首页 > 最新文献

Current Nanoscience最新文献

英文 中文
Improved Electrocatalytic Degradation of Alizarin Yellow R by Ti/Zr-SnO2/PbO2 Electrodes Doped with Ytterbium 掺杂镱的 Ti/Zr-SnO2/PbO2 电极提高了茜素黄 R 的电催化降解能力
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-13 DOI: 10.2174/0115734137302282240422063450
Bi Yang, Guan-Jin Gao, Qing-Dong Miao, Asha Ergu, Guo-Cong Liu, Jiao Zou, Jin-Gang Yu
Introduction: Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO2 electrodes prepared by an electrodeposition method. Method: The etching of the Ti sheet by using a mixed acid of H2SO4 and TA (volume ratio= 2: 1) for 50 min at 100 °C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO2, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO2/PbO2 electrodes by an electrodeposition method on the intermediate layer of Zr-SnO2. The surface morphology of the Ti/Zr-SnO2/PbO2 electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode. Result: The developed Yb-doped Ti/Zr-SnO2/PbO2 electrode showed improved removal efficiencies toward AYR. Conclusion: The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO2/PbO2 were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2 , initial AYR concentration of 50.0 mg L-1 , and Na2SO4 concentration of 0.10 mol L-1 .
简介:通过电沉积法制备的掺镱 Ti/PbO2 电极研究了茜素黄 R (AYR) 的电化学氧化。方法是使用 H2SO4 和 TA 的混合酸(体积比为 2:1)在 100 ℃ 下蚀刻钛片 50 分钟,可生成适合进一步改性的界面。扫描电子显微镜 (SEM)、能量色散光谱 (EDS)、循环伏安法 (CV) 和电化学阻抗光谱 (EIS) 表征了电极上掺杂镱的形态、组成和电化学特性。我们还引入了适当的中间层 Zr-SnO2。我们还尝试在 Zr-SnO2 中间层上采用电沉积方法制造掺杂镱(Yb)的 Ti/Zr-SnO2/PbO2 电极。由于掺杂了镱,Ti/Zr-SnO2/PbO2 电极的表面形貌发生了变化,从而影响了改性电极的电催化活性。结果所开发的掺镱 Ti/Zr-SnO2/PbO2 电极对 AYR 的去除率有所提高。结论研究了电流密度和初始 AYR 浓度对掺镱 Ti/Zr-SnO2/PbO2 电化学氧化 AYR 的影响。在电流密度为 60 mA/cm2、初始 AYR 浓度为 50.0 mg L-1 和 Na2SO4 浓度为 0.10 mol L-1 的条件下,180 min 内 AYR 的去除率为 97.3%。
{"title":"Improved Electrocatalytic Degradation of Alizarin Yellow R by Ti/Zr-SnO2/PbO2 Electrodes Doped with Ytterbium","authors":"Bi Yang, Guan-Jin Gao, Qing-Dong Miao, Asha Ergu, Guo-Cong Liu, Jiao Zou, Jin-Gang Yu","doi":"10.2174/0115734137302282240422063450","DOIUrl":"https://doi.org/10.2174/0115734137302282240422063450","url":null,"abstract":"Introduction: Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO2 electrodes prepared by an electrodeposition method. Method: The etching of the Ti sheet by using a mixed acid of H2SO4 and TA (volume ratio= 2: 1) for 50 min at 100 °C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO2, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO2/PbO2 electrodes by an electrodeposition method on the intermediate layer of Zr-SnO2. The surface morphology of the Ti/Zr-SnO2/PbO2 electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode. Result: The developed Yb-doped Ti/Zr-SnO2/PbO2 electrode showed improved removal efficiencies toward AYR. Conclusion: The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO2/PbO2 were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2 , initial AYR concentration of 50.0 mg L-1 , and Na2SO4 concentration of 0.10 mol L-1 .","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"28 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Reduction Time for Chemically Synthesized rGO 优化化学合成 rGO 的还原时间
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-13 DOI: 10.2174/0115734137295957240420064719
Payal Paul, China Limbu, Joydeep Bisawas, Sanjib Kabi, Kamakhya Prakash Misra, Saikat Chattopadhyay
Introduction: This article presents structural and morphological analysis for graphene oxide (GO) synthesized via Hummers' method and for reduced Graphene Oxide (rGO) prepared by chemical reduction. Graphene Oxide is synthesized from graphite powder at room temperature. Hydrazine hydrate is used as a reducing agent to reduce the accumulated GO. Method: To understand the impact of reduction time on structural parameters of produced rGO, three different time limits, i.e. 4, 5, and 6 hrs at 800 °C are used. FTIR spectra show the presence of all functional groups to confirm the authenticity of rGO samples. The XRD peaks are utilized to calculate different structural parameters for all the samples to identify the effect of reduction time. A change in the band gap energy may be noticed from UV-Vis absorption spectra. Result: It indicates that with the increase in reduction time, the absorption edge shifts to a lower wavelength value. FESEM micrographs reveal a flake-like random growth of rGO with prominent wrinkled structures, which is a signature of graphene-like 2D material. Conclusion: Hence, from the structural and absorption studies, it can be concluded that an increase in reduction time will produce smaller rGO flakes in the Hummers synthesis method.
导言:本文介绍了通过 Hummers 方法合成的氧化石墨烯(GO)和通过化学还原法制备的还原氧化石墨烯(rGO)的结构和形态分析。氧化石墨烯由石墨粉在室温下合成。使用水合肼作为还原剂来还原累积的 GO。方法:为了了解还原时间对生成的 rGO 结构参数的影响,在 800 °C 下使用了三个不同的时限,即 4、5 和 6 小时。傅立叶变换红外光谱显示了所有官能团的存在,从而确认了 rGO 样品的真实性。利用 XRD 峰计算所有样品的不同结构参数,以确定还原时间的影响。紫外可见吸收光谱显示带隙能发生了变化。结果:结果表明,随着还原时间的延长,吸收边缘会向低波长值移动。FESEM 显微照片显示 rGO 呈片状无序生长,并具有突出的皱褶结构,这正是类石墨烯二维材料的特征。结论:因此,从结构和吸收研究中可以得出结论,在 Hummers 合成法中,增加还原时间将产生更小的 rGO 片。
{"title":"Optimization of Reduction Time for Chemically Synthesized rGO","authors":"Payal Paul, China Limbu, Joydeep Bisawas, Sanjib Kabi, Kamakhya Prakash Misra, Saikat Chattopadhyay","doi":"10.2174/0115734137295957240420064719","DOIUrl":"https://doi.org/10.2174/0115734137295957240420064719","url":null,"abstract":"Introduction: This article presents structural and morphological analysis for graphene oxide (GO) synthesized via Hummers' method and for reduced Graphene Oxide (rGO) prepared by chemical reduction. Graphene Oxide is synthesized from graphite powder at room temperature. Hydrazine hydrate is used as a reducing agent to reduce the accumulated GO. Method: To understand the impact of reduction time on structural parameters of produced rGO, three different time limits, i.e. 4, 5, and 6 hrs at 800 °C are used. FTIR spectra show the presence of all functional groups to confirm the authenticity of rGO samples. The XRD peaks are utilized to calculate different structural parameters for all the samples to identify the effect of reduction time. A change in the band gap energy may be noticed from UV-Vis absorption spectra. Result: It indicates that with the increase in reduction time, the absorption edge shifts to a lower wavelength value. FESEM micrographs reveal a flake-like random growth of rGO with prominent wrinkled structures, which is a signature of graphene-like 2D material. Conclusion: Hence, from the structural and absorption studies, it can be concluded that an increase in reduction time will produce smaller rGO flakes in the Hummers synthesis method.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"207 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Micro/Nano Pattern Arrays with Grating-Based Periodic Structures using the Direct Laser Lithography System 利用直接激光光刻系统开发基于光栅周期结构的微/纳米图案阵列
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-08 DOI: 10.2174/0115734137283785240118095556
Rency Rajan, Alfred Kirubaraj, S. Senith, Shajin Prince, S.R. Jino Ramson
Introduction: This research delves into utilizing the Direct Laser Lithography System to produce micro/nanopattern arrays with grating-based periodic structures. Initially, refining the variation in periodic structures within these arrays becomes a pivotal pursuit. This demands a deep comprehension of how structural variation aligns with specific applications, particularly in photonics and material science. Method: Advancements in hardware, software, or process optimization techniques hold potential for reaching this objective. Using an optical beam, this system enables the engraving of moderate periodic and quasi-periodic structures, enhancing pattern formation in a three-dimensional environment. Through cost-effective direct-beam interferometry systems utilizing 405 nm GaN and 290 to 780 nm AlInGaN semiconductor laser diodes, patterns ranging from in period were created, employing 300 nm gratings. Result: The system's cost-efficiency and ability to achieve high-resolution permit the creation of both regular and irregular grating designs. By employing an optical head assembly from a bluray disc recorder, housing a semiconductor laser diode and an objective lens with an NA of 0.85, this system displays promising potential in progressing the fabrication of micro/nanopattern arrays. Conclusion: Assessing their optical, mechanical, and electrical properties and exploring potential applications across varied fields like optoelectronics, photovoltaics, sensors, and biomedical devices represent critical strides for further exploration and advancement.
导言:本研究深入探讨如何利用直接激光光刻系统制作具有基于光栅的周期性结构的微/纳米图案阵列。起初,完善这些阵列中周期性结构的变化是一项关键的任务。这就要求深入理解结构变化如何与特定应用相匹配,尤其是在光子学和材料科学领域。方法:硬件、软件或流程优化技术的进步为实现这一目标提供了可能。该系统使用光束,可雕刻中等周期和准周期结构,增强三维环境中的图案形成。通过使用 405 nm GaN 和 290 至 780 nm AlInGaN 半导体激光二极管的高性价比直接光束干涉测量系统,利用 300 nm 光栅制作出了周期不等的图案。结果:该系统的成本效益和实现高分辨率的能力允许创建规则和不规则光栅设计。该系统采用蓝光光盘刻录机的光学头组件,容纳一个半导体激光二极管和一个 NA 值为 0.85 的物镜,在微/纳米图案阵列的制作方面显示出巨大的潜力。结论评估微/纳米图案阵列的光学、机械和电气特性,探索其在光电、光伏、传感器和生物医学设备等不同领域的潜在应用,是进一步探索和进步的关键步骤。
{"title":"Development of Micro/Nano Pattern Arrays with Grating-Based Periodic Structures using the Direct Laser Lithography System","authors":"Rency Rajan, Alfred Kirubaraj, S. Senith, Shajin Prince, S.R. Jino Ramson","doi":"10.2174/0115734137283785240118095556","DOIUrl":"https://doi.org/10.2174/0115734137283785240118095556","url":null,"abstract":"Introduction: This research delves into utilizing the Direct Laser Lithography System to produce micro/nanopattern arrays with grating-based periodic structures. Initially, refining the variation in periodic structures within these arrays becomes a pivotal pursuit. This demands a deep comprehension of how structural variation aligns with specific applications, particularly in photonics and material science. Method: Advancements in hardware, software, or process optimization techniques hold potential for reaching this objective. Using an optical beam, this system enables the engraving of moderate periodic and quasi-periodic structures, enhancing pattern formation in a three-dimensional environment. Through cost-effective direct-beam interferometry systems utilizing 405 nm GaN and 290 to 780 nm AlInGaN semiconductor laser diodes, patterns ranging from in period were created, employing 300 nm gratings. Result: The system's cost-efficiency and ability to achieve high-resolution permit the creation of both regular and irregular grating designs. By employing an optical head assembly from a bluray disc recorder, housing a semiconductor laser diode and an objective lens with an NA of 0.85, this system displays promising potential in progressing the fabrication of micro/nanopattern arrays. Conclusion: Assessing their optical, mechanical, and electrical properties and exploring potential applications across varied fields like optoelectronics, photovoltaics, sensors, and biomedical devices represent critical strides for further exploration and advancement.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"35 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver-Coated Waste Rubber Micro-Particles with Low Density, High Stability, and Excellent Electromagnetic Shielding Ability: Design, Preparation, and Characterization 具有低密度、高稳定性和优异电磁屏蔽能力的银涂层废橡胶微粒:设计、制备和表征
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-27 DOI: 10.2174/0115734137296313240417080456
Xin-Kun Lv, Qi Zhong, Yong-Kun Li, Jin-Gang Yu
Introduction: The electromagnetic radiation caused by the increasing application of electronic devices is associated with environmental hazards and health risks. background: The electromagnetic radiation caused by the increasing application of electronic devices is associated with environmental hazards and health risks. With the rapid development of science and technology, it is urgent to reduce electromagnetic interference by introducing effective electromagnetic shielding materials. Furthermore, novel electromagnetic shielding materials with increasing stability and decreasing density have become the focus of the current researches. Method: With the rapid development of science and technology, it is urgent to reduce electromagnetic interference by introducing effective electromagnetic shielding materials. Furthermore, novel electromagnetic shielding materials with increasing stability and decreasing density have become the focus of the current research. Herein, silver (Ag) coated rubber (AR) micro-particles (MPs) were prepared by coating Ag nanoparticles (NPs) onto waste AR MPs. objective: Fabrication of Silver (Ag) coated rubber (AR) micro-particles (MPs). Result: The AR MPs not only exhibited superior electromagnetic shielding performance with the electromagnetic interference (EMI) shielding effectiveness (SE) value of 6.1 dB at 5.8 GHz, but also possessed excellent long-time stability (240 h) in high-temperature (85 °C) and high humidity (85% RH) environment. Due to the low density (0.66 g/cm3) of AR-3 MPs, its practical application in lightweight and highly integrated electronic devices is guaranteed. Conclusion: The developed AR MPs have exhibited broad application prospects in the electromagnetic interference (EMI) shielding field due to the good EMI shielding performance, high stability and low density.
导言:电子设备的日益广泛应用所产生的电磁辐射与环境危害和健康风险有关:电子设备的应用日益广泛,由此产生的电磁辐射对环境和健康造成危害。随着科学技术的飞速发展,迫切需要引入有效的电磁屏蔽材料来减少电磁干扰。此外,稳定性增强、密度减小的新型电磁屏蔽材料已成为当前研究的重点。研究方法随着科学技术的飞速发展,引入有效的电磁屏蔽材料以降低电磁干扰已迫在眉睫。此外,稳定性更高、密度更小的新型电磁屏蔽材料也成为当前研究的重点。本文通过在废弃的 AR 微颗粒上涂覆银纳米颗粒(NPs),制备了银(Ag)涂层橡胶(AR)微颗粒(MPs):制备银(Ag)包覆橡胶(AR)微颗粒(MPs)。结果:AR MPs 不仅具有优异的电磁屏蔽性能,在 5.8 GHz 频率下的电磁干扰(EMI)屏蔽效能(SE)值为 6.1 dB,而且在高温(85 °C)和高湿度(85% RH)环境下具有出色的长期稳定性(240 h)。由于 AR-3 MPs 的密度较低(0.66 g/cm3),保证了其在轻型和高集成度电子设备中的实际应用。结论所开发的 AR MPs 具有良好的 EMI 屏蔽性能、高稳定性和低密度,在电磁干扰(EMI)屏蔽领域具有广阔的应用前景。
{"title":"Silver-Coated Waste Rubber Micro-Particles with Low Density, High Stability, and Excellent Electromagnetic Shielding Ability: Design, Preparation, and Characterization","authors":"Xin-Kun Lv, Qi Zhong, Yong-Kun Li, Jin-Gang Yu","doi":"10.2174/0115734137296313240417080456","DOIUrl":"https://doi.org/10.2174/0115734137296313240417080456","url":null,"abstract":"Introduction: The electromagnetic radiation caused by the increasing application of electronic devices is associated with environmental hazards and health risks. background: The electromagnetic radiation caused by the increasing application of electronic devices is associated with environmental hazards and health risks. With the rapid development of science and technology, it is urgent to reduce electromagnetic interference by introducing effective electromagnetic shielding materials. Furthermore, novel electromagnetic shielding materials with increasing stability and decreasing density have become the focus of the current researches. Method: With the rapid development of science and technology, it is urgent to reduce electromagnetic interference by introducing effective electromagnetic shielding materials. Furthermore, novel electromagnetic shielding materials with increasing stability and decreasing density have become the focus of the current research. Herein, silver (Ag) coated rubber (AR) micro-particles (MPs) were prepared by coating Ag nanoparticles (NPs) onto waste AR MPs. objective: Fabrication of Silver (Ag) coated rubber (AR) micro-particles (MPs). Result: The AR MPs not only exhibited superior electromagnetic shielding performance with the electromagnetic interference (EMI) shielding effectiveness (SE) value of 6.1 dB at 5.8 GHz, but also possessed excellent long-time stability (240 h) in high-temperature (85 °C) and high humidity (85% RH) environment. Due to the low density (0.66 g/cm3) of AR-3 MPs, its practical application in lightweight and highly integrated electronic devices is guaranteed. Conclusion: The developed AR MPs have exhibited broad application prospects in the electromagnetic interference (EMI) shielding field due to the good EMI shielding performance, high stability and low density.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"20 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brief Overview of Nanographene Oxide and its Possible Application 纳米石墨烯氧化物及其可能应用简介
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-19 DOI: 10.2174/0115734137282716240404052535
Srishti Dutta, Dishen Kumar Banjara, Abhilash Pandey, Devanand Sahu, Vanshika Sharma, Goutam Kumar Patra
: In recent years, graphene oxides have convoked significant attention across various scientific disciplines, including physics, chemistry, and materials science, owing to their extraordinary physical properties, chemical tunability, and vast possibilities for their applications. As a result, our keen interest lies in exploring nanographene oxide and presenting a comprehensive review on this subject. This paper provides a thorough examination of eminently progressive advancements in the synthesis, properties, and performance of graphene oxide. Synthetic chemists venturing into this expanding field of material science and researchers exploring the applications of graphene oxide will find immense value in this review. The comprehensive behavior towards the alchemy of graphene oxide will aid in better apprehension of the current approaches, scope and their limitations in utilizing this remarkable material. Moreover, to promote further research and development in this area, we deliberate on the technical challenges associated with graphene oxide and offer suggestions for several future research directions. This review serves as a valuable resource, encouraging scientific advancements and innovation in the exploration of graphene oxide's potential in various applications. To facilitate further research and development, the technical challenges are discussed, and several future research directions are also suggested in this paper.
:近年来,石墨烯氧化物因其非凡的物理性质、化学可调性和广阔的应用前景,引起了物理学、化学和材料科学等各个科学学科的极大关注。因此,我们对探索纳米氧化石墨烯并对这一主题进行全面综述产生了浓厚的兴趣。本文深入探讨了氧化石墨烯在合成、特性和性能方面取得的显著进步。涉足这一不断扩大的材料科学领域的合成化学家和探索氧化石墨烯应用的研究人员会发现这篇综述的巨大价值。对氧化石墨烯炼金术的全面介绍将有助于更好地理解利用这种非凡材料的现有方法、范围及其局限性。此外,为了促进该领域的进一步研究和发展,我们讨论了与氧化石墨烯相关的技术挑战,并为未来的几个研究方向提出了建议。这篇综述可作为宝贵的资源,鼓励在探索氧化石墨烯的各种应用潜力方面取得科学进步和创新。为了促进进一步的研究和开发,本文讨论了技术挑战,并提出了几个未来的研究方向。
{"title":"Brief Overview of Nanographene Oxide and its Possible Application","authors":"Srishti Dutta, Dishen Kumar Banjara, Abhilash Pandey, Devanand Sahu, Vanshika Sharma, Goutam Kumar Patra","doi":"10.2174/0115734137282716240404052535","DOIUrl":"https://doi.org/10.2174/0115734137282716240404052535","url":null,"abstract":": In recent years, graphene oxides have convoked significant attention across various scientific disciplines, including physics, chemistry, and materials science, owing to their extraordinary physical properties, chemical tunability, and vast possibilities for their applications. As a result, our keen interest lies in exploring nanographene oxide and presenting a comprehensive review on this subject. This paper provides a thorough examination of eminently progressive advancements in the synthesis, properties, and performance of graphene oxide. Synthetic chemists venturing into this expanding field of material science and researchers exploring the applications of graphene oxide will find immense value in this review. The comprehensive behavior towards the alchemy of graphene oxide will aid in better apprehension of the current approaches, scope and their limitations in utilizing this remarkable material. Moreover, to promote further research and development in this area, we deliberate on the technical challenges associated with graphene oxide and offer suggestions for several future research directions. This review serves as a valuable resource, encouraging scientific advancements and innovation in the exploration of graphene oxide's potential in various applications. To facilitate further research and development, the technical challenges are discussed, and several future research directions are also suggested in this paper.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"37 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Lead-Free Cs2TiBr6 Green Perovskite Solar Cell for Future Renewable Energy Applications 为未来可再生能源应用优化无铅 Cs2TiBr6 绿色过氧化物太阳能电池
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-19 DOI: 10.2174/0115734137286096240320075126
Jeepa K J, T D Subash, K. S. Joseph Wilson, J. Ajayan, Malathy Batumalay
Introduction: A modern genre of solar technology is Perovskite solar cells (PSCs), which are growing rapidly because they work well. The composition of links within the hole transport materials, electron transport materials and the footprint on PSCs is perovskite Method: The traditional genre of lead halide perovskite can be swapped with a new perovskite compound called Cs2TiBr6. Cs2TiBr6 has better properties when it comes to light, electricity, and solar energy. When comparing the performance of various electron transport films (ETFs) for the effective operation of perovskite, TiO2 is recognized as an ETF as it has higher thermal stability, low-cost, and appropriate energy level Results: The most productive hole transport film (HTF) for these perovskite solar cells, compared to other HTFs, has been demonstrated as V2O5. Conclusion: The various solar cell characteristics of the proposed device, the "Au/V2O5/Cs2TiBr6/TiO2/TCO" perovskite solar cell, are investigated in this examination by tuning the parameters such as temperature, series resistance, defect density, etc.
导言:现代太阳能技术的一种类型是过氧化物太阳能电池(PSCs),这种电池因其工作性能良好而发展迅速。在 PSC 上,空穴传输材料、电子传输材料和基底的组成环节都采用了包晶法:一种名为 Cs2TiBr6 的新型过氧化物化合物可以取代传统的卤化铅过氧化物。Cs2TiBr6 在光、电和太阳能方面具有更好的性能。在比较各种电子传输薄膜(ETFs)的性能,以确保透辉石的有效运行时,TiO2 被认为是一种 ETF,因为它具有更高的热稳定性、低成本和适当的能级结果:与其他 HTF 相比,V2O5 被证明是这些透辉石太阳能电池中最有效的空穴传输薄膜 (HTF)。结论本研究通过调整温度、串联电阻、缺陷密度等参数,研究了所提出的 "Au/V2O5/Cs2TiBr6/TiO2/TCO "透辉石太阳能电池器件的各种太阳能电池特性。
{"title":"Optimization of Lead-Free Cs2TiBr6 Green Perovskite Solar Cell for Future Renewable Energy Applications","authors":"Jeepa K J, T D Subash, K. S. Joseph Wilson, J. Ajayan, Malathy Batumalay","doi":"10.2174/0115734137286096240320075126","DOIUrl":"https://doi.org/10.2174/0115734137286096240320075126","url":null,"abstract":"Introduction: A modern genre of solar technology is Perovskite solar cells (PSCs), which are growing rapidly because they work well. The composition of links within the hole transport materials, electron transport materials and the footprint on PSCs is perovskite Method: The traditional genre of lead halide perovskite can be swapped with a new perovskite compound called Cs2TiBr6. Cs2TiBr6 has better properties when it comes to light, electricity, and solar energy. When comparing the performance of various electron transport films (ETFs) for the effective operation of perovskite, TiO2 is recognized as an ETF as it has higher thermal stability, low-cost, and appropriate energy level Results: The most productive hole transport film (HTF) for these perovskite solar cells, compared to other HTFs, has been demonstrated as V2O5. Conclusion: The various solar cell characteristics of the proposed device, the \"Au/V2O5/Cs2TiBr6/TiO2/TCO\" perovskite solar cell, are investigated in this examination by tuning the parameters such as temperature, series resistance, defect density, etc.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"12 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Silicon Nanowires 硅纳米线的应用
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-03 DOI: 10.2174/0115734137295190240321042642
Yang Feng, Ping Liang, Ziwen Xia, Hongyan Peng, Shihua Zhao
:: Silicon Nanowires (SiNWs), a novel category of nanomaterials, exhibit several outstanding properties, including superior transistor performance, quantum tunneling effects, and remarkable electrical and optical capabilities. These properties are expected to contribute significantly to the development of future nanodevices, such as sensors and optoelectronic components. The potential for device miniaturization with SiNWs is based on their ease of monocrystallization. This leads to a reduced rate of hole-electron complexes and their extensive specific surface area that promotes boundary effects, thereby diminishing conductivity. Characterized by unique structural attributes, SiNWs hold promise for a wide range of applications in various sectors. To date, multiple methods have been established for SiNW fabrication, including solgel, electrochemical, laser ablation, chemical vapor deposition, and thermal vapor deposition techniques. Subsequently, the focus has shifted to the application of SiNWs in electronics, energy, and biomedicine. SiNWs are instrumental in producing high-performance electronic devices, such as field-effect transistors, sensors, and memory units. They also exhibit outstanding photovoltaic properties, making them suitable for high-efficiency solar cell and photocatalyst production. Additionally, SiNWs are poised to make significant contributions to biomedicine, particularly in biosensors, drug delivery systems, and tissue engineering materials. This article provides a concise review of the current status of SiNWs in electronics, sensing devices, and solar cell applications, and their roles in high-performance transistors, biosensors, and solar cells. It concludes with an exploration of the challenges and prospects for SiNWs. In summary, the unique attributes of SiNWs establish them as a versatile nanomaterial with broad applicability. This review offers a comprehensive overview of SiNW research and theoretical insights that may guide similar studies. The insights into recent SiNW research presented here are intended to inform future applications and investigations involving these nanomaterials.
::硅纳米线(SiNWs)是一种新型纳米材料,具有多种优异特性,包括卓越的晶体管性能、量子隧道效应以及非凡的电学和光学能力。这些特性有望极大地促进未来纳米器件(如传感器和光电元件)的发展。SiNW 易于单晶化,因此具有器件微型化的潜力。这导致了空穴-电子复合率的降低,而其广泛的比表面积会促进边界效应,从而降低导电性。SiNWs 具有独特的结构属性,有望在各个领域得到广泛应用。迄今为止,已有多种方法用于制造 SiNW,包括溶胶、电化学、激光烧蚀、化学气相沉积和热气相沉积技术。随后,人们将重点转移到 SiNW 在电子、能源和生物医学领域的应用上。氮化硅薄膜在生产高性能电子器件(如场效应晶体管、传感器和存储单元)方面发挥着重要作用。它们还具有出色的光电特性,适合生产高效太阳能电池和光催化剂。此外,SiNW 还将为生物医学做出重大贡献,特别是在生物传感器、药物输送系统和组织工程材料方面。本文简要回顾了 SiNW 在电子、传感设备和太阳能电池应用中的现状,以及它们在高性能晶体管、生物传感器和太阳能电池中的作用。报告最后探讨了氮化硅薄膜面临的挑战和发展前景。总之,SiNW 的独特属性使其成为一种具有广泛适用性的多功能纳米材料。本综述全面概述了 SiNW 的研究和理论见解,可为类似研究提供指导。本文介绍的有关 SiNW 最新研究的见解旨在为未来涉及这些纳米材料的应用和研究提供参考。
{"title":"Application of Silicon Nanowires","authors":"Yang Feng, Ping Liang, Ziwen Xia, Hongyan Peng, Shihua Zhao","doi":"10.2174/0115734137295190240321042642","DOIUrl":"https://doi.org/10.2174/0115734137295190240321042642","url":null,"abstract":":: Silicon Nanowires (SiNWs), a novel category of nanomaterials, exhibit several outstanding properties, including superior transistor performance, quantum tunneling effects, and remarkable electrical and optical capabilities. These properties are expected to contribute significantly to the development of future nanodevices, such as sensors and optoelectronic components. The potential for device miniaturization with SiNWs is based on their ease of monocrystallization. This leads to a reduced rate of hole-electron complexes and their extensive specific surface area that promotes boundary effects, thereby diminishing conductivity. Characterized by unique structural attributes, SiNWs hold promise for a wide range of applications in various sectors. To date, multiple methods have been established for SiNW fabrication, including solgel, electrochemical, laser ablation, chemical vapor deposition, and thermal vapor deposition techniques. Subsequently, the focus has shifted to the application of SiNWs in electronics, energy, and biomedicine. SiNWs are instrumental in producing high-performance electronic devices, such as field-effect transistors, sensors, and memory units. They also exhibit outstanding photovoltaic properties, making them suitable for high-efficiency solar cell and photocatalyst production. Additionally, SiNWs are poised to make significant contributions to biomedicine, particularly in biosensors, drug delivery systems, and tissue engineering materials. This article provides a concise review of the current status of SiNWs in electronics, sensing devices, and solar cell applications, and their roles in high-performance transistors, biosensors, and solar cells. It concludes with an exploration of the challenges and prospects for SiNWs. In summary, the unique attributes of SiNWs establish them as a versatile nanomaterial with broad applicability. This review offers a comprehensive overview of SiNW research and theoretical insights that may guide similar studies. The insights into recent SiNW research presented here are intended to inform future applications and investigations involving these nanomaterials.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"11 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery 鸟瞰石墨烯氧化物纳米系统在治疗传递中的作用
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-25 DOI: 10.2174/0115734137299120240312044808
Sanchit Dhankar, Nitika Garg, Samrat Chauhan, Monika Saini
: The remarkable physicochemical properties of Graphene oxide (GO), a graphene derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic nature is the source of its biological flexibility. The transportation of genes and small molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles, and micelles. This review aims to compile the existing body of knowledge regarding the use of GO in drug delivery by delving into its many potential uses, obstacles, and future developments.
:氧化石墨烯(GO)是一种石墨烯衍生物,其非凡的物理化学特性使其成为一种具有引人入胜的医疗管理潜力的材料。它的二维各向同性是其生物灵活性的源泉。基因和小分子的运输只是石墨烯及其复合材料众多生物医学应用中的两种。在牙齿和骨骼移植中的抗菌应用、蛋白质的生物功能化以及癌症治疗等都是石墨烯的潜在用途。新合成纳米材料的生物相容性为生物和医药用途开辟了广阔的前景。此外,GO 的多功能性使其成为其他给药系统(如水凝胶、纳米颗粒和胶束)的理想成分。本综述旨在通过深入研究 GO 的多种潜在用途、障碍和未来发展,汇编有关 GO 在给药方面应用的现有知识。
{"title":"A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery","authors":"Sanchit Dhankar, Nitika Garg, Samrat Chauhan, Monika Saini","doi":"10.2174/0115734137299120240312044808","DOIUrl":"https://doi.org/10.2174/0115734137299120240312044808","url":null,"abstract":": The remarkable physicochemical properties of Graphene oxide (GO), a graphene derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic nature is the source of its biological flexibility. The transportation of genes and small molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles, and micelles. This review aims to compile the existing body of knowledge regarding the use of GO in drug delivery by delving into its many potential uses, obstacles, and future developments.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"2018 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites 利用双层/层状 Perovskites 的太阳光辅助光催化降解染料简评
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-21 DOI: 10.2174/0115734137296172240311112922
Rasmirekha Pattanaik, Debapriya Pradhan, Suresh Kumar Dash
:: During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.
::过去几十年来,人们一直致力于开发无毒、低成本、绿色和可研究的光催化剂,以借助可持续、充足和可再生的太阳光照射降解地表水中的有毒染料。具有广泛应用(包括光催化水净化)的包晶石氧化物具有独特的性质,使其适合在可见光谱下有效地进行催化反应。本微型综述专门研究双/层包晶石及其相关材料,并总结了双/层包晶石光催化剂的最新改进及其在降解有机染料中的应用。
{"title":"A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites","authors":"Rasmirekha Pattanaik, Debapriya Pradhan, Suresh Kumar Dash","doi":"10.2174/0115734137296172240311112922","DOIUrl":"https://doi.org/10.2174/0115734137296172240311112922","url":null,"abstract":":: During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"4 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly-Thionine/ SWCNT Nanocomposite Coated Electrochemical Sensor for Determination of Vitamin C 用于测定维生素 C 的聚硫氨酸/SWCNT 纳米复合涂层电化学传感器
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-28 DOI: 10.2174/0115734137289697240216070503
Sangeetha Dhanapalan, Vasanth Magesh, Raji Atchudan, Sandeep Arya, Dhanraj Ganapathy, Deepak Nallaswamy, Ashok Sundramoorthy
Background: The electrochemical sensors convert biological or chemical information, such as analyte concentration or a biomolecular (biochemical receptor) interaction, into electrical signals. In this paper, we describe the development of a poly-thionine/ single-walled carbon nanotube (P-Th/SWCNT) composite for the electrochemical detection of ascorbic acid (vitamin C). Methods: To improve electrochemical performance, we attempted to electro-polymerize the thionine monomers, an essential chemical building block, directly on the surface of singlewalled carbon nanotubes (SWCNT). Results: Field Emission Scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) results revealed that a complex structure of the P-Th/SWCNT was formed. The presence of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) components was confirmed, which indicated the effective fusion of poly-thionine onto SWCNT. Moreover, the X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the composite formation. Utilizing cyclic voltammetry, the composite's electrochemical behavior was examined. Conclusions: Excellent electrocatalytic activity towards the oxidation of ascorbic acid was shown by the P-Th/SWCNT composite. The as-prepared P-Th/SWCNT composite-modified sensor can detect ascorbic acid in food, medical, and pharmaceutical samples.
背景:电化学传感器可将生物或化学信息(如分析物浓度或生物分子(生化受体)相互作用)转化为电信号。本文介绍了用于抗坏血酸(维生素 C)电化学检测的聚硫氨酸/单壁碳纳米管(P-Th/SWCNT)复合材料的开发情况。方法:为了提高电化学性能,我们尝试在单壁碳纳米管(SWCNT)表面直接电聚合硫氨酸单体(一种重要的化学结构单元)。研究结果场发射扫描电子显微镜(FESEM)和能量色散光谱(EDS)结果表明,P-Th/SWCNT 形成了复杂的结构。证实了碳 (C)、氧 (O)、氮 (N) 和硫 (S) 成分的存在,这表明聚硫氨酸与 SWCNT 有效融合。此外,X 射线衍射(XRD)和傅立叶变换红外光谱(FTIR)也证实了复合材料的形成。利用循环伏安法检测了该复合材料的电化学行为。研究结论P-Th/SWCNT 复合材料对抗坏血酸的氧化具有优异的电催化活性。制备的 P-Th/SWCNT 复合改性传感器可以检测食品、医疗和药品样品中的抗坏血酸。
{"title":"Poly-Thionine/ SWCNT Nanocomposite Coated Electrochemical Sensor for Determination of Vitamin C","authors":"Sangeetha Dhanapalan, Vasanth Magesh, Raji Atchudan, Sandeep Arya, Dhanraj Ganapathy, Deepak Nallaswamy, Ashok Sundramoorthy","doi":"10.2174/0115734137289697240216070503","DOIUrl":"https://doi.org/10.2174/0115734137289697240216070503","url":null,"abstract":"Background: The electrochemical sensors convert biological or chemical information, such as analyte concentration or a biomolecular (biochemical receptor) interaction, into electrical signals. In this paper, we describe the development of a poly-thionine/ single-walled carbon nanotube (P-Th/SWCNT) composite for the electrochemical detection of ascorbic acid (vitamin C). Methods: To improve electrochemical performance, we attempted to electro-polymerize the thionine monomers, an essential chemical building block, directly on the surface of singlewalled carbon nanotubes (SWCNT). Results: Field Emission Scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) results revealed that a complex structure of the P-Th/SWCNT was formed. The presence of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) components was confirmed, which indicated the effective fusion of poly-thionine onto SWCNT. Moreover, the X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the composite formation. Utilizing cyclic voltammetry, the composite's electrochemical behavior was examined. Conclusions: Excellent electrocatalytic activity towards the oxidation of ascorbic acid was shown by the P-Th/SWCNT composite. The as-prepared P-Th/SWCNT composite-modified sensor can detect ascorbic acid in food, medical, and pharmaceutical samples.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"17 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Nanoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1