Pub Date : 2024-02-14DOI: 10.2174/0115734137283662240129073747
Roshan Kumar Dubey, Satyam Shukla, Kamal Shah, Hitesh Kumar Dewangan
: Self-assembly techniques play a pivotal role in the field of nanotechnology, enabling the spontaneous organization of individual building blocks into ordered nanostructures without external intervention. In DNA origami, the design and synthesis of DNA strands allow for precise folding into complex nanoarchitectures. This technique holds immense promise in nanoelectronics, nanomedicine, and nanophotonics, offering nanoscale precision and versatility in structural design. Block copolymers represent another fascinating self-assembly system, driven by phase separation and microdomain formation. Understanding and controlling the self-assembly behavior of block copolymers enable applications in nanolithography, nanopatterning, and nanofabrication, owing to their ability to generate well-defined nanostructures. Colloidal assembly is a versatile and powerful technique for fabricating ordered nanostructures and materials with precise control over their properties. The process involves the spontaneous arrangement of colloidal particles into well-defined structures at the microscale or larger, driven by interparticle interactions, Brownian motion, and entropic effects. As research and technology continue to progress, colloidal assembly holds promising opportunities for creating novel materials with applications in diverse fields, contributing to advancements in nanotechnology, optics, electronics, and biomedicine. The continuous exploration and development of colloidal assembly techniques will undoubtedly open new avenues for innovation and impact various areas of science and technology in the future. This review article provides a comprehensive overview of various self-assembly techniques used to fabricate nanostructures, focusing on DNA origami, block copolymers, and colloidal assembly. With a focus on DNA origami in particular, its uses in drug administration, biosensing, nanofabrication, and computational storage are introduced. There is also a discussion of the potential and difficulties involved in assembling and using DNA origami.
:自组装技术在纳米技术领域发挥着举足轻重的作用,它能在没有外部干预的情况下,自发地将单个构件组织成有序的纳米结构。在 DNA 折纸中,通过设计和合成 DNA 链,可以精确地折叠成复杂的纳米结构。这种技术在纳米电子学、纳米医学和纳米光子学方面前景广阔,可提供纳米级精度和多功能结构设计。嵌段共聚物是由相分离和微域形成驱动的另一种迷人的自组装系统。了解和控制嵌段共聚物的自组装行为,可使其应用于纳米光刻、纳米图案化和纳米制造,因为它们能够生成定义明确的纳米结构。胶体组装是一种多功能、功能强大的技术,可用于制造有序的纳米结构和材料,并精确控制其特性。在此过程中,胶体粒子在粒子间相互作用、布朗运动和熵效应的驱动下,自发地排列成微米级或更大的清晰结构。随着研究和技术的不断进步,胶体组装有望创造出应用于不同领域的新型材料,推动纳米技术、光学、电子学和生物医学的发展。胶体组装技术的不断探索和发展无疑将为创新开辟新的途径,并对未来的各个科技领域产生影响。这篇综述文章全面概述了用于制造纳米结构的各种自组装技术,重点介绍了 DNA 折纸、嵌段共聚物和胶体组装。文章特别以 DNA 折纸为重点,介绍了它在给药、生物传感、纳米制造和计算存储方面的应用。此外,还讨论了组装和使用 DNA 折纸的潜力和困难。
{"title":"A Comprehensive Review of Self-Assembly Techniques Used to Fabricate as DNA Origami, Block Copolymers, and Colloidal Nanostructures","authors":"Roshan Kumar Dubey, Satyam Shukla, Kamal Shah, Hitesh Kumar Dewangan","doi":"10.2174/0115734137283662240129073747","DOIUrl":"https://doi.org/10.2174/0115734137283662240129073747","url":null,"abstract":": Self-assembly techniques play a pivotal role in the field of nanotechnology, enabling the spontaneous organization of individual building blocks into ordered nanostructures without external intervention. In DNA origami, the design and synthesis of DNA strands allow for precise folding into complex nanoarchitectures. This technique holds immense promise in nanoelectronics, nanomedicine, and nanophotonics, offering nanoscale precision and versatility in structural design. Block copolymers represent another fascinating self-assembly system, driven by phase separation and microdomain formation. Understanding and controlling the self-assembly behavior of block copolymers enable applications in nanolithography, nanopatterning, and nanofabrication, owing to their ability to generate well-defined nanostructures. Colloidal assembly is a versatile and powerful technique for fabricating ordered nanostructures and materials with precise control over their properties. The process involves the spontaneous arrangement of colloidal particles into well-defined structures at the microscale or larger, driven by interparticle interactions, Brownian motion, and entropic effects. As research and technology continue to progress, colloidal assembly holds promising opportunities for creating novel materials with applications in diverse fields, contributing to advancements in nanotechnology, optics, electronics, and biomedicine. The continuous exploration and development of colloidal assembly techniques will undoubtedly open new avenues for innovation and impact various areas of science and technology in the future. This review article provides a comprehensive overview of various self-assembly techniques used to fabricate nanostructures, focusing on DNA origami, block copolymers, and colloidal assembly. With a focus on DNA origami in particular, its uses in drug administration, biosensing, nanofabrication, and computational storage are introduced. There is also a discussion of the potential and difficulties involved in assembling and using DNA origami.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"15 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The rise in antimicrobial resistance, caused by the production of biofilms by bacteria, is a significant concern in the field of healthcare. Nanoemulsion technology presents itself as a viable alternative in the quest to circumvent antibiotic resistance in pathogenic bacteria. Objective: The aim of this research was to form a sustainable nanoemulsion from Z. multiflora, and evaluate its antibacterial and anti-biofilm activities against the clinical isolates of Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Materials and Methods: Bioactive compounds of the oil were identified using GC-MS. Zataria multiflora essential oil (ZMEO) nanoemulsion was formulated as a water-dispersible nanoemulsion with a diameter of 184.88 ± 1.18 nm. The antibacterial and antibiofilm activities of the essential oil in both pure and nanoemulsion forms were assessed against pathogenic bacteria causing hospital-acquired infections using minimal inhibitory concentrations (MICs) and the microtiter method, respectively. Results: The main constituents were found to be linalool (78.66 %), carvacrol (14.25 %), and α- pinene (4.53%). Neither ZMEO nor the emulsified ZMEO showed any antimicrobial activity. However, ZMEO exhibited a low inhibition of biofilm formation by P. mirabilis, S. aureus, and P. aeruginosa. The most promising finding was that when the emulsified ZMEO was present at a concentration of 750 μg/mL, it significantly reduced biofilm formation by the aforementioned bacteria to 39.68% ± 2.62, 56.54% ± 3.35, and 59.60% ± 2.88, respectively. This result suggests that ZMEO nanoemulsion has the potential to effectively disrupt persistent biofilms and enhance the penetration of antimicrobial agents into the biofilm matrix. Conclusion: In conclusion, the study provides evidence supporting the use of ZMEO nanoemulsion as a potential treatment option for combating biofilm-related infections caused by Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Further research is warranted to explore the practical application of the proposed essential oil in clinical settings.
{"title":"Nanoencapsulation of Zataria multiflora Essential Oil Containing Linalool Reduced Antibiofilm Resistance against Multidrug-resistant Clinical Strains","authors":"Neda Mohamadi, Mahboubeh Adeli- Sardou, Mehdi Ansari, Atousa pakdel, Muberra Kosar, Fariba Sharififar","doi":"10.2174/0115734137281383240116052904","DOIUrl":"https://doi.org/10.2174/0115734137281383240116052904","url":null,"abstract":"Background: The rise in antimicrobial resistance, caused by the production of biofilms by bacteria, is a significant concern in the field of healthcare. Nanoemulsion technology presents itself as a viable alternative in the quest to circumvent antibiotic resistance in pathogenic bacteria. Objective: The aim of this research was to form a sustainable nanoemulsion from Z. multiflora, and evaluate its antibacterial and anti-biofilm activities against the clinical isolates of Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Materials and Methods: Bioactive compounds of the oil were identified using GC-MS. Zataria multiflora essential oil (ZMEO) nanoemulsion was formulated as a water-dispersible nanoemulsion with a diameter of 184.88 ± 1.18 nm. The antibacterial and antibiofilm activities of the essential oil in both pure and nanoemulsion forms were assessed against pathogenic bacteria causing hospital-acquired infections using minimal inhibitory concentrations (MICs) and the microtiter method, respectively. Results: The main constituents were found to be linalool (78.66 %), carvacrol (14.25 %), and α- pinene (4.53%). Neither ZMEO nor the emulsified ZMEO showed any antimicrobial activity. However, ZMEO exhibited a low inhibition of biofilm formation by P. mirabilis, S. aureus, and P. aeruginosa. The most promising finding was that when the emulsified ZMEO was present at a concentration of 750 μg/mL, it significantly reduced biofilm formation by the aforementioned bacteria to 39.68% ± 2.62, 56.54% ± 3.35, and 59.60% ± 2.88, respectively. This result suggests that ZMEO nanoemulsion has the potential to effectively disrupt persistent biofilms and enhance the penetration of antimicrobial agents into the biofilm matrix. Conclusion: In conclusion, the study provides evidence supporting the use of ZMEO nanoemulsion as a potential treatment option for combating biofilm-related infections caused by Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Further research is warranted to explore the practical application of the proposed essential oil in clinical settings.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"220 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-04DOI: 10.2174/0115734137267596231203135754
Nguyen Thi Mai Huong, Le Thi Thu Huong, Phan Thi Thuy, Bach Thanh Son, Phan Xuan Thien, Nguyen Trong Tinh, Le Thi Huong, Nguyen Thanh Binh
Background: Dihydroquercetin (DHQ), also known as taxifolin, is a flavonoid commonly found in many plants. Dihydroquercetin has been documented to have powerful antioxidant activity and many beneficial properties for human health, especially its ability to inhibit certain types of cancer cells. However, its low solubility and bioavailability are major obstacles to biomedical applications. Moreover, DHQ is chemically unstable and quickly degrades when exposed to alkaline conditions. background: Dihydroquercetin (DHQ), also known as taxifolin, is a flavonoid and commonly found in many plants. Dihydroquercetin has been documented to have powerful antioxidant activity and many beneficial properties for human health, especially its ability to inhibit certain types of cancer cells. However, its low solubility and bioavailability are major obstacles to biomedical applications. Moreover, DHQ is chemically unstable and quickly degrades when exposed to alkaline conditions. Objective: In the present study, a DHQ nanoemulsion formulation was prepared by Self Nano- Emulsifying Drug Delivery System (SNEDDS) technique to overcome the above disadvantages. Methods: The obtained nanoemulsion system was evaluated for its micro-properties, stability, and in vitro cytotoxic activity against some cancer cells using tetrazolium dyes (MTS assay). Results: Measurement results showed that the DHQ nanoemulsion was successfully synthesized with typical mean droplet sizes from 9 to 11 nm, and revealed excellent stability over time. Dihydroquercetin in nanoemulsion form is more stable than the non-encapsulated form, as evidenced by the maintenance of droplet size in the nanometer range when dispersed in aqueous solution for up to 48 hours. This stability is particularly pronounced in both acidic and neutral environments. In vitro experiments on cytotoxic activities against A549, Hela, and HepG2 cancer cell lines indicated that the prepared DHQ nanoemulsion effectively inhibited the growth of all these cell lines with IC50 values (μg/mL) of 8.0, 20.4, and 29.5 respectively. Conclusion: From the detailed results above, it is evident that the solubility and bioavailability of DHQ can be improved by creating its nanostructure in the form of nanoemulsions. Furthermore, the nano form of DHQ carried within stable nanoemulsions exhibited better performance in inhibiting cancer cells compared to free DHQ. Therefore, further research is required to explore the development of cancer therapeutics utilizing nano DHQ emulsions.
{"title":"Evaluation of Stability and In vitro Anti-Cancer Activity of Dihydroquercetin Nanoemulsion","authors":"Nguyen Thi Mai Huong, Le Thi Thu Huong, Phan Thi Thuy, Bach Thanh Son, Phan Xuan Thien, Nguyen Trong Tinh, Le Thi Huong, Nguyen Thanh Binh","doi":"10.2174/0115734137267596231203135754","DOIUrl":"https://doi.org/10.2174/0115734137267596231203135754","url":null,"abstract":"Background: Dihydroquercetin (DHQ), also known as taxifolin, is a flavonoid commonly found in many plants. Dihydroquercetin has been documented to have powerful antioxidant activity and many beneficial properties for human health, especially its ability to inhibit certain types of cancer cells. However, its low solubility and bioavailability are major obstacles to biomedical applications. Moreover, DHQ is chemically unstable and quickly degrades when exposed to alkaline conditions. background: Dihydroquercetin (DHQ), also known as taxifolin, is a flavonoid and commonly found in many plants. Dihydroquercetin has been documented to have powerful antioxidant activity and many beneficial properties for human health, especially its ability to inhibit certain types of cancer cells. However, its low solubility and bioavailability are major obstacles to biomedical applications. Moreover, DHQ is chemically unstable and quickly degrades when exposed to alkaline conditions. Objective: In the present study, a DHQ nanoemulsion formulation was prepared by Self Nano- Emulsifying Drug Delivery System (SNEDDS) technique to overcome the above disadvantages. Methods: The obtained nanoemulsion system was evaluated for its micro-properties, stability, and in vitro cytotoxic activity against some cancer cells using tetrazolium dyes (MTS assay). Results: Measurement results showed that the DHQ nanoemulsion was successfully synthesized with typical mean droplet sizes from 9 to 11 nm, and revealed excellent stability over time. Dihydroquercetin in nanoemulsion form is more stable than the non-encapsulated form, as evidenced by the maintenance of droplet size in the nanometer range when dispersed in aqueous solution for up to 48 hours. This stability is particularly pronounced in both acidic and neutral environments. In vitro experiments on cytotoxic activities against A549, Hela, and HepG2 cancer cell lines indicated that the prepared DHQ nanoemulsion effectively inhibited the growth of all these cell lines with IC50 values (μg/mL) of 8.0, 20.4, and 29.5 respectively. Conclusion: From the detailed results above, it is evident that the solubility and bioavailability of DHQ can be improved by creating its nanostructure in the form of nanoemulsions. Furthermore, the nano form of DHQ carried within stable nanoemulsions exhibited better performance in inhibiting cancer cells compared to free DHQ. Therefore, further research is required to explore the development of cancer therapeutics utilizing nano DHQ emulsions.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"194 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
: Argan oil is a rich source of bioactive chemicals with potential health advantages and is derived from the kernels of the Argania spinosa tree. Since ancient times, argan oil has been used as a natural cure in traditional medicine. Traditional uses of argan oil include cooking, massaging, healing, and curing skin, nails, and hair ailments. Due to the high concentration of monoand polyunsaturated fatty acids, antioxidants, polyphenols, and tocopherols, numerous industries are interested in using them in their top-selling products. Studies have evaluated argan oil's exceptional qualities, which include restoring the skin's water-lipid layer, increasing nutrients in skin cells, stimulating intracellular oxygen, neutralizing free radicals, regulating lipid metabolism, lowering blood pressure, and reducing inflammatory indicators. Utilizing argan oil in diet will help to fight ailments like cancer, diabetes, and cardiovascular conditions. In this article, we reviewed the published literature to delineate argan oil's chemical composition, extraction procedures, and pharmacological potential. Furthermore, we also explored the health-beneficial properties of argan oil-based nano-formulations with evidence to prove their effectiveness against various diseases. Underlying argan oil's rich composition and beneficial effects, exploring its favorable qualities and the mechanisms underlying its curative activity will require extensive research.
{"title":"Pharmacological Potential of Argan Oil (Argania spinosa) with a Special Focus on its Chemical Composition and Nanoformulations-based Applications","authors":"Taniya Paul, Dorji Drakpa, Prasun Mukherjee, Sukriti Chakrabarty, Karma Jigdrel, Jeena Gupta","doi":"10.2174/0115734137279106231227044328","DOIUrl":"https://doi.org/10.2174/0115734137279106231227044328","url":null,"abstract":": Argan oil is a rich source of bioactive chemicals with potential health advantages and is derived from the kernels of the Argania spinosa tree. Since ancient times, argan oil has been used as a natural cure in traditional medicine. Traditional uses of argan oil include cooking, massaging, healing, and curing skin, nails, and hair ailments. Due to the high concentration of monoand polyunsaturated fatty acids, antioxidants, polyphenols, and tocopherols, numerous industries are interested in using them in their top-selling products. Studies have evaluated argan oil's exceptional qualities, which include restoring the skin's water-lipid layer, increasing nutrients in skin cells, stimulating intracellular oxygen, neutralizing free radicals, regulating lipid metabolism, lowering blood pressure, and reducing inflammatory indicators. Utilizing argan oil in diet will help to fight ailments like cancer, diabetes, and cardiovascular conditions. In this article, we reviewed the published literature to delineate argan oil's chemical composition, extraction procedures, and pharmacological potential. Furthermore, we also explored the health-beneficial properties of argan oil-based nano-formulations with evidence to prove their effectiveness against various diseases. Underlying argan oil's rich composition and beneficial effects, exploring its favorable qualities and the mechanisms underlying its curative activity will require extensive research.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"66 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.2174/0115734137279981240104061749
Beatriz Hecht Ortiz, Denise de Abreu Garófalo, Tatielle do Nascimento, Ana Paula dos Santos Matos, Eduardo Ricci-Junior
Background:: Vitamin C (VitC), or L-ascorbic acid in topical formulations acts as an antioxidant, depigmentant, stimulator of stratum corneum renewal and collagen synthesis. VitC is a thermolabile, water-soluble compound, oxidizes when its solution is exposed to air, metals and high pH. Derivative compounds were created to circumvent the instability, poor penetration capacity in the stratum corneum. Furthermore, new drug delivery systems using nanotechnology began to be studied, providing protection against degradation and penetration through the skin. Objective:: The current paper aimed at carrying out a systematic review between 2006 and 2023, seeking innovative topical formulations containing VitC and its derivatives, where the problem of low permeation and instability was circumvented. Methods:: The search for articles was performed in the Science Direct, Springer and PubMed databases. The largest amount of information was gathered on innovative formulations for topical use for the delivery of VitC and its derivatives, physicochemical characterization data, in vitro and in vivo studies. Results:: The search in the databases resulted in a total of 3032 articles, of which 16 studies were selected for the integrative review, as they proved the possibility of carrying the active ingredient in nanosystems, allowing increased stability, better permeation properties and in vitro cutaneous release, enabling the therapeutic function of the active ingredient through the application of formulations to the skin. In vivo studies also proved the clinical efficacy of the compound in liposomes, ethosomes and niosomes. Conclusion:: The most described nanocarriers were nanoparticles and liposomes, and one study involved niosomes and ethosomes. Therefore, even though it is not a newly discovered molecule, VitC continues to be studied in topical formulations ensuring stability, permeation, and effectiveness.
{"title":"Current Application of Nanotechnology to Enhance Cutaneous Permeation of Vitamin C and Derivatives","authors":"Beatriz Hecht Ortiz, Denise de Abreu Garófalo, Tatielle do Nascimento, Ana Paula dos Santos Matos, Eduardo Ricci-Junior","doi":"10.2174/0115734137279981240104061749","DOIUrl":"https://doi.org/10.2174/0115734137279981240104061749","url":null,"abstract":"Background:: Vitamin C (VitC), or L-ascorbic acid in topical formulations acts as an antioxidant, depigmentant, stimulator of stratum corneum renewal and collagen synthesis. VitC is a thermolabile, water-soluble compound, oxidizes when its solution is exposed to air, metals and high pH. Derivative compounds were created to circumvent the instability, poor penetration capacity in the stratum corneum. Furthermore, new drug delivery systems using nanotechnology began to be studied, providing protection against degradation and penetration through the skin. Objective:: The current paper aimed at carrying out a systematic review between 2006 and 2023, seeking innovative topical formulations containing VitC and its derivatives, where the problem of low permeation and instability was circumvented. Methods:: The search for articles was performed in the Science Direct, Springer and PubMed databases. The largest amount of information was gathered on innovative formulations for topical use for the delivery of VitC and its derivatives, physicochemical characterization data, in vitro and in vivo studies. Results:: The search in the databases resulted in a total of 3032 articles, of which 16 studies were selected for the integrative review, as they proved the possibility of carrying the active ingredient in nanosystems, allowing increased stability, better permeation properties and in vitro cutaneous release, enabling the therapeutic function of the active ingredient through the application of formulations to the skin. In vivo studies also proved the clinical efficacy of the compound in liposomes, ethosomes and niosomes. Conclusion:: The most described nanocarriers were nanoparticles and liposomes, and one study involved niosomes and ethosomes. Therefore, even though it is not a newly discovered molecule, VitC continues to be studied in topical formulations ensuring stability, permeation, and effectiveness.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"335 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.2174/0115734137282899240102085324
Mohamed Elfahaam, Mohamed N. Sanad, Mohamed Farouz
: Surface enhancement improves the porousness and surface area (SSA) of biomass materials, which boosts their adsorption capability. This work investigates recent advances in surface modification technologies of biomass-based materials for heavy metal adsorption, including Pb, As, Cr, Fe, Cd, Mn, Cu, Co, Hg, Ni, Zn, and their ions in waters/wastewaters. The chemical structure and surface properties of biomass were examined in connection with various surface modification approaches and their effects on the adsorption process. In addition, adsorption performance we assessed using various operating conditions, isotherms, kinetics, and computational and artificial intelligence methodologies. This study found that acid-activated Posidonia oceanica had the highest adsorption effectiveness of 631.13 mg/g to eliminate Pb2+, whereas H3PO4/furnace-modified oil palm biomass had the lowest (0.1576 mg/g) for removing Cd2+. Important insights into knowledge gaps for changing these materials for extremely effective adsorption performance were emphasized to improve the area.
{"title":"Achievements and Difficulties with Batch and Optimization Investigations of Heavy Metal Adsorptive Removal Utilizing Enhanced Biomass-based Adsorption Materials","authors":"Mohamed Elfahaam, Mohamed N. Sanad, Mohamed Farouz","doi":"10.2174/0115734137282899240102085324","DOIUrl":"https://doi.org/10.2174/0115734137282899240102085324","url":null,"abstract":": Surface enhancement improves the porousness and surface area (SSA) of biomass materials, which boosts their adsorption capability. This work investigates recent advances in surface modification technologies of biomass-based materials for heavy metal adsorption, including Pb, As, Cr, Fe, Cd, Mn, Cu, Co, Hg, Ni, Zn, and their ions in waters/wastewaters. The chemical structure and surface properties of biomass were examined in connection with various surface modification approaches and their effects on the adsorption process. In addition, adsorption performance we assessed using various operating conditions, isotherms, kinetics, and computational and artificial intelligence methodologies. This study found that acid-activated Posidonia oceanica had the highest adsorption effectiveness of 631.13 mg/g to eliminate Pb2+, whereas H3PO4/furnace-modified oil palm biomass had the lowest (0.1576 mg/g) for removing Cd2+. Important insights into knowledge gaps for changing these materials for extremely effective adsorption performance were emphasized to improve the area.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"172 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.2174/0115734137287023240103063237
Mridul Modgil, Abhishek Sharma
: Colloidal carriers are a promising type of carriers which play a crucial role in transdermal drug delivery and other topical applications. These carriers are usually present in the microscopic size, which offers different methods to enclose and deliver a diverse range of dynamic substances such as medicines, genes, and lipids. They offer distinct advantages by mimicking the natural structure of the skin's lipid bilayers using lipids and allowing the incorporation of different active compounds through the use of polymers. Recently, more advanced technology like artificial intelligence (AI) and machine learning (ML) has been adopted in the pharmaceutical field. The incorporation of artificial intelligence and machine learning techniques in colloidal carriers holds immense promise in revolutionizing the domain of drug delivery and nanomedicine. Machine learning algorithms can undergo training with the use of extensive datasets containing information on drug behavior within the human body, which can predict drug response within the body. Additionally, AI can be employed to anticipate various processes, thereby resulting in an enhanced delivery of medication using carriers. Many studies have shown the use of machine learning (ML) and artificial intelligence (AI) for optimizing the drug-carrying capacity via colloidal carriers. The present review concentrates on various categories of innovative colloidal vehicles in transdermal administration, alongside their penetration technique, benefit, and mechanism in the integumentary system. Outcomes from the different researches are critically assessed and showcase the potential of colloidal carriers to augment the penetration of drugs through the stratum corneum while minimizing adverse effects on the entire system with improved therapeutic effectiveness in various diseases.
{"title":"Emerging Era in Colloidal Carriers Approach for Enhanced Transdermal Drug Delivery","authors":"Mridul Modgil, Abhishek Sharma","doi":"10.2174/0115734137287023240103063237","DOIUrl":"https://doi.org/10.2174/0115734137287023240103063237","url":null,"abstract":": Colloidal carriers are a promising type of carriers which play a crucial role in transdermal drug delivery and other topical applications. These carriers are usually present in the microscopic size, which offers different methods to enclose and deliver a diverse range of dynamic substances such as medicines, genes, and lipids. They offer distinct advantages by mimicking the natural structure of the skin's lipid bilayers using lipids and allowing the incorporation of different active compounds through the use of polymers. Recently, more advanced technology like artificial intelligence (AI) and machine learning (ML) has been adopted in the pharmaceutical field. The incorporation of artificial intelligence and machine learning techniques in colloidal carriers holds immense promise in revolutionizing the domain of drug delivery and nanomedicine. Machine learning algorithms can undergo training with the use of extensive datasets containing information on drug behavior within the human body, which can predict drug response within the body. Additionally, AI can be employed to anticipate various processes, thereby resulting in an enhanced delivery of medication using carriers. Many studies have shown the use of machine learning (ML) and artificial intelligence (AI) for optimizing the drug-carrying capacity via colloidal carriers. The present review concentrates on various categories of innovative colloidal vehicles in transdermal administration, alongside their penetration technique, benefit, and mechanism in the integumentary system. Outcomes from the different researches are critically assessed and showcase the potential of colloidal carriers to augment the penetration of drugs through the stratum corneum while minimizing adverse effects on the entire system with improved therapeutic effectiveness in various diseases.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"23 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.2174/0115734137278545240102055626
Mohammad Hossein Golestani Poor, Shohreh Zare Karizi, Seyed Ali Mirhosseini, Mohammad Javad Motamedi, Fateme Frootan, Soghra Khani, Jafar Amani
Background:: The use of targeted therapy has been increasing for cancer treatment. The aim of this study is to investigate chitosan-based ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. background: The targeted therapy is growing for cancer treatment. The aim here is to investigate a chitosan based Ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. Methods:: The gene construct encoding immunotoxin was designed, cloned, and expressed in E. coli BL21 (DE3). The expressed proteins were isolated by the nickel-nitrilotriacetic acid column and were analyzed by the Western-blotting. The cytotoxicity of immunotoxin was assayed on breast cell line MCF-7 and using MTT assay at 24 and 48 h treatment. Results:: The immunotoxins extrication rate, size, loading percentage, and electric charge of nanoparticles were reported appropriately as 78%, 151.5 nm, 83.53%, and +11.1 mV, respectively. The encapsulated immunotoxins led to the death of 70% and 78% of MCF-7 cells at 24 and 48 h treatment, respectively. The noncapsulated counterparts at equal doses killed 53% and 62% of cancer cells at the same time points. Conclusion:: The chitosan-immunotoxins impose potential cytotoxic effects on cancer cells. other: Keywords: Herceptin, HER2, Ricin, Targeted therapy, Breast Cancer, Nanoparticles
{"title":"The Cytotoxicity Effect of Chitosan-Encapsulated Ricin-Herceptin Immunotoxin Nanoparticles on Breast Cancer Cell Lines","authors":"Mohammad Hossein Golestani Poor, Shohreh Zare Karizi, Seyed Ali Mirhosseini, Mohammad Javad Motamedi, Fateme Frootan, Soghra Khani, Jafar Amani","doi":"10.2174/0115734137278545240102055626","DOIUrl":"https://doi.org/10.2174/0115734137278545240102055626","url":null,"abstract":"Background:: The use of targeted therapy has been increasing for cancer treatment. The aim of this study is to investigate chitosan-based ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. background: The targeted therapy is growing for cancer treatment. The aim here is to investigate a chitosan based Ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. Methods:: The gene construct encoding immunotoxin was designed, cloned, and expressed in E. coli BL21 (DE3). The expressed proteins were isolated by the nickel-nitrilotriacetic acid column and were analyzed by the Western-blotting. The cytotoxicity of immunotoxin was assayed on breast cell line MCF-7 and using MTT assay at 24 and 48 h treatment. Results:: The immunotoxins extrication rate, size, loading percentage, and electric charge of nanoparticles were reported appropriately as 78%, 151.5 nm, 83.53%, and +11.1 mV, respectively. The encapsulated immunotoxins led to the death of 70% and 78% of MCF-7 cells at 24 and 48 h treatment, respectively. The noncapsulated counterparts at equal doses killed 53% and 62% of cancer cells at the same time points. Conclusion:: The chitosan-immunotoxins impose potential cytotoxic effects on cancer cells. other: Keywords: Herceptin, HER2, Ricin, Targeted therapy, Breast Cancer, Nanoparticles","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"23 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background:: An important antioxidant, ascorbic acid, must be detected in several industrial samples collected from food, pharmaceuticals, and water treatment plants. Herein, we reported a method to produce a bimetallic copper-silver (Cu-Ag) nanocomposite and used it in the development of very sensitive and selective electrochemical sensor for the detection of ascorbic acid. Methods:: A simple chemistry concept was used during the synthesis process to reduce the cost while minimizing the use of dangerous chemicals and minimizing the environmental impact. The Strobilanthes kunthiana leaves extract effectively reduced the copper and silver ions, resulting in the creation of an extremely stable and evenly distributed Cu-Ag nanocomposite. Results:: As-prepared bimetallic Cu-Ag nanocomposite exhibited outstanding electrochemical activity against ascorbic acid oxidation. The nanocomposite was examined using field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), elemental mapping (EMap) and X-ray diffraction analysis (XRD) to ascertain its composition, structure, and stability. Using cyclic voltammetry (CV), the electrochemical performance of the nanocomposite and also the detection of ascorbic acid were carried out. The bimetallic Cu-Ag nanocomposite also exhibited better long-term stability and fouling resistance, making it appropriate for use in real-world applications and complex sample matrices. Conclusion:: The bimetallic Cu-Ag nanocomposite coated electrode was used to detect the concentration of ascorbic acid by amperometry. As a result, this study offered a simple chemical method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid. conclusion: Its potential use as an electrochemical sensor for the detection of ascorbic acid opens doors for a variety of industries, including biological diagnostics, judging the quality of food, and environmental monitoring. As a result, this study offers a green method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid. The created nanocomposite has a lot of potential for improving ascorbic acid detection methods while upholding sustainable material synthesis. other: NA
背景从食品、药品和水处理厂采集的一些工业样品中必须检测一种重要的抗氧化剂--抗坏血酸。在此,我们报告了一种制备双金属铜银(Cu-Ag)纳米复合材料的方法,并将其用于开发检测抗坏血酸的灵敏度和选择性极高的电化学传感器。研究方法在合成过程中采用了简单的化学概念,以降低成本,同时最大限度地减少危险化学品的使用和对环境的影响。Strobilanthes kunthiana 叶提取物可有效还原铜离子和银离子,从而制备出极其稳定且分布均匀的铜银纳米复合材料。结果制备的双金属铜银纳米复合材料在抗坏血酸氧化方面表现出卓越的电化学活性。使用场发射扫描电子显微镜(FE-SEM)、能量色散光谱(EDS)、元素图谱(EMap)和 X 射线衍射分析(XRD)对纳米复合材料进行了检测,以确定其成分、结构和稳定性。利用循环伏安法(CV),对纳米复合材料的电化学性能和抗坏血酸的检测进行了研究。双金属铜银纳米复合材料还表现出更好的长期稳定性和抗结垢性,使其适用于实际应用和复杂的样品基质。结论双金属铜银纳米复合材料涂层电极被用于通过安培法检测抗坏血酸的浓度。因此,本研究提供了一种简单的化学方法来制造具有优异电化学品质的双金属铜银纳米复合材料,用于准确检测抗坏血酸:作为一种电化学传感器,它在检测抗坏血酸方面的潜在用途为生物诊断、判断食品质量和环境监测等多个行业打开了大门。因此,本研究提供了一种绿色方法,用于制造具有优异电化学品质的双金属铜银纳米复合材料,以准确检测抗坏血酸。这种纳米复合材料在改进抗坏血酸检测方法方面具有很大的潜力,同时也是一种可持续的材料合成方法:不适用
{"title":"A Facile Synthesis of Bimetallic Copper-Silver Nanocomposite and Their Application in Ascorbic Acid Detection","authors":"Ridhu Varshini Murugan, Gokul Sridharan, Raji Atchudan, Sandeep Arya, Deepak Nallaswamy, Ashok Sundramoorthy","doi":"10.2174/0115734137281377240103062220","DOIUrl":"https://doi.org/10.2174/0115734137281377240103062220","url":null,"abstract":"Background:: An important antioxidant, ascorbic acid, must be detected in several industrial samples collected from food, pharmaceuticals, and water treatment plants. Herein, we reported a method to produce a bimetallic copper-silver (Cu-Ag) nanocomposite and used it in the development of very sensitive and selective electrochemical sensor for the detection of ascorbic acid. Methods:: A simple chemistry concept was used during the synthesis process to reduce the cost while minimizing the use of dangerous chemicals and minimizing the environmental impact. The Strobilanthes kunthiana leaves extract effectively reduced the copper and silver ions, resulting in the creation of an extremely stable and evenly distributed Cu-Ag nanocomposite. Results:: As-prepared bimetallic Cu-Ag nanocomposite exhibited outstanding electrochemical activity against ascorbic acid oxidation. The nanocomposite was examined using field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), elemental mapping (EMap) and X-ray diffraction analysis (XRD) to ascertain its composition, structure, and stability. Using cyclic voltammetry (CV), the electrochemical performance of the nanocomposite and also the detection of ascorbic acid were carried out. The bimetallic Cu-Ag nanocomposite also exhibited better long-term stability and fouling resistance, making it appropriate for use in real-world applications and complex sample matrices. Conclusion:: The bimetallic Cu-Ag nanocomposite coated electrode was used to detect the concentration of ascorbic acid by amperometry. As a result, this study offered a simple chemical method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid. conclusion: Its potential use as an electrochemical sensor for the detection of ascorbic acid opens doors for a variety of industries, including biological diagnostics, judging the quality of food, and environmental monitoring. As a result, this study offers a green method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid. The created nanocomposite has a lot of potential for improving ascorbic acid detection methods while upholding sustainable material synthesis. other: NA","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"165 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Rheumatoid arthritis (RA) is an inflammatory disease that causes pannus, thickened synovium, joint bone reabsorption, and acute impairment, and increases the death rate. Many people with RA now live better lives as a result of recent improvements in treatment, which have dramatically slowed the disease's course. However, a significant portion of patients continue to either be non-responsive to existing treatments or have developed a resistance to them. Nanotechnology is becoming a more and more intriguing tool for investigating novel strategies, ranging from treating various disease states to tackling complicated conditions. Objective: The primary goal of the work was to outline the research activities on versatile nanocarriers, like polymeric micelles, nanoparticles, liposomes, etc., with controlled/sustained drug release patterns fabricated to elevate the effectiveness of drug delivery. Method: This review mainly focuses on emerging strategies to deliver various nanocarriers encapsulating anti-rheumatic drugs, enzymes, genes, phytoconstituents, etc. It also includes up-todate progress regarding patents and clinical trials filed for the treatment of RA. Results: In most of the recent studies, nanocarrier-based drug delivery has gained attention worldwide and led to the development of new approaches for treating RA. A better understanding of pathophysiology and signalling pathways helps to select the antirheumatic drug. The encapsulation of active moiety into the novel nanocarrier enhances the solubility of insoluble drugs. It restricts the exposure of the drug to the non-inflamed site using various targeting strategies, like active, passive, or biomimetic targeting and stimuli-responsive carrier systems to enhance the drug delivery mechanism. Conclusion: A brief description of current RA treatments using nanocarrier technology is provided in this paper, along with predictions for potential enhancements to the nanotherapeutic regimen.
背景:类风湿性关节炎(RA)是一种炎症性疾病,会导致关节肿胀、滑膜增厚、关节骨吸收和急性损伤,并增加死亡率。由于近年来治疗方法的改进,大大延缓了病程,许多 RA 患者现在生活得更好了。然而,仍有相当一部分患者对现有的治疗方法没有反应或产生了抗药性。纳米技术正成为一种越来越有趣的工具,用于研究从治疗各种疾病状态到解决复杂病症的新策略。目标:这项工作的主要目标是概述有关多功能纳米载体的研究活动,如聚合物胶束、纳米颗粒、脂质体等,这些载体具有可控/持续的药物释放模式,可提高给药效果。方法:本综述主要关注封装抗风湿药物、酶、基因、植物成分等各种纳米载体的新兴给药策略。它还包括有关治疗 RA 的专利和临床试验的最新进展。研究结果:在最近的大多数研究中,以纳米载体为基础的给药方法受到了全世界的关注,并由此开发出了治疗 RA 的新方法。更好地了解病理生理学和信号通路有助于选择抗风湿药物。将活性分子封装到新型纳米载体中可提高不溶性药物的溶解度。它利用各种靶向策略,如主动、被动或仿生靶向和刺激响应载体系统,限制药物暴露于非炎症部位,以增强给药机制。结论本文简要介绍了目前使用纳米载体技术治疗 RA 的方法,并对纳米治疗方案的潜在改进进行了预测。
{"title":"Emerging Approaches for the Treatment of Rheumatoid Arthritis: An Outlook","authors":"Priyanka Kumari, Sanjay Jain, Shivani Saraf, Ankita Tiwari, Pritish Panda, Amit Verma","doi":"10.2174/0115734137264937231214071646","DOIUrl":"https://doi.org/10.2174/0115734137264937231214071646","url":null,"abstract":"Background: Rheumatoid arthritis (RA) is an inflammatory disease that causes pannus, thickened synovium, joint bone reabsorption, and acute impairment, and increases the death rate. Many people with RA now live better lives as a result of recent improvements in treatment, which have dramatically slowed the disease's course. However, a significant portion of patients continue to either be non-responsive to existing treatments or have developed a resistance to them. Nanotechnology is becoming a more and more intriguing tool for investigating novel strategies, ranging from treating various disease states to tackling complicated conditions. Objective: The primary goal of the work was to outline the research activities on versatile nanocarriers, like polymeric micelles, nanoparticles, liposomes, etc., with controlled/sustained drug release patterns fabricated to elevate the effectiveness of drug delivery. Method: This review mainly focuses on emerging strategies to deliver various nanocarriers encapsulating anti-rheumatic drugs, enzymes, genes, phytoconstituents, etc. It also includes up-todate progress regarding patents and clinical trials filed for the treatment of RA. Results: In most of the recent studies, nanocarrier-based drug delivery has gained attention worldwide and led to the development of new approaches for treating RA. A better understanding of pathophysiology and signalling pathways helps to select the antirheumatic drug. The encapsulation of active moiety into the novel nanocarrier enhances the solubility of insoluble drugs. It restricts the exposure of the drug to the non-inflamed site using various targeting strategies, like active, passive, or biomimetic targeting and stimuli-responsive carrier systems to enhance the drug delivery mechanism. Conclusion: A brief description of current RA treatments using nanocarrier technology is provided in this paper, along with predictions for potential enhancements to the nanotherapeutic regimen.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"14 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139590695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}