Thermal treatment of food may undergo Maillard reactions and produce harmful substances, e.g., advanced glycation end products (AGEs). Current studies show different results about the effects of dietary AGE intake on the biomarkers of type 2 diabetes mellitus (T2DM). Therefore, this work conducted a systematic review and meta-analysis to explore the effect of dietary AGE intake on the biomarkers of T2DM, the available evidence, and the bias of this evidence. This meta-analysis focused on the association between high AGE intake and fasting plasma glucose, fasting plasma insulin, HbA1c, and HOMA-IR. Thirteen parallel studies and 4 randomized crossover studies were finally included. In the pooled analysis, fasting glucose (SMD: 0.98; 95% CI: 0.23, 1.73; p = .011), fasting insulin (SMD: 1.44; 95% CI: 0.63, 2.25; p < .01), and HOMA-IR (SMD: 1.47; 95% CI: 0.59, 2.34; p < .01) significantly increased after dietary intake with high AGEs. In the subgroup analyses, high-AGE diets and healthy participants were associated with changes in the biomarkers of T2DM. Taken together, the intake of high dietary AGE was related to the development of T2DM.
食物经热处理后可能会发生马氏反应并产生有害物质,如高级糖化终产物(AGEs)。目前的研究显示,膳食 AGE 摄入量对 2 型糖尿病(T2DM)生物标志物的影响存在不同结果。因此,本研究进行了系统回顾和荟萃分析,以探讨膳食 AGE 摄入量对 T2DM 生物标志物的影响、现有证据以及这些证据的偏差。这项荟萃分析的重点是高 AGE 摄入量与空腹血浆葡萄糖、空腹血浆胰岛素、HbA1c 和 HOMA-IR 之间的关系。最终纳入了 13 项平行研究和 4 项随机交叉研究。在汇总分析中,空腹血糖(SMD:0.98;95% CI:0.23,1.73;p = .011)、空腹胰岛素(SMD:1.44;95% CI:0.63,2.25;p p
{"title":"Effect of dietary intake of advanced glycation end products on biomarkers of type 2 diabetes: a systematic review and meta-analysis.","authors":"Xiaoxue Lu, Rongrong Ma, Jinling Zhan, Xiaohua Pan, Chang Liu, Shuang Zhang, Yaoqi Tian","doi":"10.1080/10408398.2024.2407894","DOIUrl":"https://doi.org/10.1080/10408398.2024.2407894","url":null,"abstract":"<p><p>Thermal treatment of food may undergo Maillard reactions and produce harmful substances, e.g., advanced glycation end products (AGEs). Current studies show different results about the effects of dietary AGE intake on the biomarkers of type 2 diabetes mellitus (T2DM). Therefore, this work conducted a systematic review and meta-analysis to explore the effect of dietary AGE intake on the biomarkers of T2DM, the available evidence, and the bias of this evidence. This meta-analysis focused on the association between high AGE intake and fasting plasma glucose, fasting plasma insulin, HbA1c, and HOMA-IR. Thirteen parallel studies and 4 randomized crossover studies were finally included. In the pooled analysis, fasting glucose (SMD: 0.98; 95% CI: 0.23, 1.73; <i>p</i> = .011), fasting insulin (SMD: 1.44; 95% CI: 0.63, 2.25; <i>p</i> < .01), and HOMA-IR (SMD: 1.47; 95% CI: 0.59, 2.34; <i>p</i> < .01) significantly increased after dietary intake with high AGEs. In the subgroup analyses, high-AGE diets and healthy participants were associated with changes in the biomarkers of T2DM. Taken together, the intake of high dietary AGE was related to the development of T2DM.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-10"},"PeriodicalIF":7.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-22DOI: 10.1080/10408398.2024.2406485
Niu Yun, Fan Yingrun, Wang Xuefeng, Qiu Minghua, Fan Jiangping
Chlorogenic acid (CGA) that exhibits various bioactivities holds promise as a natural and safe medicinal agent or food supplement for promoting human health. However, the direct formulation for treatment is severely limited by its low water solubility, poor bioavailability, low plasma stability, and side effects caused by high doses. Fortunately, nanotechnology is widely applied for drug delivery to overcome the partial disadvantages of traditional drug molecules or naturally active components. The properties of CGA containing multiple hydroxyl groups as a green reductant and stabilizer have made the development of CGA-loaded nanomaterials possible. In this review, recent advancements in the design of CGA-loaded nanomaterials based on organic or inorganic nanomaterials were discussed, and the positive effects of nanomaterials on the release properties of active molecules and their targeted distribution in biological systems were indicated. These nanomaterials enhance the physiological activity of CGA in the treatment of various diseases. Moreover, in the field of food, CGA-loaded nanocomposites have been found to optimize the mechanical properties of nano-food packaging, leading to an extended shelf life of food products. The findings of this review provide a valuable foundation and reference for the development of novel CGA-loaded nanomedicines and nano-food packaging.
{"title":"Advances in chlorogenic acid derived nanomaterials: designs and applications.","authors":"Niu Yun, Fan Yingrun, Wang Xuefeng, Qiu Minghua, Fan Jiangping","doi":"10.1080/10408398.2024.2406485","DOIUrl":"https://doi.org/10.1080/10408398.2024.2406485","url":null,"abstract":"<p><p>Chlorogenic acid (CGA) that exhibits various bioactivities holds promise as a natural and safe medicinal agent or food supplement for promoting human health. However, the direct formulation for treatment is severely limited by its low water solubility, poor bioavailability, low plasma stability, and side effects caused by high doses. Fortunately, nanotechnology is widely applied for drug delivery to overcome the partial disadvantages of traditional drug molecules or naturally active components. The properties of CGA containing multiple hydroxyl groups as a green reductant and stabilizer have made the development of CGA-loaded nanomaterials possible. In this review, recent advancements in the design of CGA-loaded nanomaterials based on organic or inorganic nanomaterials were discussed, and the positive effects of nanomaterials on the release properties of active molecules and their targeted distribution in biological systems were indicated. These nanomaterials enhance the physiological activity of CGA in the treatment of various diseases. Moreover, in the field of food, CGA-loaded nanocomposites have been found to optimize the mechanical properties of nano-food packaging, leading to an extended shelf life of food products. The findings of this review provide a valuable foundation and reference for the development of novel CGA-loaded nanomedicines and nano-food packaging.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-26"},"PeriodicalIF":7.3,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1080/10408398.2024.2404639
Lijing Li,Xiwu Jia,Kai Fan
As an integral part of daily dietary intake, the market demand for fruits and vegetables is continuously growing. However, traditional methods for assessing the quality of fruits and vegetables are prone to subjective influences, destructive to samples, and fail to comprehensively reflect internal quality, thereby resulting in various shortcomings in ensuring food safety and quality control. Over the past few decades, imaging technologies have rapidly evolved and been widely employed in nondestructive detection of fruit and vegetable quality. This paper offers a thorough overview of recent advancements in nondestructive imaging technologies for assessing the quality of fruits and vegetables, including hyperspectral imaging (HSI), fluorescence imaging (FI), magnetic resonance imaging (MRI), thermal imaging (TI), terahertz imaging, X-ray imaging (XRI), ultrasonic imaging, and microwave imaging (MWI). The principles and applications of these imaging techniques in nondestructive testing are summarized. The challenges and future trends of these technologies are discussed.
{"title":"Recent advance in nondestructive imaging technology for detecting quality of fruits and vegetables: a review.","authors":"Lijing Li,Xiwu Jia,Kai Fan","doi":"10.1080/10408398.2024.2404639","DOIUrl":"https://doi.org/10.1080/10408398.2024.2404639","url":null,"abstract":"As an integral part of daily dietary intake, the market demand for fruits and vegetables is continuously growing. However, traditional methods for assessing the quality of fruits and vegetables are prone to subjective influences, destructive to samples, and fail to comprehensively reflect internal quality, thereby resulting in various shortcomings in ensuring food safety and quality control. Over the past few decades, imaging technologies have rapidly evolved and been widely employed in nondestructive detection of fruit and vegetable quality. This paper offers a thorough overview of recent advancements in nondestructive imaging technologies for assessing the quality of fruits and vegetables, including hyperspectral imaging (HSI), fluorescence imaging (FI), magnetic resonance imaging (MRI), thermal imaging (TI), terahertz imaging, X-ray imaging (XRI), ultrasonic imaging, and microwave imaging (MWI). The principles and applications of these imaging techniques in nondestructive testing are summarized. The challenges and future trends of these technologies are discussed.","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":"214 1","pages":"1-19"},"PeriodicalIF":10.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1080/10408398.2024.2403004
Seán McCallion, Emma Beacom, Moira Dean, Michael Gillies, Linda Gordon, Alan McCabe, Una McMahon-Beattie, Lynsey Hollywood, Ruth Price
The European Commission recently adopted Commission Regulation (EU) 2021/382 requiring food businesses to establish and provide evidence of a food safety culture (FSC). FSC incorporates management ...
{"title":"Interventions in food business organisations to improve food safety culture: a rapid evidence assessment","authors":"Seán McCallion, Emma Beacom, Moira Dean, Michael Gillies, Linda Gordon, Alan McCabe, Una McMahon-Beattie, Lynsey Hollywood, Ruth Price","doi":"10.1080/10408398.2024.2403004","DOIUrl":"https://doi.org/10.1080/10408398.2024.2403004","url":null,"abstract":"The European Commission recently adopted Commission Regulation (EU) 2021/382 requiring food businesses to establish and provide evidence of a food safety culture (FSC). FSC incorporates management ...","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":"1 1","pages":"1-19"},"PeriodicalIF":10.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15DOI: 10.1080/10408398.2024.2399293
Cai-Die Tang, Jun-Hu Cheng, Da-Wen Sun
Marine bioactive peptides (MBPs) are a type of natural compound with a variety of bioactivities, such as anticancer, antimicrobial, antioxidant, and antihypertensive. Due to a wide range of sources, low toxicity, and high specificity, MBPs have now received extensive attention in the fields of food, medicine, and cosmetics. The structure of MBPs determines their biological activities. Therefore, it is essential to analyze the relationship between the structure and bioactivity of MBPs. Because of the advantages of mild conditions, high specificity, safety, and environmental friendliness, enzymatic hydrolysis has become the most commonly used method to produce MBPs. However, the high cost and low yield of enzymatic methods have motivated researchers to search for alternative technologies. Novel pretreatments like ultrasound, microwave, high hydrostatic pressure, and pulsed electric fields have been employed in the production of MBPs. By inducing protein unfolding and increasing enzymatic cleavage sites, these techniques have been demonstrated to accelerate protein hydrolysis and enhance the biological activity of MBPs. This article reviews recent research advances on marine-derived protein hydrolysates and peptides, discusses the relationship between their biological activity and structure, and compares the mechanisms of action of different novel technologies used to promote protein hydrolysis and enhance the biological activity of MBPs. In addition, the current challenges facing the development and application of MBPs are outlined and possible future work in tackling these challenges is also suggested in the current review. It is hoped that this review can promote further development and application of marine active substances.
{"title":"Structure-activity relationships and activity enhancement techniques of marine bioactive peptides (MBPs).","authors":"Cai-Die Tang, Jun-Hu Cheng, Da-Wen Sun","doi":"10.1080/10408398.2024.2399293","DOIUrl":"https://doi.org/10.1080/10408398.2024.2399293","url":null,"abstract":"<p><p>Marine bioactive peptides (MBPs) are a type of natural compound with a variety of bioactivities, such as anticancer, antimicrobial, antioxidant, and antihypertensive. Due to a wide range of sources, low toxicity, and high specificity, MBPs have now received extensive attention in the fields of food, medicine, and cosmetics. The structure of MBPs determines their biological activities. Therefore, it is essential to analyze the relationship between the structure and bioactivity of MBPs. Because of the advantages of mild conditions, high specificity, safety, and environmental friendliness, enzymatic hydrolysis has become the most commonly used method to produce MBPs. However, the high cost and low yield of enzymatic methods have motivated researchers to search for alternative technologies. Novel pretreatments like ultrasound, microwave, high hydrostatic pressure, and pulsed electric fields have been employed in the production of MBPs. By inducing protein unfolding and increasing enzymatic cleavage sites, these techniques have been demonstrated to accelerate protein hydrolysis and enhance the biological activity of MBPs. This article reviews recent research advances on marine-derived protein hydrolysates and peptides, discusses the relationship between their biological activity and structure, and compares the mechanisms of action of different novel technologies used to promote protein hydrolysis and enhance the biological activity of MBPs. In addition, the current challenges facing the development and application of MBPs are outlined and possible future work in tackling these challenges is also suggested in the current review. It is hoped that this review can promote further development and application of marine active substances.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-23"},"PeriodicalIF":7.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1080/10408398.2024.2402998
Boglarka Z Gulyas,Brenda Mogeni,Peter Jackson,Jenny Walton,Samantha J Caton
Biofortification (increasing the micronutrient content of food before harvest) has been successfully used to nutritionally improve staple foods in low- and middle-income countries. This approach could also help address micronutrient shortfalls in at-risk populations in high-income countries (HICs), however, the potential of biofortification interventions in this context is not well understood. The aim of this scoping review is to assess the nature and extent of available research evidence on biofortified foods in relation to human consumption in HICs. Literature searches were conducted in MEDLINE, WoS, ProQuest, CINAHL, AGRIS and Epistemonikos. Forty-six peer-reviewed articles were included. Most research was conducted in the USA (n = 15) and Italy (n = 11), on cereal crops (n = 14) and vegetables (n = 11), and on selenium (n = 12) and provitamin A (n = 11). Seven research domains were identified in the literature: bioavailability (n = 17); nutrient stability (n = 11); opinions and attitudes (n = 9); functionality (n = 9); sensory properties (n = 2); safety (n = 1); and modeling (n = 1). Evidence from HICs in each domain is limited. There is a need for more research particularly in areas sensitive to the cultural and socio-economic context.
{"title":"Biofortification as a food-based strategy to improve nutrition in high-income countries: a scoping review.","authors":"Boglarka Z Gulyas,Brenda Mogeni,Peter Jackson,Jenny Walton,Samantha J Caton","doi":"10.1080/10408398.2024.2402998","DOIUrl":"https://doi.org/10.1080/10408398.2024.2402998","url":null,"abstract":"Biofortification (increasing the micronutrient content of food before harvest) has been successfully used to nutritionally improve staple foods in low- and middle-income countries. This approach could also help address micronutrient shortfalls in at-risk populations in high-income countries (HICs), however, the potential of biofortification interventions in this context is not well understood. The aim of this scoping review is to assess the nature and extent of available research evidence on biofortified foods in relation to human consumption in HICs. Literature searches were conducted in MEDLINE, WoS, ProQuest, CINAHL, AGRIS and Epistemonikos. Forty-six peer-reviewed articles were included. Most research was conducted in the USA (n = 15) and Italy (n = 11), on cereal crops (n = 14) and vegetables (n = 11), and on selenium (n = 12) and provitamin A (n = 11). Seven research domains were identified in the literature: bioavailability (n = 17); nutrient stability (n = 11); opinions and attitudes (n = 9); functionality (n = 9); sensory properties (n = 2); safety (n = 1); and modeling (n = 1). Evidence from HICs in each domain is limited. There is a need for more research particularly in areas sensitive to the cultural and socio-economic context.","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":"55 1","pages":"1-22"},"PeriodicalIF":10.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, the ready-to-eat foods market has grown significantly due to its high nutritional value and convenience. However, these foods are also at risk of microbial contamination, which poses food safety hazards. Additionally, traditional high-temperature sterilization methods can cause food safety and nutritional health problems such as protein denaturation and lipid oxidation. Therefore, exploring and developing effective sterilization technologies is imperative to ensure food safety and nutritional properties, and protect consumers from potential foodborne diseases. This paper focuses on electromagnetic wave-based pasteurization technologies, including thermal processing technologies such as microwave, radio frequency, and infrared, as well as non-thermal processing technologies like ultraviolet, irradiation, pulsed light, and photodynamic inactivation. Furthermore, it also reviews the antibacterial mechanisms, advantages, disadvantages, and recent applications of these technologies in ready-to-eat foods, and summarizes their limitations and prospects. By comparing the limitations of traditional high-temperature sterilization methods, this paper highlights the significant advantages of these pasteurization techniques in effectively inhibiting microbial growth, slowing lipid oxidation, and preserving food nutrition and flavor. This review may contribute to the industrial application and process optimization of these pasteurization technologies, providing an optimal choice for preserving various types of ready-to-eat foods.
{"title":"Electromagnetic wave-based technology for ready-to-eat foods preservation: a review of applications, challenges and prospects.","authors":"Yuxin Zhang,Zhiming Ma,Jiaxin Chen,Zhongshuai Yang,Yue Ren,Jing Tian,Yuanlv Zhang,Mei Guo,Jiajun Guo,Yating Song,Yuqin Feng,Guishan Liu","doi":"10.1080/10408398.2024.2399294","DOIUrl":"https://doi.org/10.1080/10408398.2024.2399294","url":null,"abstract":"In recent years, the ready-to-eat foods market has grown significantly due to its high nutritional value and convenience. However, these foods are also at risk of microbial contamination, which poses food safety hazards. Additionally, traditional high-temperature sterilization methods can cause food safety and nutritional health problems such as protein denaturation and lipid oxidation. Therefore, exploring and developing effective sterilization technologies is imperative to ensure food safety and nutritional properties, and protect consumers from potential foodborne diseases. This paper focuses on electromagnetic wave-based pasteurization technologies, including thermal processing technologies such as microwave, radio frequency, and infrared, as well as non-thermal processing technologies like ultraviolet, irradiation, pulsed light, and photodynamic inactivation. Furthermore, it also reviews the antibacterial mechanisms, advantages, disadvantages, and recent applications of these technologies in ready-to-eat foods, and summarizes their limitations and prospects. By comparing the limitations of traditional high-temperature sterilization methods, this paper highlights the significant advantages of these pasteurization techniques in effectively inhibiting microbial growth, slowing lipid oxidation, and preserving food nutrition and flavor. This review may contribute to the industrial application and process optimization of these pasteurization technologies, providing an optimal choice for preserving various types of ready-to-eat foods.","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":"38 1","pages":"1-26"},"PeriodicalIF":10.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1080/10408398.2024.2403036
Nan Huang,Baozhen Wang,Shufang Liu,Kebo Wang,Ruike Wang,Fengquan Liu,Chen Chen
As a non-essential metal, cadmium (Cd) poses a significant threat to food safety and public health. This risk is particularly pronounced for infants and young children due to their high food consumption relative to body weight and immature physiological systems. This review examines the health risks associated with Cd exposure, particularly during the prenatal period through adolescence. It evaluates the prevalence of Cd-rich foods in children's diets and their intake levels across various countries. The review demonstrates that Cd exposure is associated with neurodevelopmental disorders, immune dysfunction, and cardiovascular diseases. It also highlights geographic differences in exposure, with some Asian countries, such as Thailand and China, exhibiting higher overall levels of Cd intake among children compared to other regions. This review presents several recommendations to mitigate Cd intake during early childhood, including reducing the Cd content in food, inhibiting Cd absorption, and promoting its excretion from the body. To minimize the risk of dietary Cd intake in children, it is recommended that stringent regulations of Cd limits in children's food be implemented, alongside a coordinated multi-stakeholder effort. This review provides important insights into effective public health policy development, laying the foundation for achieving broader public health goals.
{"title":"Cadmium exposure in infants and children: toxicity, health effects, dietary risk assessment and mitigation strategies.","authors":"Nan Huang,Baozhen Wang,Shufang Liu,Kebo Wang,Ruike Wang,Fengquan Liu,Chen Chen","doi":"10.1080/10408398.2024.2403036","DOIUrl":"https://doi.org/10.1080/10408398.2024.2403036","url":null,"abstract":"As a non-essential metal, cadmium (Cd) poses a significant threat to food safety and public health. This risk is particularly pronounced for infants and young children due to their high food consumption relative to body weight and immature physiological systems. This review examines the health risks associated with Cd exposure, particularly during the prenatal period through adolescence. It evaluates the prevalence of Cd-rich foods in children's diets and their intake levels across various countries. The review demonstrates that Cd exposure is associated with neurodevelopmental disorders, immune dysfunction, and cardiovascular diseases. It also highlights geographic differences in exposure, with some Asian countries, such as Thailand and China, exhibiting higher overall levels of Cd intake among children compared to other regions. This review presents several recommendations to mitigate Cd intake during early childhood, including reducing the Cd content in food, inhibiting Cd absorption, and promoting its excretion from the body. To minimize the risk of dietary Cd intake in children, it is recommended that stringent regulations of Cd limits in children's food be implemented, alongside a coordinated multi-stakeholder effort. This review provides important insights into effective public health policy development, laying the foundation for achieving broader public health goals.","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":"21 1","pages":"1-23"},"PeriodicalIF":10.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1080/10408398.2024.2400235
Ecem Yüksel,Alphons G J Voragen,Remco Kort
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
{"title":"The pectin metabolizing capacity of the human gut microbiota.","authors":"Ecem Yüksel,Alphons G J Voragen,Remco Kort","doi":"10.1080/10408398.2024.2400235","DOIUrl":"https://doi.org/10.1080/10408398.2024.2400235","url":null,"abstract":"The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":"5 1","pages":"1-23"},"PeriodicalIF":10.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1080/10408398.2024.2403000
Ana Elena Cedillo-Olivos,Milagros Faridy Juárez-Chairez,María Stephanie Cid-Gallegos,Xariss Sánchez-Chino,Cristian Jiménez-Martínez
Food quality is adversely affected by physical, chemical, enzymatic, and microbiological reactions, leading to it becoming inedible. Thus, finding alternative methods to preserve foods effectively and extend their shelf life is important. While chemical preservatives have been effective in preventing the growth of harmful pathogens in foods and extending their shelf life, they can also adversely affect consumers' health. For example, nitrites commonly used as preservatives in processed meats have been linked to the development of cancer. This is why researchers, and the food industry are exploring various options to find nontoxic and safe biopreservatives that can be used to preserve food. One such promising option is biopreservatives because they are derived from natural sources, such as plants and insects. This review explores the antimicrobial properties of various biopreservatives, including bacteriocins, polymers, bacteriophages, enzymes, and natural oils, and how they work together to create a synergistic effect in food preservation.
{"title":"Natural preservatives used in foods: a review.","authors":"Ana Elena Cedillo-Olivos,Milagros Faridy Juárez-Chairez,María Stephanie Cid-Gallegos,Xariss Sánchez-Chino,Cristian Jiménez-Martínez","doi":"10.1080/10408398.2024.2403000","DOIUrl":"https://doi.org/10.1080/10408398.2024.2403000","url":null,"abstract":"Food quality is adversely affected by physical, chemical, enzymatic, and microbiological reactions, leading to it becoming inedible. Thus, finding alternative methods to preserve foods effectively and extend their shelf life is important. While chemical preservatives have been effective in preventing the growth of harmful pathogens in foods and extending their shelf life, they can also adversely affect consumers' health. For example, nitrites commonly used as preservatives in processed meats have been linked to the development of cancer. This is why researchers, and the food industry are exploring various options to find nontoxic and safe biopreservatives that can be used to preserve food. One such promising option is biopreservatives because they are derived from natural sources, such as plants and insects. This review explores the antimicrobial properties of various biopreservatives, including bacteriocins, polymers, bacteriophages, enzymes, and natural oils, and how they work together to create a synergistic effect in food preservation.","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":"9 1","pages":"1-17"},"PeriodicalIF":10.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}