首页 > 最新文献

Current Nanoscience最新文献

英文 中文
The Convergence of Graphene Quantum Dots and Peptides: Novel Strategy for Cellular Targeting in Cancer 石墨烯量子点与多肽的融合:癌症细胞靶向的新策略
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-25 DOI: 10.2174/0115734137288288240108073034
Dilpreet Singh, Balak Das Kurmi, Amrinder Singh
In recent years, the convergence of two distinct nanomaterials, graphene quantum dots (GQDs) and peptides, has ushered in a new era of innovation in cancer therapeutics and biomedical research. GQDs, quasi-zero-dimensional graphene structures, have garnered significant attention due to their remarkable physicochemical properties, including excellent photoluminescence, high surface area, and biocompatibility [1]. Meanwhile, peptides, short amino acid sequences, have proven themselves as versatile molecular entities with a crucial role in cellular targeting, signaling, and communication. The convergence of these two domains, GQDs and peptides, has opened up exciting opportunities for developing novel nanocarriers and therapeutic platforms for the effective treatment of cancer [2]. The ligation of GQDs and peptides capitalizes on the unique properties of both components. GQDs exhibit exceptional optical properties, making them suitable for imaging and sensing applications [3]. Their high surface area allows for efficient drug loading, while their biocompatibility ensures minimal cytotoxicity. On the other hand, peptides offer molecular specificity, allowing for precise targeting of cancer cells and tissues. By combining these properties, GQD-peptide nanostructures can deliver therapeutic payloads to cancer sites with remarkable accuracy [4].
近年来,石墨烯量子点(GQDs)和肽这两种不同纳米材料的融合开创了癌症治疗和生物医学研究创新的新纪元。石墨烯量子点(GQDs)是准零维石墨烯结构,因其卓越的物理化学特性,包括出色的光致发光、高比表面积和生物相容性,而备受关注[1]。与此同时,肽(短氨基酸序列)已被证明是多功能分子实体,在细胞靶向、信号传递和通信中发挥着至关重要的作用。GQDs 和肽这两个领域的融合为开发新型纳米载体和治疗平台以有效治疗癌症带来了令人兴奋的机遇[2]。GQDs 和肽的连接利用了这两种成分的独特性质。GQDs 具有优异的光学特性,适合成像和传感应用 [3]。GQDs 的高比表面积可实现高效的药物负载,而其生物相容性则可确保将细胞毒性降至最低。另一方面,肽具有分子特异性,可精确靶向癌细胞和组织。结合这些特性,GQD-肽纳米结构可将治疗载荷准确地输送到癌症部位[4]。
{"title":"The Convergence of Graphene Quantum Dots and Peptides: Novel Strategy for Cellular Targeting in Cancer","authors":"Dilpreet Singh, Balak Das Kurmi, Amrinder Singh","doi":"10.2174/0115734137288288240108073034","DOIUrl":"https://doi.org/10.2174/0115734137288288240108073034","url":null,"abstract":"In recent years, the convergence of two distinct nanomaterials, graphene quantum dots (GQDs) and peptides, has ushered in a new era of innovation in cancer therapeutics and biomedical research. GQDs, quasi-zero-dimensional graphene structures, have garnered significant attention due to their remarkable physicochemical properties, including excellent photoluminescence, high surface area, and biocompatibility [1]. Meanwhile, peptides, short amino acid sequences, have proven themselves as versatile molecular entities with a crucial role in cellular targeting, signaling, and communication. The convergence of these two domains, GQDs and peptides, has opened up exciting opportunities for developing novel nanocarriers and therapeutic platforms for the effective treatment of cancer [2]. The ligation of GQDs and peptides capitalizes on the unique properties of both components. GQDs exhibit exceptional optical properties, making them suitable for imaging and sensing applications [3]. Their high surface area allows for efficient drug loading, while their biocompatibility ensures minimal cytotoxicity. On the other hand, peptides offer molecular specificity, allowing for precise targeting of cancer cells and tissues. By combining these properties, GQD-peptide nanostructures can deliver therapeutic payloads to cancer sites with remarkable accuracy [4].","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"16 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence Integration with Nanotechnology: A New Frontier for Sustainable and Precision Agriculture 人工智能与纳米技术的融合:可持续精准农业的新领域
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-21 DOI: 10.2174/0115734137275111231206072049
Sumel Ashique, Amisha Raikar, Sabahat Jamil, Lavanya Lakhminarayana, Shilpa Amit Gajbhiye, Sneha De, Shubneesh Kumar
: Addressing the challenges posed by climate change, surging population, rival demands on land for renewable fuel manufacturing, and adverse soil conditions is crucial for ensuring global food security. Achieving sustainable solutions necessitates the integration of multidisciplinary knowledge, such as materials technology and informatics. The convergence of precision agriculture with nanotechnology and artificial intelligence (AI) offers promising prospects for sustainable food production. Through real-time responsiveness to crop growth using advanced technologies, such as nanotechnology and AI, farmers can optimize resource allocation and make informed decisions. Newer opportunities for sustainable food production arise through the integration of precision agriculture, nanotechnology, and artificial intelligence. This convergence enables farmers to dynamically respond to crop growth variations using advanced techniques. By combining nanotechnology and informatics methods with existing models for nutrient cycling and crop productivity, it becomes possible to enhance critical aspects, such as precision targeting, efficient absorption, effective distribution, optimized nutrient assimilation, and long-term effects on soil microbial communities. This integration offers significant potential for improving agriculture and addressing sustainability challenges in food production. Ultimately, this synergy allows for the development of nanoscale agrochemicals that offer a balance between safety and functionality, ensuring optimal performance in agricultural systems.
:应对气候变化、人口激增、可再生燃料生产对土地的需求以及不利的土壤条件所带来的挑战,对于确保全球粮食安全至关重要。要实现可持续的解决方案,就必须整合材料技术和信息学等多学科知识。精准农业与纳米技术和人工智能(AI)的融合为可持续粮食生产提供了广阔的前景。通过利用纳米技术和人工智能等先进技术对作物生长做出实时响应,农民可以优化资源分配并做出明智决策。精准农业、纳米技术和人工智能的融合为可持续粮食生产带来了新的机遇。这种融合使农民能够利用先进技术动态应对作物的生长变化。通过将纳米技术和信息学方法与现有的养分循环和作物生产力模型相结合,就有可能提高关键方面的能力,如精准定位、高效吸收、有效分配、优化养分同化以及对土壤微生物群落的长期影响。这种整合为改善农业和应对粮食生产的可持续性挑战提供了巨大潜力。最终,这种协同作用可以开发出兼顾安全性和功能性的纳米级农用化学品,确保农业系统的最佳性能。
{"title":"Artificial Intelligence Integration with Nanotechnology: A New Frontier for Sustainable and Precision Agriculture","authors":"Sumel Ashique, Amisha Raikar, Sabahat Jamil, Lavanya Lakhminarayana, Shilpa Amit Gajbhiye, Sneha De, Shubneesh Kumar","doi":"10.2174/0115734137275111231206072049","DOIUrl":"https://doi.org/10.2174/0115734137275111231206072049","url":null,"abstract":": Addressing the challenges posed by climate change, surging population, rival demands on land for renewable fuel manufacturing, and adverse soil conditions is crucial for ensuring global food security. Achieving sustainable solutions necessitates the integration of multidisciplinary knowledge, such as materials technology and informatics. The convergence of precision agriculture with nanotechnology and artificial intelligence (AI) offers promising prospects for sustainable food production. Through real-time responsiveness to crop growth using advanced technologies, such as nanotechnology and AI, farmers can optimize resource allocation and make informed decisions. Newer opportunities for sustainable food production arise through the integration of precision agriculture, nanotechnology, and artificial intelligence. This convergence enables farmers to dynamically respond to crop growth variations using advanced techniques. By combining nanotechnology and informatics methods with existing models for nutrient cycling and crop productivity, it becomes possible to enhance critical aspects, such as precision targeting, efficient absorption, effective distribution, optimized nutrient assimilation, and long-term effects on soil microbial communities. This integration offers significant potential for improving agriculture and addressing sustainability challenges in food production. Ultimately, this synergy allows for the development of nanoscale agrochemicals that offer a balance between safety and functionality, ensuring optimal performance in agricultural systems.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"35 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Sensors Go Nano: Carbon Nanomaterials for Ultrasensitive Heavy Metal Analysis 纳米电化学传感器:用于超灵敏重金属分析的碳纳米材料
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-05 DOI: 10.2174/0115734137281774231214054405
Qingwei Zhou, Li Fu, Jiangwei Zhu
Background: Heavy metal contamination of food and the environment is a major concern worldwide. Conventional detection techniques like atomic absorption spectroscopy (AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have limitations including high costs and insufficient sensitivity. Electrochemical sensors based on carbon nanomaterials have emerged as an attractive alternative for rapid, affordable, and ultrasensitive heavy metal analysis. Methods: This review summarizes recent advances in using carbon nanomaterials like ordered mesoporous carbon, carbon nanotubes, graphene and carbon dots for electrochemical sensing of toxic heavy metals. Synthesis methods, characterization techniques, functionalization strategies and detection mechanisms are discussed. Results: High surface area, electrical conductivity and electrocatalytic activity of carbon nanomaterials enable preconcentration of metal ions and signal amplification at electrode interfaces. This results in remarkably low detection limits down to parts per trillion levels. Functionalization with metal nanoparticles, molecularly imprinted polymers and other nanocomposites further improves sensor selectivity and sensitivity. These sensors have been applied for the quantitative detection of arsenic, mercury, lead, cadmium, chromium, and other toxic metals in lab samples Conclusion: Electrochemical sensors based on carbon nanotubes, graphene, mesoporous carbon, and carbon dots are rapidly emerging as an ultrasensitive, cost-effective alternative to conventional techniques for on-site screening of heavy metal contamination in food and environment. Further validation using real-world samples and integration into portable field testing kits can enable widespread deployment.
背景:食品和环境中的重金属污染是全球关注的一个主要问题。原子吸收光谱法(AAS)、电感耦合等离子体-光发射光谱法(ICP-OES)和电感耦合等离子体-质谱法(ICP-MS)等传统检测技术存在成本高、灵敏度低等局限性。基于碳纳米材料的电化学传感器已成为快速、经济和超灵敏重金属分析的极具吸引力的替代方法。方法:本综述总结了利用有序介孔碳、碳纳米管、石墨烯和碳点等碳纳米材料进行有毒重金属电化学传感的最新进展。文章讨论了合成方法、表征技术、功能化策略和检测机制。结果:碳纳米材料具有高表面积、导电性和电催化活性,可在电极界面上实现金属离子的预浓缩和信号放大。这使得检测限低至万亿分之一的水平。金属纳米粒子、分子印迹聚合物和其他纳米复合材料的功能化进一步提高了传感器的选择性和灵敏度。这些传感器已被用于定量检测实验室样品中的砷、汞、铅、镉、铬和其他有毒金属:基于碳纳米管、石墨烯、介孔碳和碳点的电化学传感器正在迅速崛起,成为一种超灵敏、高性价比的传统技术替代品,用于现场筛查食品和环境中的重金属污染。利用真实世界的样本进行进一步验证,并将其集成到便携式现场测试工具包中,可实现广泛应用。
{"title":"Electrochemical Sensors Go Nano: Carbon Nanomaterials for Ultrasensitive Heavy Metal Analysis","authors":"Qingwei Zhou, Li Fu, Jiangwei Zhu","doi":"10.2174/0115734137281774231214054405","DOIUrl":"https://doi.org/10.2174/0115734137281774231214054405","url":null,"abstract":"Background: Heavy metal contamination of food and the environment is a major concern worldwide. Conventional detection techniques like atomic absorption spectroscopy (AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have limitations including high costs and insufficient sensitivity. Electrochemical sensors based on carbon nanomaterials have emerged as an attractive alternative for rapid, affordable, and ultrasensitive heavy metal analysis. Methods: This review summarizes recent advances in using carbon nanomaterials like ordered mesoporous carbon, carbon nanotubes, graphene and carbon dots for electrochemical sensing of toxic heavy metals. Synthesis methods, characterization techniques, functionalization strategies and detection mechanisms are discussed. Results: High surface area, electrical conductivity and electrocatalytic activity of carbon nanomaterials enable preconcentration of metal ions and signal amplification at electrode interfaces. This results in remarkably low detection limits down to parts per trillion levels. Functionalization with metal nanoparticles, molecularly imprinted polymers and other nanocomposites further improves sensor selectivity and sensitivity. These sensors have been applied for the quantitative detection of arsenic, mercury, lead, cadmium, chromium, and other toxic metals in lab samples Conclusion: Electrochemical sensors based on carbon nanotubes, graphene, mesoporous carbon, and carbon dots are rapidly emerging as an ultrasensitive, cost-effective alternative to conventional techniques for on-site screening of heavy metal contamination in food and environment. Further validation using real-world samples and integration into portable field testing kits can enable widespread deployment.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"22 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the Editorial Board Member 认识编辑委员会成员
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/157341372001230926123938
T. Burnouf
{"title":"Meet the Editorial Board Member","authors":"T. Burnouf","doi":"10.2174/157341372001230926123938","DOIUrl":"https://doi.org/10.2174/157341372001230926123938","url":null,"abstract":"","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"31 29","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139129145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical and Preclinical Evaluation with Synthesis and Docking Study of Pyridopyrimidines and Selenium Nanoparticle Drugs for Cancer Targeting 用于癌症靶向的吡啶嘧啶类和硒纳米粒子药物的生化和临床前评估、合成和对接研究
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-30 DOI: 10.2174/0115734137276989231205102152
Zafer S. Alshehri, Faez F. Alshehri, Sherien F. Belasy, Eman A. El-Hefny, Magdy S. Aly, Ahmed A. El-Sayed, Nasser A. Hassan
: The coding method of spatial light modulator is the core key of spatial light field modulation technology, and the needs of the modulation algorithm are different under the specified mode and application requirements. This paper first reviews the progress made in recent years in light field control algorithms for digital micromirror devices (DMDs) and liquid crystal spatial light modulators (LC-SLM). Based on existing algorithms, the impact of optimization methods is analyzed. Then, the application areas of the different algorithms are summarized, and the characteristics of the control algorithms are analyzed. In addition, this review highlights innovative breakthroughs achieved by using various coding schemes and spatial light modulators (SLM) to manipulate the light field. Finally, critical future challenges facing emerging control algorithm technologies are outlined, while prospects for developing SLM control algorithms are proposed.
:空间光调制器的编码方法是空间光场调制技术的核心关键,在特定的模式和应用要求下,对调制算法的需求也不尽相同。本文首先回顾了近年来在数字微镜器件(DMD)和液晶空间光调制器(LC-SLM)的光场控制算法方面取得的进展。在现有算法的基础上,分析了优化方法的影响。然后,总结了不同算法的应用领域,并分析了控制算法的特点。此外,本综述还重点介绍了利用各种编码方案和空间光调制器(SLM)操纵光场所取得的创新性突破。最后,概述了新兴控制算法技术未来面临的关键挑战,并提出了开发 SLM 控制算法的前景。
{"title":"Biochemical and Preclinical Evaluation with Synthesis and Docking Study of Pyridopyrimidines and Selenium Nanoparticle Drugs for Cancer Targeting","authors":"Zafer S. Alshehri, Faez F. Alshehri, Sherien F. Belasy, Eman A. El-Hefny, Magdy S. Aly, Ahmed A. El-Sayed, Nasser A. Hassan","doi":"10.2174/0115734137276989231205102152","DOIUrl":"https://doi.org/10.2174/0115734137276989231205102152","url":null,"abstract":": The coding method of spatial light modulator is the core key of spatial light field modulation technology, and the needs of the modulation algorithm are different under the specified mode and application requirements. This paper first reviews the progress made in recent years in light field control algorithms for digital micromirror devices (DMDs) and liquid crystal spatial light modulators (LC-SLM). Based on existing algorithms, the impact of optimization methods is analyzed. Then, the application areas of the different algorithms are summarized, and the characteristics of the control algorithms are analyzed. In addition, this review highlights innovative breakthroughs achieved by using various coding schemes and spatial light modulators (SLM) to manipulate the light field. Finally, critical future challenges facing emerging control algorithm technologies are outlined, while prospects for developing SLM control algorithms are proposed.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"13 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139063960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Hybrid Nanocatalyst Research: A Python-based Visualization of Similarity Analysis for Interdisciplinary and Sustainable Development 推进混合纳米催化剂研究:基于 Python 的可视化相似性分析,促进跨学科和可持续发展
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-30 DOI: 10.2174/0115734137274085231214100609
Fernando Gomes, Kaushik Pal, Fabíola Maranhão, Carlos Zanoni, Daniele Brandão, Michelle Colão, Gabriel Silva, Jeffrey Ampah, Karine Velasco
Background: This study presents a comprehensive analysis of hybrid nanocatalysts, which amalgamate attributes of both heterogeneous and homogeneous catalysts. Aim: To achieve a holistic understanding of the topic, we embarked on a meticulous exploration across multiple databases. Method: The Web of Science repository yielded 239 pertinent documents, while the Scopus database offered a more exhaustive collection of 1,887 documents. Although Google Scholar suggested a staggering 25,000 articles, its unclear selection criteria raised questions about the precision and dependability of its data. Hence, our study primarily relied on the Scopus database to ensure an extensive sample and analytical rigor. Using the Python-boosted visualization of Similarities methodology, we illuminated interconnections among various terminologies, identifying burgeoning areas within hybrid nanocatalyst research. Result: Our findings emphasized the ascending trajectory toward innovating materials with superior properties in hybrid nanocatalysis. This trajectory accentuated the pivotal role of interdisciplinary collaboration and sustainable methodologies. Advanced analytical techniques, notably X-ray diffraction, emerged as quintessential in delineating the nuanced relationship between hybrid nanocatalysts' structural and functional attributes. We also spotlighted Energy-Dispersive X-ray Spectroscopy's capability in fine-tuning hybrid nanocatalysts' properties, enhancing their catalytic efficacy and selectivity. An intriguing trend our study unearthed was the surge in interest toward integrating natural enzymes as potential catalysts within hybrid nanocatalysts, positioning them as beacons for sustainable and cost-efficient catalyst development. Conclusion: By synthesizing these insights, this research underlines the significance of diverse characterization techniques and the ethos of interdisciplinary collaboration. The derived knowledge offers a repository for fellow researchers, guiding further inquiries, especially regarding integrating natural enzymes in hybrid nanocatalyst innovation.
背景:本研究对混合纳米催化剂进行了全面分析,混合纳米催化剂兼具异相催化剂和均相催化剂的特性。目的:为了全面了解这一主题,我们在多个数据库中进行了细致的探索。研究方法:科学网 "资料库提供了 239 篇相关文献,而 "Scopus "数据库则提供了 1,887 篇更为详尽的文献。尽管谷歌学术(Google Scholar)提供了惊人的 25000 篇文章,但其不明确的选择标准让人怀疑其数据的准确性和可靠性。因此,我们的研究主要依赖 Scopus 数据库,以确保样本的广泛性和分析的严谨性。利用 Python- 增强的相似性可视化方法,我们揭示了各种术语之间的相互联系,确定了混合纳米催化剂研究的新兴领域。结果:我们的研究结果强调了在混合纳米催化中具有卓越性能的创新材料的上升轨迹。这一轨迹凸显了跨学科合作和可持续方法的关键作用。先进的分析技术,尤其是 X 射线衍射技术,在界定杂化纳米催化剂的结构和功能属性之间的微妙关系方面发挥了至关重要的作用。我们还强调了能量色散 X 射线光谱法在微调混合纳米催化剂特性、提高其催化效率和选择性方面的能力。我们的研究发现了一个有趣的趋势,即人们对将天然酶作为潜在催化剂整合到杂化纳米催化剂中的兴趣激增,并将其定位为可持续和具有成本效益的催化剂开发的灯塔。结论通过综合这些见解,本研究强调了多种表征技术和跨学科合作精神的重要性。所获得的知识为同行研究人员提供了一个资料库,指导了进一步的研究,特别是在将天然酶融入混合纳米催化剂创新方面。
{"title":"Advancing Hybrid Nanocatalyst Research: A Python-based Visualization of Similarity Analysis for Interdisciplinary and Sustainable Development","authors":"Fernando Gomes, Kaushik Pal, Fabíola Maranhão, Carlos Zanoni, Daniele Brandão, Michelle Colão, Gabriel Silva, Jeffrey Ampah, Karine Velasco","doi":"10.2174/0115734137274085231214100609","DOIUrl":"https://doi.org/10.2174/0115734137274085231214100609","url":null,"abstract":"Background: This study presents a comprehensive analysis of hybrid nanocatalysts, which amalgamate attributes of both heterogeneous and homogeneous catalysts. Aim: To achieve a holistic understanding of the topic, we embarked on a meticulous exploration across multiple databases. Method: The Web of Science repository yielded 239 pertinent documents, while the Scopus database offered a more exhaustive collection of 1,887 documents. Although Google Scholar suggested a staggering 25,000 articles, its unclear selection criteria raised questions about the precision and dependability of its data. Hence, our study primarily relied on the Scopus database to ensure an extensive sample and analytical rigor. Using the Python-boosted visualization of Similarities methodology, we illuminated interconnections among various terminologies, identifying burgeoning areas within hybrid nanocatalyst research. Result: Our findings emphasized the ascending trajectory toward innovating materials with superior properties in hybrid nanocatalysis. This trajectory accentuated the pivotal role of interdisciplinary collaboration and sustainable methodologies. Advanced analytical techniques, notably X-ray diffraction, emerged as quintessential in delineating the nuanced relationship between hybrid nanocatalysts' structural and functional attributes. We also spotlighted Energy-Dispersive X-ray Spectroscopy's capability in fine-tuning hybrid nanocatalysts' properties, enhancing their catalytic efficacy and selectivity. An intriguing trend our study unearthed was the surge in interest toward integrating natural enzymes as potential catalysts within hybrid nanocatalysts, positioning them as beacons for sustainable and cost-efficient catalyst development. Conclusion: By synthesizing these insights, this research underlines the significance of diverse characterization techniques and the ethos of interdisciplinary collaboration. The derived knowledge offers a repository for fellow researchers, guiding further inquiries, especially regarding integrating natural enzymes in hybrid nanocatalyst innovation.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"16 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139063951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Explosive Residues Using Nanomaterial-based Sensors: A Review 利用纳米材料传感器检测爆炸物残留:综述
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-30 DOI: 10.2174/0115734137277198231218060425
Vilas A. Chavan, Devidas S. Bhagat, Ajit K. Gangawane, K. Vijaya Babu, Dattatraya Pansare, Bapu R. Thorat, Ravikumar M. Borade, Viney Chawla, Pooja A. Chawla
: Due to the recent rise in explosive-based terrorism and ecological issues, the invention of good capacity detectors for the identification of explosives has emerged as one of the major thirsts in the scientific community. Due to their unique optical and electrical properties, nanocomposites can meet all of the prerequisites for developing preferential, responsive, easy, and cost-effective sensor nodes for the sensing of various explosives. This study primarily throws light on current developments in explosives detection using nanomaterial-based sensors. In particular, it describes how quantum dots, carbon nanomaterials, monometallic nanomaterials, and bimetallic nanomaterials have been used to detect explosives optically and electrochemically. The accurate and consistent features of the nanomaterials, including their synthesis, the explosive detection technique, and the analytical facets, are all thoroughly examined.
:由于最近以爆炸物为基础的恐怖主义和生态问题的增加,发明识别爆炸物的高容量探测器已成为科学界的主要渴求之一。纳米复合材料具有独特的光学和电学特性,可以满足开发优先、灵敏、简便、经济的传感器节点的所有先决条件,用于传感各种爆炸物。本研究主要介绍了利用纳米材料传感器检测爆炸物的最新进展。特别是介绍了如何利用量子点、碳纳米材料、单金属纳米材料和双金属纳米材料进行爆炸物的光学和电化学检测。书中对纳米材料的准确性和一致性特征,包括其合成、爆炸物检测技术和分析方面,都进行了深入研究。
{"title":"Detection of Explosive Residues Using Nanomaterial-based Sensors: A Review","authors":"Vilas A. Chavan, Devidas S. Bhagat, Ajit K. Gangawane, K. Vijaya Babu, Dattatraya Pansare, Bapu R. Thorat, Ravikumar M. Borade, Viney Chawla, Pooja A. Chawla","doi":"10.2174/0115734137277198231218060425","DOIUrl":"https://doi.org/10.2174/0115734137277198231218060425","url":null,"abstract":": Due to the recent rise in explosive-based terrorism and ecological issues, the invention of good capacity detectors for the identification of explosives has emerged as one of the major thirsts in the scientific community. Due to their unique optical and electrical properties, nanocomposites can meet all of the prerequisites for developing preferential, responsive, easy, and cost-effective sensor nodes for the sensing of various explosives. This study primarily throws light on current developments in explosives detection using nanomaterial-based sensors. In particular, it describes how quantum dots, carbon nanomaterials, monometallic nanomaterials, and bimetallic nanomaterials have been used to detect explosives optically and electrochemically. The accurate and consistent features of the nanomaterials, including their synthesis, the explosive detection technique, and the analytical facets, are all thoroughly examined.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"16 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Nanomaterials to Well-Defined Structures: Exploring Layer-bylayer Assembly Techniques 从纳米材料到定义明确的结构:探索层间组装技术
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-30 DOI: 10.2174/0115734137280856231219102128
Yassmen Hamzat, Alaa A. A. Aljabali, Mohamed El-Tanani, Murtaza M. Tambuwala
: Layered assemblies are essential in materials nanoarchitectonics, which organize nanomaterials into well-defined structures. This overview highlights the significance, advancements, challenges, and future directions of layered assembly. The layer-by-layer (LBL) process relies on electrostatic interactions and self-assembly, which are influenced by factors such as charge, pH, and environmental conditions. Solution-based, vapor-phase, and templateguided methods offer distinct advantages and limitations for tailoring the layered structures. Polymeric, inorganic, and hybrid nanomaterials have diverse functionalities for specific applications. Surface modification, functionalization techniques, templating, and patterning methods play key roles in the customization of layered structures. Integration of stimuli-responsive assemblies enables dynamic control and advanced functionality. Characterization techniques, including spectroscopy and microscopy, provide insights into the structure, morphology, and properties of the layered assemblies. The evaluation of the mechanical and electrical properties enhances the understanding of their behavior and suitability for applications. Layered assemblies find applications in biomaterials, optoelectronics, energy storage, and conversion, promising advances in tissue engineering, optoelectronic devices, and battery technology. Challenges in scalability, stability, and material selection necessitate interdisciplinary collaboration, process standardization, innovation, optimization, and sustainability. Advanced characterization techniques and artificial intelligence (AI) integration hold promise for future advancements in layered assemblies. Layered assemblies have great potential in materials science and technology, offering precise control over the structure and functionality of breakthroughs in various applications. Continued research and collaboration will drive progress in this field and pave the way for innovative materials and technologies. Scientists are encouraged to explore the possibilities of layered assemblies, unlock novel solutions to global challenges, and shape the future of nanomaterial engineering.
:层状组装在材料纳米结构学中至关重要,它将纳米材料组织成定义明确的结构。本综述将重点介绍分层组装的意义、进展、挑战和未来发展方向。逐层组装(LBL)过程依赖于静电相互作用和自组装,而这又受到电荷、pH 值和环境条件等因素的影响。溶液法、气相法和模板引导法在定制层状结构方面具有明显的优势和局限性。聚合物、无机和混合纳米材料在特定应用中具有多种功能。表面改性、功能化技术、模板化和图案化方法在定制层状结构中发挥着关键作用。集成刺激响应组件可实现动态控制和高级功能。包括光谱学和显微镜在内的表征技术可帮助人们深入了解层状组件的结构、形态和特性。通过对机械和电气特性的评估,可以加深对其行为和应用适用性的理解。层状组件可应用于生物材料、光电子学、能量存储和转换领域,有望在组织工程、光电设备和电池技术方面取得进展。可扩展性、稳定性和材料选择方面的挑战要求跨学科合作、工艺标准化、创新、优化和可持续性。先进的表征技术和人工智能(AI)集成为分层组件的未来发展带来了希望。层状组件在材料科学与技术领域具有巨大潜力,可精确控制各种应用中的突破性结构和功能。持续的研究与合作将推动这一领域的进步,并为创新材料和技术铺平道路。我们鼓励科学家们探索层状组装的可能性,为应对全球挑战提供新的解决方案,并塑造纳米材料工程的未来。
{"title":"From Nanomaterials to Well-Defined Structures: Exploring Layer-bylayer Assembly Techniques","authors":"Yassmen Hamzat, Alaa A. A. Aljabali, Mohamed El-Tanani, Murtaza M. Tambuwala","doi":"10.2174/0115734137280856231219102128","DOIUrl":"https://doi.org/10.2174/0115734137280856231219102128","url":null,"abstract":": Layered assemblies are essential in materials nanoarchitectonics, which organize nanomaterials into well-defined structures. This overview highlights the significance, advancements, challenges, and future directions of layered assembly. The layer-by-layer (LBL) process relies on electrostatic interactions and self-assembly, which are influenced by factors such as charge, pH, and environmental conditions. Solution-based, vapor-phase, and templateguided methods offer distinct advantages and limitations for tailoring the layered structures. Polymeric, inorganic, and hybrid nanomaterials have diverse functionalities for specific applications. Surface modification, functionalization techniques, templating, and patterning methods play key roles in the customization of layered structures. Integration of stimuli-responsive assemblies enables dynamic control and advanced functionality. Characterization techniques, including spectroscopy and microscopy, provide insights into the structure, morphology, and properties of the layered assemblies. The evaluation of the mechanical and electrical properties enhances the understanding of their behavior and suitability for applications. Layered assemblies find applications in biomaterials, optoelectronics, energy storage, and conversion, promising advances in tissue engineering, optoelectronic devices, and battery technology. Challenges in scalability, stability, and material selection necessitate interdisciplinary collaboration, process standardization, innovation, optimization, and sustainability. Advanced characterization techniques and artificial intelligence (AI) integration hold promise for future advancements in layered assemblies. Layered assemblies have great potential in materials science and technology, offering precise control over the structure and functionality of breakthroughs in various applications. Continued research and collaboration will drive progress in this field and pave the way for innovative materials and technologies. Scientists are encouraged to explore the possibilities of layered assemblies, unlock novel solutions to global challenges, and shape the future of nanomaterial engineering.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"24 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139063958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light Field Modulation Algorithms for Spatial Light Modulators: A Review 空间光调制器的光场调制算法:综述
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-27 DOI: 10.2174/0115734137276125231201113602
Ke Xu, Xianru Li
: The coding method of spatial light modulator is the core key of spatial light field modulation technology, and the needs of the modulation algorithm are different under the specified mode and application requirements. This paper first reviews the progress made in recent years in light field control algorithms for digital micromirror devices (DMDs) and liquid crystal spatial light modulators (LC-SLM). Based on existing algorithms, the impact of optimization methods is analyzed. Then, the application areas of the different algorithms are summarized, and the characteristics of the control algorithms are analyzed. In addition, this review highlights innovative breakthroughs achieved by using various coding schemes and spatial light modulators (SLM) to manipulate the light field. Finally, critical future challenges facing emerging control algorithm technologies are outlined, while prospects for developing SLM control algorithms are proposed.
:空间光调制器的编码方法是空间光场调制技术的核心关键,在特定的模式和应用要求下,对调制算法的需求也不尽相同。本文首先回顾了近年来在数字微镜器件(DMD)和液晶空间光调制器(LC-SLM)的光场控制算法方面取得的进展。在现有算法的基础上,分析了优化方法的影响。然后,总结了不同算法的应用领域,并分析了控制算法的特点。此外,本综述还重点介绍了利用各种编码方案和空间光调制器(SLM)操纵光场所取得的创新性突破。最后,概述了新兴控制算法技术未来面临的关键挑战,并提出了开发 SLM 控制算法的前景。
{"title":"Light Field Modulation Algorithms for Spatial Light Modulators: A Review","authors":"Ke Xu, Xianru Li","doi":"10.2174/0115734137276125231201113602","DOIUrl":"https://doi.org/10.2174/0115734137276125231201113602","url":null,"abstract":": The coding method of spatial light modulator is the core key of spatial light field modulation technology, and the needs of the modulation algorithm are different under the specified mode and application requirements. This paper first reviews the progress made in recent years in light field control algorithms for digital micromirror devices (DMDs) and liquid crystal spatial light modulators (LC-SLM). Based on existing algorithms, the impact of optimization methods is analyzed. Then, the application areas of the different algorithms are summarized, and the characteristics of the control algorithms are analyzed. In addition, this review highlights innovative breakthroughs achieved by using various coding schemes and spatial light modulators (SLM) to manipulate the light field. Finally, critical future challenges facing emerging control algorithm technologies are outlined, while prospects for developing SLM control algorithms are proposed.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"3 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-drug-based Targeted Therapy Alleviates Ferroptosis-induced Liver Toxicity 基于纳米药物的靶向疗法可缓解铁中毒引起的肝脏毒性
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-14 DOI: 10.2174/0115734137243766230919062151
Santhi Latha Pandrangi, Hamad Sharif Shaik, Sungey Naynee Sánchez Llaguno, Juan Alejandro Neira Mosquera, Gooty Jaffer Mohiddin, Prasanthi Chittineedi
: Iron is an essential inorganic element for an organism, with several metabolic activities. The glycoproteins ferritin and transferrin, which assist in carrying iron to various body parts, are used to store iron. In terms of iron uptake, storage, and excretion, equilibrium should be preserved. Ferroptosis is an iron-dependent form of cell death with traits like lipid peroxidation buildup and ROS generation. It is distinct from other forms of cell death visually and biochemically. Many cancer cells block ferroptosis by controlling different cell survival pathways. Compared to healthy, normal cells, cancer cells are more dependent on iron. A subgroup of tumor cells known as cancer stem cells has stem-like characteristics. These are in charge of metastasis and recurrence. The liver plays a significant part in the body's detoxifying process and is the primary iron storage organ. Numerous liver disorders are frequently accompanied by excessive iron accumulation. Due to excessive iron deposits, the liver is more vulnerable to oxidative damage, which can occasionally result in liver failure. Chemotherapy, which involves administering several medications to treat cancer, may be hazardous to the body's other cells. The ferroptosis condition and high iron accumulation can potentially impair liver function. A tailored drug delivery method may ameliorate the impact of excessive iron accumulation and favorably correlate with liver damage, consequently enhancing liver function.
:铁是生物体不可或缺的无机元素,具有多种代谢活动。糖蛋白铁蛋白和转铁蛋白协助将铁运往身体各部位,并用于储存铁。在铁的吸收、储存和排泄方面,应保持平衡。铁突变是一种依赖铁的细胞死亡形式,具有脂质过氧化物堆积和产生 ROS 等特征。它在视觉上和生物化学上有别于其他形式的细胞死亡。许多癌细胞通过控制不同的细胞存活途径来阻断铁凋亡。与健康的正常细胞相比,癌细胞更依赖于铁。被称为癌症干细胞的肿瘤细胞亚群具有类似干细胞的特征。它们负责转移和复发。肝脏在人体解毒过程中起着重要作用,也是储存铁的主要器官。许多肝脏疾病经常伴随着过量的铁积累。由于铁沉积过多,肝脏更容易受到氧化损伤,偶尔会导致肝功能衰竭。化疗需要使用多种药物来治疗癌症,可能会对身体的其他细胞造成危害。铁质沉积症和高铁积累可能会损害肝功能。量身定制的给药方法可改善铁过度积累的影响,并与肝损伤产生有利的关联,从而增强肝功能。
{"title":"Nano-drug-based Targeted Therapy Alleviates Ferroptosis-induced Liver Toxicity","authors":"Santhi Latha Pandrangi, Hamad Sharif Shaik, Sungey Naynee Sánchez Llaguno, Juan Alejandro Neira Mosquera, Gooty Jaffer Mohiddin, Prasanthi Chittineedi","doi":"10.2174/0115734137243766230919062151","DOIUrl":"https://doi.org/10.2174/0115734137243766230919062151","url":null,"abstract":": Iron is an essential inorganic element for an organism, with several metabolic activities. The glycoproteins ferritin and transferrin, which assist in carrying iron to various body parts, are used to store iron. In terms of iron uptake, storage, and excretion, equilibrium should be preserved. Ferroptosis is an iron-dependent form of cell death with traits like lipid peroxidation buildup and ROS generation. It is distinct from other forms of cell death visually and biochemically. Many cancer cells block ferroptosis by controlling different cell survival pathways. Compared to healthy, normal cells, cancer cells are more dependent on iron. A subgroup of tumor cells known as cancer stem cells has stem-like characteristics. These are in charge of metastasis and recurrence. The liver plays a significant part in the body's detoxifying process and is the primary iron storage organ. Numerous liver disorders are frequently accompanied by excessive iron accumulation. Due to excessive iron deposits, the liver is more vulnerable to oxidative damage, which can occasionally result in liver failure. Chemotherapy, which involves administering several medications to treat cancer, may be hazardous to the body's other cells. The ferroptosis condition and high iron accumulation can potentially impair liver function. A tailored drug delivery method may ameliorate the impact of excessive iron accumulation and favorably correlate with liver damage, consequently enhancing liver function.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"78 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138683472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Nanoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1