者每日补充多酚的潜力提供新的见解。然而,由于研究的异质性和偏倚风险,这些结果必须仔细解释,我们期望将来会进行更多高质量的随机对照试验来评估膳食多酚给药对PCOS患者的疗效和安全性。系统评价注册:CRD42024498494。
{"title":"Efficacy and safety of dietary polyphenol administration as assessed by hormonal, glycolipid metabolism, inflammation and oxidative stress parameters in patients with PCOS: a meta-analysis and systematic review.","authors":"Xian Jian, Chen Shi, Tongtong Xu, Boya Liu, Liyuan Zhou, Lili Jiang, Kuiran Liu","doi":"10.1080/10408398.2024.2440063","DOIUrl":"https://doi.org/10.1080/10408398.2024.2440063","url":null,"abstract":"<p><strong>Background: </strong>The current knowledge about the efficacy and safety of dietary polyphenol administration in patients with polycystic ovarian syndrome (PCOS) is divergent.</p><p><strong>Objective: </strong>To evaluate the pooled efficacy and safety of dietary polyphenol administration in the treatment of patients with PCOS.</p><p><strong>Methods: </strong>The pubmed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for randomized controlled trials (RCTs) of dietary polyphenol administration for the treatment of PCOS. English-language RCTs involving adults with PCOS were thoroughly searched in electronic databases from the time of their establishment to May 2024. Random-effects models were used because heterogeneity was derived from differences in intervention materials and study duration, among other confounding factors. The effect sizes of the outcomes in the pooled analysis are expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs).</p><p><strong>Results: </strong>A total of 15 RCTs involving 934 patients were finally included. Compared with control treatments, dietary polyphenol administration significantly reduced luteinizing hormone (LH) (WMD: -0.85, 95% CI [-1.32 to -0.38], <i>p</i> = 0.00), and prolactin levels (WMD: -3.73, 95% CI [-6.73 to -0.74], <i>p</i> = 0.01). Dietary polyphenol administration significantly reduced insulin levels (WMD: -0.85, 95% CI [-1.32 to -0.38], <i>p</i> = 0.00). Regarding lipid metabolism, dietary polyphenol administration only reduced triglyceride levels (WMD: -8.96, 95% CI [-16.44 to -1.49], <i>p</i> = 0.02). Malondialdehyde (MDA) (WMD: -0.65, 95% CI [-0.68 to -0.62], <i>p</i> = 0.00), tumor necrosis factor (TNF-α) (WMD: -1.39, 95% CI [-2.41 to -0.37], <i>p</i> = 0.01) concentrations were significantly reduced by dietary polyphenol administration. None of the interventions significantly affected weight, body mass index (BMI), waist circumference (WC), homeostatic model-insulin resistance (HOMA-IR), fasting blood sugar (FBS), glycated hemoglobin (HBA1c), follicle-stimulating hormone (FSH), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E2), anti-Müllerian hormone (AMH), quantitative insulin-sensitivity check index (QUICKI), sex hormone-binding globulin (SHBG), total antioxidant capacity (TAC), C-peptide, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, cholesterol/HDL, acne score, thyroid-stimulating hormone (TSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) or alkaline phosphatase (ALP).</p><p><strong>Conclusion: </strong>Dietary polyphenol administration was efficacious in patients with PCOS in our study. This review might provide new insight into the treatment of patients with PCOS and the potential of daily polyphenol supplementation in patients with PCOS. Nevertheless, these results must be interpreted carefully as a result of the heterogeneity and ris","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-25"},"PeriodicalIF":7.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1080/10408398.2024.2437573
Ecem Yüksel, Remco Kort, Alphons G J Voragen
Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.
{"title":"Structure and degradation dynamics of dietary pectin.","authors":"Ecem Yüksel, Remco Kort, Alphons G J Voragen","doi":"10.1080/10408398.2024.2437573","DOIUrl":"https://doi.org/10.1080/10408398.2024.2437573","url":null,"abstract":"<p><p>Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-20"},"PeriodicalIF":7.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1080/10408398.2024.2442064
Lei Wang, Chen Cheng, Xiao Yu, Liang Guo, Xia Wan, Jiqu Xu, Xia Xiang, Jing Yang, Jingxuan Kang, Qianchun Deng
N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) are essential for physiological requirements and disease prevention throughout life but are not adequately consumed worldwide. Dietary supplementation with plant-derived α-linolenic acid (ALA) has the potential to rebalance the fatty acid profile and enhance health benefits but faces challenges such as high β-oxidation consumption, low hepatic conversion efficiency, and high oxidative susceptibility under stress. This review focuses on the metabolic fate and potential regulatory targets of ALA-containing lipids in vivo, specifically the pathway from the gastrointestinal tract to the lymph, blood circulation, and liver. We propose a hypothesis that positively regulates the conversion of ALA into n-3 LCPUFAs based on the model of "fast" or "slow" absorption, transport, and hepatic metabolic fate. Furthermore, the potential effects of dietary nutrients on the metabolic conversion of ALA into n-3 LCPUFAs are discussed. The conversion of ALA is differentially regulated by structured lipids, phospholipids, other lipids, carbohydrates, specific proteins, amino acids, polyphenols, vitamins, and minerals. Future research should focus on designing a steady-state and precise delivery system for ALA, coupled with specific nutrients or phytochemicals, to effectively improve its metabolic conversion and ultimately achieve synergistic regulation of nutrition and health effects.
{"title":"Conversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acids: bioavailability and dietary regulation.","authors":"Lei Wang, Chen Cheng, Xiao Yu, Liang Guo, Xia Wan, Jiqu Xu, Xia Xiang, Jing Yang, Jingxuan Kang, Qianchun Deng","doi":"10.1080/10408398.2024.2442064","DOIUrl":"https://doi.org/10.1080/10408398.2024.2442064","url":null,"abstract":"<p><p>N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) are essential for physiological requirements and disease prevention throughout life but are not adequately consumed worldwide. Dietary supplementation with plant-derived α-linolenic acid (ALA) has the potential to rebalance the fatty acid profile and enhance health benefits but faces challenges such as high β-oxidation consumption, low hepatic conversion efficiency, and high oxidative susceptibility under stress. This review focuses on the metabolic fate and potential regulatory targets of ALA-containing lipids <i>in vivo</i>, specifically the pathway from the gastrointestinal tract to the lymph, blood circulation, and liver. We propose a hypothesis that positively regulates the conversion of ALA into n-3 LCPUFAs based on the model of \"fast\" or \"slow\" absorption, transport, and hepatic metabolic fate. Furthermore, the potential effects of dietary nutrients on the metabolic conversion of ALA into n-3 LCPUFAs are discussed. The conversion of ALA is differentially regulated by structured lipids, phospholipids, other lipids, carbohydrates, specific proteins, amino acids, polyphenols, vitamins, and minerals. Future research should focus on designing a steady-state and precise delivery system for ALA, coupled with specific nutrients or phytochemicals, to effectively improve its metabolic conversion and ultimately achieve synergistic regulation of nutrition and health effects.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-33"},"PeriodicalIF":7.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1080/10408398.2024.2439036
Vitor Geniselli da Silva, Jacqueline Nicole Tonkie, Nicole Clémence Roy, Nick William Smith, Clare Wall, Marlena Cathorina Kruger, Jane Adair Mullaney, Warren Charles McNabb
The transition from breastmilk to solid foods (weaning) is a decisive stage for the development of the colonic microbiota. However, little is known about how complementary foods influence the composition and function of the colonic microbiota in infants. This systematic review collected evidence of the effect of individual foods on the fecal microbiota of weaning infants (4-12 months old) using five databases: PubMed, CENTRAL, Scopus, Web of Science, and ScienceDirect. A total of 3625 records were examined, and seven randomized clinical trials met the review's eligibility criteria. Altogether, 983 participants were enrolled, and plant-based foods, meats, and dairy products were used as interventions. Wholegrain cereal increased the fecal abundance of the order Bacteroidales in the two included studies. Pureed beef increased the fecal abundances of the genus Bacteroides and the Clostridium XIVa group, as well as microbial richness in two of the three included studies. However, the conclusions of this review are limited by the small number of studies included. No conclusions could be drawn about the impact of complementary foods on fecal metabolites. Further clinical trials assessing the effect of dietary interventions on both fecal microbial composition and function are needed to fill this knowledge gap in infant nutrition.
从母乳到固体食物(断奶)的过渡是结肠微生物群发育的决定性阶段。然而,关于辅食如何影响婴儿结肠微生物群的组成和功能,人们知之甚少。本系统综述收集了个别食物对断奶婴儿(4-12个月)粪便微生物群影响的证据,使用了五个数据库:PubMed、CENTRAL、Scopus、Web of Science和ScienceDirect。共检查了3625份记录,其中7项随机临床试验符合审查的资格标准。总共有983名参与者被招募,植物性食物、肉类和乳制品被用作干预措施。在两项纳入的研究中,全麦谷物增加了粪便中拟杆菌门的丰度。在三个纳入的研究中,牛肉泥增加了拟杆菌属和XIVa梭菌群的粪便丰度,以及微生物丰富度。然而,由于纳入的研究数量较少,本综述的结论受到限制。目前还没有关于辅食对粪便代谢产物影响的结论。需要进一步的临床试验来评估饮食干预对粪便微生物组成和功能的影响,以填补婴儿营养方面的这一知识空白。
{"title":"The effect of complementary foods on the colonic microbiota of weaning infants: a systematic review.","authors":"Vitor Geniselli da Silva, Jacqueline Nicole Tonkie, Nicole Clémence Roy, Nick William Smith, Clare Wall, Marlena Cathorina Kruger, Jane Adair Mullaney, Warren Charles McNabb","doi":"10.1080/10408398.2024.2439036","DOIUrl":"https://doi.org/10.1080/10408398.2024.2439036","url":null,"abstract":"<p><p>The transition from breastmilk to solid foods (weaning) is a decisive stage for the development of the colonic microbiota. However, little is known about how complementary foods influence the composition and function of the colonic microbiota in infants. This systematic review collected evidence of the effect of individual foods on the fecal microbiota of weaning infants (4-12 months old) using five databases: PubMed, CENTRAL, Scopus, Web of Science, and ScienceDirect. A total of 3625 records were examined, and seven randomized clinical trials met the review's eligibility criteria. Altogether, 983 participants were enrolled, and plant-based foods, meats, and dairy products were used as interventions. Wholegrain cereal increased the fecal abundance of the order Bacteroidales in the two included studies. Pureed beef increased the fecal abundances of the genus <i>Bacteroides</i> and the <i>Clostridium</i> XIVa group, as well as microbial richness in two of the three included studies. However, the conclusions of this review are limited by the small number of studies included. No conclusions could be drawn about the impact of complementary foods on fecal metabolites. Further clinical trials assessing the effect of dietary interventions on both fecal microbial composition and function are needed to fill this knowledge gap in infant nutrition.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-16"},"PeriodicalIF":7.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Collagen, recognized as a fundamental protein present in biological tissues and structures, plays a crucial role in maintaining organ structure and tissue integrity. Microbial collagenases are specific for the degradation of collagen. The specific three-stranded helix region of natural collagen can be identified and hydrolyzed by microbial collagenases under physiological conditions, producing collagen peptides with high physiological activity. This article describes microbial collagenases, providing an introduction to the structure, physiological characteristics, factors affecting enzyme activity, and hydrolysis mechanisms of various classes of these enzymes. Microbial collagenase is the most widely used class of collagenase and plays an important role in all aspects of human life, and various applications of microbial collagenases in food industry, healthcare and environmental protection will be addressed in this review. In addition to its beneficial functions, microbial collagenase can exist as a virulence factor for pathogenic bacteria, and enhanced research on its structure and mechanism of action will help us to investigate more effective inhibitors as well as therapeutic agents and tools for the treatment of the corresponding diseases. Finally, this review critically analyses existing challenges and outlines prospects for future advancements in the field.
{"title":"Microbial collagenases: an updated review on their characterization, degradation mechanisms, and current applications.","authors":"Boya Gao, Chunming Tan, Dumila Roshani, Ruoqiu Yang, Zhihao Lv, Pinglan Li, Nan Shang","doi":"10.1080/10408398.2024.2438408","DOIUrl":"https://doi.org/10.1080/10408398.2024.2438408","url":null,"abstract":"<p><p>Collagen, recognized as a fundamental protein present in biological tissues and structures, plays a crucial role in maintaining organ structure and tissue integrity. Microbial collagenases are specific for the degradation of collagen. The specific three-stranded helix region of natural collagen can be identified and hydrolyzed by microbial collagenases under physiological conditions, producing collagen peptides with high physiological activity. This article describes microbial collagenases, providing an introduction to the structure, physiological characteristics, factors affecting enzyme activity, and hydrolysis mechanisms of various classes of these enzymes. Microbial collagenase is the most widely used class of collagenase and plays an important role in all aspects of human life, and various applications of microbial collagenases in food industry, healthcare and environmental protection will be addressed in this review. In addition to its beneficial functions, microbial collagenase can exist as a virulence factor for pathogenic bacteria, and enhanced research on its structure and mechanism of action will help us to investigate more effective inhibitors as well as therapeutic agents and tools for the treatment of the corresponding diseases. Finally, this review critically analyses existing challenges and outlines prospects for future advancements in the field.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-25"},"PeriodicalIF":7.3,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The structural molecules and conformational variations of soybean β-conglycinin/glycinin are crucial in defining the characteristics of protein-based foods. Recently, significant attention has been focused on the characteristics of soybean β-conglycinin/glycinin across various fields, particularly their structure and application. The research contributes to expanding the application fields of soybean protein-related component in food industry. This research generally concerned on, but not limited to, the novel substitution of animal-originated foods based on globulins and the deeper precising protein nutrition support. Furthermore, the innovative applications and future development of soybean globulins are presented, focusing on plant-based substitutes and advanced materials. This paper provides a comprehensive review of soybean β-conglycinin/glycinin, focusing on structural characteristics, techno-functionalities, innovation applications, and future prospects, supported by diverse citation and analyses. Additionally, the article introduces various methods for modifying soybean globulins, including physical, chemical, and biological treatments. Furthermore, the innovative applications and future development of soybean globulins are presented, focusing on plant-based substitutes and advanced materials. Despite extensive discussion on globulin applications in diverse food forms, the discourse on their flavor and safety is insufficient. Addressing these limitations is essential for a comprehensive understanding and effective utilization of soybean globulins.
{"title":"Structural characteristics, techno-functionalities, innovation applications and future prospects of soybean β-conglycinin/glycinin: a comprehensive review.","authors":"Zhen Yang, Dongze Li, Liang Chen, Weimin Zhang, Lianzhou Jiang, Zhaoxian Huang, Tian Tian","doi":"10.1080/10408398.2024.2440601","DOIUrl":"https://doi.org/10.1080/10408398.2024.2440601","url":null,"abstract":"<p><p>The structural molecules and conformational variations of soybean β-conglycinin/glycinin are crucial in defining the characteristics of protein-based foods. Recently, significant attention has been focused on the characteristics of soybean β-conglycinin/glycinin across various fields, particularly their structure and application. The research contributes to expanding the application fields of soybean protein-related component in food industry. This research generally concerned on, but not limited to, the novel substitution of animal-originated foods based on globulins and the deeper precising protein nutrition support. Furthermore, the innovative applications and future development of soybean globulins are presented, focusing on plant-based substitutes and advanced materials. This paper provides a comprehensive review of soybean β-conglycinin/glycinin, focusing on structural characteristics, techno-functionalities, innovation applications, and future prospects, supported by diverse citation and analyses. Additionally, the article introduces various methods for modifying soybean globulins, including physical, chemical, and biological treatments. Furthermore, the innovative applications and future development of soybean globulins are presented, focusing on plant-based substitutes and advanced materials. Despite extensive discussion on globulin applications in diverse food forms, the discourse on their flavor and safety is insufficient. Addressing these limitations is essential for a comprehensive understanding and effective utilization of soybean globulins.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-18"},"PeriodicalIF":7.3,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acrylamide (AA), a compound formed during the thermal processing of high-carbohydrate foods, has been implicated in the onset and progression of neurodegenerative diseases. An increasing number of reports support that gut microbiota plays a significant role in brain function and diseases, suggesting it may act as a mediator between AA exposure and the development of neurodegenerative diseases. Available studies have shown that AA intake affects the composition of the gut microbiota and the integrity of the intestinal barrier, both of which are often thought to be associated with the pathogenesis of neurodegenerative diseases, given the numerous evidences linking gut microbiota with the brain. Based on the current understanding, this paper discusses that AA induces the onset and progression of neurodegenerative diseases by disrupting the composition of the gut microbiota and the structure of the intestinal barrier. Furthermore, it explores the interaction between probiotics and AA exposure, as well as the potential for polysaccharides and polyphenols to improve the gut microenvironment, which provides novel perspectives on modulating the neurodegenerative diseases caused by AA exposure through diet.
丙烯酰胺(AA)是一种在高碳水化合物食品热加工过程中形成的化合物,与神经退行性疾病的发生和发展有关。越来越多的报告证实,肠道微生物群在大脑功能和疾病中发挥着重要作用,这表明它可能是 AA 暴露与神经退行性疾病发生之间的媒介。现有研究表明,AA 摄入会影响肠道微生物群的组成和肠道屏障的完整性,而这两者通常被认为与神经退行性疾病的发病机制有关,因为有大量证据表明肠道微生物群与大脑有关。基于目前的认识,本文讨论了 AA 通过破坏肠道微生物群的组成和肠道屏障的结构,诱发神经退行性疾病的发生和发展。此外,本文还探讨了益生菌与 AA 暴露之间的相互作用,以及多糖和多酚改善肠道微环境的潜力,从而为通过饮食调节 AA 暴露引起的神经退行性疾病提供了新的视角。
{"title":"The relationship between acrylamide and neurodegenerative diseases: gut microbiota as a new intermediate cue.","authors":"Xinrui Xu, Siyu Wei, Mengyi Lin, Fang Chen, Xin Zhang, Yuchen Zhu","doi":"10.1080/10408398.2024.2440602","DOIUrl":"https://doi.org/10.1080/10408398.2024.2440602","url":null,"abstract":"<p><p>Acrylamide (AA), a compound formed during the thermal processing of high-carbohydrate foods, has been implicated in the onset and progression of neurodegenerative diseases. An increasing number of reports support that gut microbiota plays a significant role in brain function and diseases, suggesting it may act as a mediator between AA exposure and the development of neurodegenerative diseases. Available studies have shown that AA intake affects the composition of the gut microbiota and the integrity of the intestinal barrier, both of which are often thought to be associated with the pathogenesis of neurodegenerative diseases, given the numerous evidences linking gut microbiota with the brain. Based on the current understanding, this paper discusses that AA induces the onset and progression of neurodegenerative diseases by disrupting the composition of the gut microbiota and the structure of the intestinal barrier. Furthermore, it explores the interaction between probiotics and AA exposure, as well as the potential for polysaccharides and polyphenols to improve the gut microenvironment, which provides novel perspectives on modulating the neurodegenerative diseases caused by AA exposure through diet.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-13"},"PeriodicalIF":7.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1080/10408398.2024.2436139
Xiaoyu Bao, Jianping Wu
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
{"title":"Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of <i>Helicobacter pylori</i>, <i>Salmonella enterica</i>, <i>Clostridium difficile</i>, and diarrheagenic <i>Escherichia coli</i>.","authors":"Xiaoyu Bao, Jianping Wu","doi":"10.1080/10408398.2024.2436139","DOIUrl":"https://doi.org/10.1080/10408398.2024.2436139","url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including <i>Helicobacter pylori</i>, <i>Salmonella enterica</i>, <i>Clostridium difficile</i>, and three key diarrheagenic <i>Escherichia coli</i> (i.e., enterotoxigenic <i>E. coli</i>, enteropathogenic <i>E. coli</i>, and enterohemorrhagic <i>E. coli</i>). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-46"},"PeriodicalIF":7.3,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1080/10408398.2024.2439055
Rita El Hajj, Nathalie Estephan
Honey analysis plays a crucial role in ensuring its quality, authenticity, and compliance with regulatory standards. Traditional methods for honey analysis are often time-consuming, labor-intensive, and require complex sample preparation. Infrared spectroscopy is used in the food sector as a fast and reliable technique for the analysis of food. Multivariate analysis applied to infrared spectroscopy has proved to be effective in analyzing honey. In this paper, recently published studies using mid- and near- infrared spectroscopy for the analysis of honey will be reviewed. Honey analysis covers the following objectives: the determination of the physiochemical properties, the determination of the antioxidant activity, the detection of adulteration, the determination of 5-(hydroxymethyl) furfural (HMF) and diastase activity, and the determination of the botanical and geographical origins. A summary of the basic principles of infrared spectroscopy is presented. Different data preprocessing techniques are described. Moreover, this article emphasizes the wide application of chemometrics or multivariate analysis tools for data treatment.
{"title":"Advances in infrared spectroscopy and chemometrics for honey analysis: a comprehensive review.","authors":"Rita El Hajj, Nathalie Estephan","doi":"10.1080/10408398.2024.2439055","DOIUrl":"https://doi.org/10.1080/10408398.2024.2439055","url":null,"abstract":"<p><p>Honey analysis plays a crucial role in ensuring its quality, authenticity, and compliance with regulatory standards. Traditional methods for honey analysis are often time-consuming, labor-intensive, and require complex sample preparation. Infrared spectroscopy is used in the food sector as a fast and reliable technique for the analysis of food. Multivariate analysis applied to infrared spectroscopy has proved to be effective in analyzing honey. In this paper, recently published studies using mid- and near- infrared spectroscopy for the analysis of honey will be reviewed. Honey analysis covers the following objectives: the determination of the physiochemical properties, the determination of the antioxidant activity, the detection of adulteration, the determination of 5-(hydroxymethyl) furfural (HMF) and diastase activity, and the determination of the botanical and geographical origins. A summary of the basic principles of infrared spectroscopy is presented. Different data preprocessing techniques are described. Moreover, this article emphasizes the wide application of chemometrics or multivariate analysis tools for data treatment.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-14"},"PeriodicalIF":7.3,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}