Pub Date : 2021-12-17DOI: 10.2174/2211550111666211217153055
G. M. Baldodiya
Deinococcus radiodurans has been recognized for its robustness and recorded in the Guinness Book of World Records as the world's toughest known bacterium. In essence, the title comes from its ability to survive extreme conditions such as severe drought (desiccation) and radiation tolerance up to 15000 Gy, which is more than 250 times of E. coli and about 3000 times of humans. Due to its high tolerance to all kinds of genotoxic stress, such as desiccation, UV, X-rays, and oxidants, D. radiodurans is a well-suited model organism for microbial radiation resistance studies. The DNA damage-responsive gene expression is an important component of post-stress recovery where the cell shows a great multiplicity of genomes leading to the highly proficient recombinational DNA repair. This article pitches light on the unique properties of D. radiodurans, unfolding its journey so far as well as important molecular discoveries, prospects, and biotechnological applications.
{"title":"The journey of Deinococcus radiodurans; a perspective","authors":"G. M. Baldodiya","doi":"10.2174/2211550111666211217153055","DOIUrl":"https://doi.org/10.2174/2211550111666211217153055","url":null,"abstract":"\u0000\u0000Deinococcus radiodurans has been recognized for its robustness and recorded in the Guinness Book of World Records as the world's toughest known bacterium. In essence, the title comes from its ability to survive extreme conditions such as severe drought (desiccation) and radiation tolerance up to 15000 Gy, which is more than 250 times of E. coli and about 3000 times of humans. Due to its high tolerance to all kinds of genotoxic stress, such as desiccation, UV, X-rays, and oxidants, D. radiodurans is a well-suited model organism for microbial radiation resistance studies. The DNA damage-responsive gene expression is an important component of post-stress recovery where the cell shows a great multiplicity of genomes leading to the highly proficient recombinational DNA repair. This article pitches light on the unique properties of D. radiodurans, unfolding its journey so far as well as important molecular discoveries, prospects, and biotechnological applications. \u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74909701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-16DOI: 10.2174/2211550111666211216111054
Shabnam Sharifyazd, M. Asadzadeh, D. Levin
Polyhydroxyalkanoates (PHAs) are biodegradable, biocompatible, and non-toxic polymers synthesized by bacteria that may be used to displace some petroleum-based plastic materials. One of the major barriers to the commercialization of PHA biosynthesis is the high cost of production. Oxygen-limitation is known to greatly influence bacterial cell growth and PHA production. In this study, the growth and synthesis of medium chain length PHAs (mcl-PHAs) by Pseudomonas putida LS46, cultured in batch-mode with octanoic acid, under oxygen-limited conditions, was modeled. Four models, including the Monod model, incorporated Leudeking–Piret (MLP), the Moser model incorporated Leudeking–Piret (Moser-LP), the Logistic model incorporated Leudeking–Piret (LLP), and the Modified Logistic model incorporated Leudeking–Piret (MLLP) were investigated. Kinetic parameters of each model were calibrated by using the multi-objective optimization algorithm, Pareto Archived Dynamically Dimensioned Search (PA-DDS), by minimizing the sum of absolute error (SAE) for PHA production and growth simultaneously. Among the four models, MLP and Moser-LP models adequately represented the experimental data for oxygen-limited conditions. However, the MLP and Moser-LP models could not adequately simulate PHA production under oxygen-excess conditions. Modeling cell growth and PHA will assist in the development of a strategy for industrial-scale production.
{"title":"Modelling cell growth and polyhydroxyalkanoate (PHA) polymer synthesis by Pseudomonas putida LS46 under oxygen-limiting conditions","authors":"Shabnam Sharifyazd, M. Asadzadeh, D. Levin","doi":"10.2174/2211550111666211216111054","DOIUrl":"https://doi.org/10.2174/2211550111666211216111054","url":null,"abstract":"\u0000\u0000 Polyhydroxyalkanoates (PHAs) are biodegradable, biocompatible, and non-toxic polymers synthesized by bacteria that may be used to displace some petroleum-based plastic materials. One of the major barriers to the commercialization of PHA biosynthesis is the high cost of production. \u0000\u0000\u0000\u0000\u0000Oxygen-limitation is known to greatly influence bacterial cell growth and PHA production. In this study, the growth and synthesis of medium chain length PHAs (mcl-PHAs) by Pseudomonas putida LS46, cultured in batch-mode with octanoic acid, under oxygen-limited conditions, was modeled. \u0000\u0000\u0000\u0000\u0000Four models, including the Monod model, incorporated Leudeking–Piret (MLP), the Moser model incorporated Leudeking–Piret (Moser-LP), the Logistic model incorporated Leudeking–Piret (LLP), and the Modified Logistic model incorporated Leudeking–Piret (MLLP) were investigated. Kinetic parameters of each model were calibrated by using the multi-objective optimization algorithm, Pareto Archived Dynamically Dimensioned Search (PA-DDS), by minimizing the sum of absolute error (SAE) for PHA production and growth simultaneously. \u0000\u0000\u0000\u0000\u0000 Among the four models, MLP and Moser-LP models adequately represented the experimental data for oxygen-limited conditions. However, the MLP and Moser-LP models could not adequately simulate PHA production under oxygen-excess conditions. Modeling cell growth and PHA will assist in the development of a strategy for industrial-scale production. \u0000\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86558040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-16DOI: 10.2174/2211550111666211216110556
D. Wong
Combinatorial chemistry involves the chemical or biological synthesis of libraries of the diverse structural population of a template molecule and the screening for the variants expressing desirable target properties. The approach has been a focus of research activity in modern drug discovery and biotechnology for accelerating the discovery and development of novel therapeutic and bioactive compounds. This review describes the application of combinatorial chemistry in enzyme technology as a novel technique and invention developed in our laboratory to construct oligosaccharide libraries in the conversion of plant fibers. The theory, mechanism, development, and application of this combinatorial enzyme approach are presented for the first time. The potential food and non-food uses of oligosaccharides are described. Citrus pectin and wheat insoluble fiber have been used as substrates for combinatorial enzyme reactions. Generation of libraries of structural variants of pectic oligosaccharides (oligoGalA) and feruloyl oligosaccharides (FOS) demonstrates the feasibility and usefulness of the technique in the transformation of plant biomass to value-added products.
{"title":"The use of plant fibers for oligosaccharide production with libraries constructed by combinatorial enzyme technology","authors":"D. Wong","doi":"10.2174/2211550111666211216110556","DOIUrl":"https://doi.org/10.2174/2211550111666211216110556","url":null,"abstract":"\u0000\u0000Combinatorial chemistry involves the chemical or biological synthesis of libraries of the diverse structural population of a template molecule and the screening for the variants expressing desirable target properties. The approach has been a focus of research activity in modern drug discovery and biotechnology for accelerating the discovery and development of novel therapeutic and bioactive compounds. This review describes the application of combinatorial chemistry in enzyme technology as a novel technique and invention developed in our laboratory to construct oligosaccharide libraries in the conversion of plant fibers. The theory, mechanism, development, and application of this combinatorial enzyme approach are presented for the first time. The potential food and non-food uses of oligosaccharides are described. Citrus pectin and wheat insoluble fiber have been used as substrates for combinatorial enzyme reactions. Generation of libraries of structural variants of pectic oligosaccharides (oligoGalA) and feruloyl oligosaccharides (FOS) demonstrates the feasibility and usefulness of the technique in the transformation of plant biomass to value-added products. \u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81567758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-06DOI: 10.2174/2211550110666211206101654
V. Kotakadi, Bhulakshmi Kolapalli, Susmila Aparna Gaddam, Sai Gopal Divi Venkata Ramana
There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as chemistry, catalysis, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques where the chemicals used are quite often toxic and flammable. In the present study, we described a simple, cost effective and environmentally-friendly technique for green synthesis of silver and iron nanoparticles by using the aqueous extract of leafy vegetable Amaranthus viridis as a reducing agent. The silver and Iron nanoparticles (Av-AgNPs, Av-IONPs) were characterized by different spectral methods. The surface Plasmon resonance spectrums of Av-AgNPs, Av-IONPs were recorded at 422nm and 261nm. The Scanning electron microscopy (SEM) analysis reveals that the Av-AgNPs, Av-IONPs are roughly spherical in shape. Energy dispersive absorption spectroscopy (EDAX) of biosynthesized Av-AgNPs, Av-IONPs indicates the reduction of silver ions to elemental silver and iron ions to elemental iron. The particle size analysis of Av-AgNPs and Av-IONPs was carried out by Dynamic light scattering (DLS) method the results reveal that both Av-AgNPs and Av-IONPs were polydispered in nature. The average particle size of Av-AgNPs is 55.8 nm with a polydispered index (PI) of 0.297, similarly the average particle size of Av-IONPs is 80.6 nm with an polydispered index (PI) of 0.469. Zeta-potential of Av-AgNPs was detected at -24.6 mV and Av-IONPs were detected at 28.8 mV, the result reveals that they high stability due their high negative charge and positive charge respectively. The dual synthesized Av-AgNPs, Av-IONPs exhibits excellent antioxidant activity by DPPH, H2O2 and NO methods. DPPH was proven to be the best when compared with the other two methods. The biosynthesized Av-AgNPs, Av-IONPs proved to have very good antimicrobial activity against gram +ve and gram –ve bacteria. when compared with standard antibiotic. There were several reports on green synthesis of metal nanoparticles using various plant parts, but here edible leafy vegetable Amaranthus viridis was used for biosynthesis of both Av-AgNPs and Av-IONPs.
{"title":"Dual synthesis of Silver and Iron oxide nanoparticles from edible greens Amaranthus Viridis and their in vitro antioxidant activity and antimicrobial studies","authors":"V. Kotakadi, Bhulakshmi Kolapalli, Susmila Aparna Gaddam, Sai Gopal Divi Venkata Ramana","doi":"10.2174/2211550110666211206101654","DOIUrl":"https://doi.org/10.2174/2211550110666211206101654","url":null,"abstract":"\u0000\u0000There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as chemistry, catalysis, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques where the chemicals used are quite often toxic and flammable. \u0000\u0000\u0000\u0000\u0000 In the present study, we described a simple, cost effective and environmentally-friendly technique for green synthesis of silver and iron nanoparticles by using the aqueous extract of leafy vegetable Amaranthus viridis as a reducing agent. \u0000\u0000\u0000\u0000\u0000 The silver and Iron nanoparticles (Av-AgNPs, Av-IONPs) were characterized by different spectral methods. The surface Plasmon resonance spectrums of Av-AgNPs, Av-IONPs were recorded at 422nm and 261nm. The Scanning electron microscopy (SEM) analysis reveals that the Av-AgNPs, Av-IONPs are roughly spherical in shape. Energy dispersive absorption spectroscopy (EDAX) of biosynthesized Av-AgNPs, Av-IONPs indicates the reduction of silver ions to elemental silver and iron ions to elemental iron. \u0000\u0000\u0000\u0000\u0000The particle size analysis of Av-AgNPs and Av-IONPs was carried out by Dynamic light scattering (DLS) method the results reveal that both Av-AgNPs and Av-IONPs were polydispered in nature. The average particle size of Av-AgNPs is 55.8 nm with a polydispered index (PI) of 0.297, similarly the average particle size of Av-IONPs is 80.6 nm with an polydispered index (PI) of 0.469. Zeta-potential of Av-AgNPs was detected at -24.6 mV and Av-IONPs were detected at 28.8 mV, the result reveals that they high stability due their high negative charge and positive charge respectively. The dual synthesized Av-AgNPs, Av-IONPs exhibits excellent antioxidant activity by DPPH, H2O2 and NO methods. DPPH was proven to be the best when compared with the other two methods. The biosynthesized Av-AgNPs, Av-IONPs proved to have very good antimicrobial activity against gram +ve and gram –ve bacteria. \u0000\u0000\u0000\u0000\u0000 when compared with standard antibiotic. There were several reports on green synthesis of metal nanoparticles using various plant parts, but here edible leafy vegetable Amaranthus viridis was used for biosynthesis of both Av-AgNPs and Av-IONPs.\u0000\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85044289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-29DOI: 10.2174/2211550110666211029123127
M. Zaki, Samah Sabry El-Kazzaz
The aim of the present research was to highlight the prevalence of immune evasion cluster genes (IEC) sak, chp, scn, sea, sep among Staphylococcus aureus (S. aureus) clinical isolates. The present study was a cross-sectional retrospective study, included one hundred isolates of S. aureus that were isolated from patients with nosocomial infections. S. aureus isolates were subjected to full microbiological identification and antibiotics sensitivity testing by the disc diffusion method. The presence of IEC genes scn, sea, sak, sep, chp was determined by polymerase chain reaction (PCR). The current study included 100 S. aureus isolates; 40% were classified as methicillin resistant. The isolates exhibited marked resistance to beta lactams antibiotics, the lowest resistance was to erythromycin, ciprofloxacin and vancomycin. The presence of one or more IEC was determined in 89 isolates. The prevalence of chp, sak, sea, sep and scn was 54%, 53%, 8%, 7% and 30%, respectively. S. aureus isolates with IEC genes had increased resistance rates to the studied antibiotics; however, this increase was statistically insignificant either to beta-lactam antibiotics, such as amoxacillin/clavulinic acid (P=0.794), ampicillin (P=0.561), cefotaxim (P=0.271), ceftazidime (P=0.145), imipenem (P=0.589) or non beta-lactam antibiotics, such as amikacin (P=0.955) and trimethoprim/sulfamethoxazale (P=0.974). From 40 methicillin resistant Staphylococcus aureus (MRSA) strains, 37 isolates harbor one or more immune evasion cluster genes. The high prevalence of these genes among MRSA may explain its pathogenesis. There is a need for studies with a high number of isolates to verify the present findings.
{"title":"Molecular Study of Immune Evasion Cluster Genes in Clinical Isolates of Staphylococcus aureus","authors":"M. Zaki, Samah Sabry El-Kazzaz","doi":"10.2174/2211550110666211029123127","DOIUrl":"https://doi.org/10.2174/2211550110666211029123127","url":null,"abstract":"\u0000\u0000 The aim of the present research was to highlight the prevalence of immune evasion cluster genes (IEC) sak, chp, scn, sea, sep among Staphylococcus aureus (S. aureus) clinical isolates.\u0000\u0000\u0000\u0000\u0000The present study was a cross-sectional retrospective study, included one hundred isolates of S. aureus that were isolated from patients with nosocomial infections. S. aureus isolates were subjected to full microbiological identification and antibiotics sensitivity testing by the disc diffusion method. The presence of IEC genes scn, sea, sak, sep, chp was determined by polymerase chain reaction (PCR). \u0000\u0000\u0000\u0000\u0000 The current study included 100 S. aureus isolates; 40% were classified as methicillin resistant. The isolates exhibited marked resistance to beta lactams antibiotics, the lowest resistance was to erythromycin, ciprofloxacin and vancomycin. The presence of one or more IEC was determined in 89 isolates. The prevalence of chp, sak, sea, sep and scn was 54%, 53%, 8%, 7% and 30%, respectively.\u0000\u0000\u0000\u0000\u0000S. aureus isolates with IEC genes had increased resistance rates to the studied antibiotics; however, this increase was statistically insignificant either to beta-lactam antibiotics, such as amoxacillin/clavulinic acid (P=0.794), ampicillin (P=0.561), cefotaxim (P=0.271), ceftazidime (P=0.145), imipenem (P=0.589) or non beta-lactam antibiotics, such as amikacin (P=0.955) and trimethoprim/sulfamethoxazale (P=0.974). From 40 methicillin resistant Staphylococcus aureus (MRSA) strains, 37 isolates harbor one or more immune evasion cluster genes.\u0000\u0000\u0000\u0000\u0000The high prevalence of these genes among MRSA may explain its pathogenesis. There is a need for studies with a high number of isolates to verify the present findings.\u0000\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81982993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-15DOI: 10.2174/2211550110666211015144513
F. S. Edaes, C. B. de Souza
Plastic polymers are ubiquitous and life without them is practically impossible. Despite the advantages provided by the material, conventional plastics are also harmful to the environment and human health. Therefore, the search for alternatives, such as polyhydroxyalkanoates (PHAs), a family of biodegradable thermoplastic polyesters naturally produced by PHA-accumulating bacteria, such as Pseudomonas spp. and Ralstonia eutropha, through fermentative processes, is of paramount importance. In the present work, the objective of the researchers was to develop a revisional study regarding biodegradable biopolymers and the PHAs’ importance and benefits for society and the environment. In this review, articles published since the year 2000, related to the different aspects of biodegradable plastics and PHAs, were accurately analyzed and reviewed. The subjects covered ranged from conventional plastics and the problems related to their large-scale production and the importance of biodegradable plastics, as well as PHAs, their positive aspects, and the feasibility of their use as an alternative to replace conventional plastics. Those subjects were extensively reviewed and concisely discussed. The present study demonstrated the importance of biodegradable plastics and the PHAs’ family, its different application possibilities, and its viability as an alternative to replace conventional plastics, since it can mimic their characteristics efficiently, with the advantage of being biodegradable and produced from renewable sources.
{"title":"General Aspects of Biodegradable Biopolymers and the Polyhydroxyalkanoates’ Family","authors":"F. S. Edaes, C. B. de Souza","doi":"10.2174/2211550110666211015144513","DOIUrl":"https://doi.org/10.2174/2211550110666211015144513","url":null,"abstract":"\u0000\u0000 Plastic polymers are ubiquitous and life without them is practically impossible. Despite the advantages provided by the material, conventional plastics are also harmful to the environment and human health. Therefore, the search for alternatives, such as polyhydroxyalkanoates (PHAs), a family of biodegradable thermoplastic polyesters naturally produced by PHA-accumulating bacteria, such as Pseudomonas spp. and Ralstonia eutropha, through fermentative processes, is of paramount importance.\u0000\u0000\u0000\u0000\u0000In the present work, the objective of the researchers was to develop a revisional study regarding biodegradable biopolymers and the PHAs’ importance and benefits for society and the environment.\u0000\u0000\u0000\u0000\u0000 In this review, articles published since the year 2000, related to the different aspects of biodegradable plastics and PHAs, were accurately analyzed and reviewed. The subjects covered ranged from conventional plastics and the problems related to their large-scale production and the importance of biodegradable plastics, as well as PHAs, their positive aspects, and the feasibility of their use as an alternative to replace conventional plastics. Those subjects were extensively reviewed and concisely discussed.\u0000\u0000\u0000\u0000\u0000 The present study demonstrated the importance of biodegradable plastics and the PHAs’ family, its different application possibilities, and its viability as an alternative to replace conventional plastics, since it can mimic their characteristics efficiently, with the advantage of being biodegradable and produced from renewable sources.\u0000\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78127479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-17DOI: 10.2174/2211550110666210917105655
H. Ahangari, Haleh Forouhandeh, Tahereh Ebrahimi, Vida Ebrahimi, S. Montazersaheb, Vahideh Tarhriz, M. Hejazi
Sabalan (Savalan) Lake is a stable crater lake locating at the summit of Sabalan, an inactive stratovolcano and the third highest mountain of Iran. Because of cold weather conditions, the lake is frozen in most months of the year. The biodiversity of microbial flora in this area needs to be explored to find its similarity with the arctic regions’ biodiversity. The psychrophilic bacterial population of Sabalan (Savalan) Crater Lake was identified. The current research is the first report of aquatic bacterial strains isolation and characterization from Sabalan Lake. Water sample collections were cultured on four different media, then colonies were isolated by the plating method. The phylogenetic features of the isolates were scrutinized and finally, the phenotypic characteristics were investigated using specific culture methods. The results of morphological tests indicated that most isolates were Gram-negative and rod shape, which were able to grow between ˗4 and +37 ºC. According to the phylogenetic analysis the isolated strains belong to Pseudomonas, Yersinia, Kocuria, and Micrococcus genera and about 60% of the isolates belong to the various species of Pseudomonas as a dominant genus with abounded frequency. In addition, several isolates showed 99% similarity with bacteria, which were previously isolated from Antarctic regions such as Pseudomonas antarctica and Micrococcus antarctica. It can be concluded that the microbial populations of cold areas is the same across the geographical distances. In addition, these bacterial strains could be a primitive source of new enzymes for technological applications such as biosurfactant production.
{"title":"Pseudomonas sp. a Dominant Population of Bacteria in the Cold Water of Mount Sabalan Crater Lake","authors":"H. Ahangari, Haleh Forouhandeh, Tahereh Ebrahimi, Vida Ebrahimi, S. Montazersaheb, Vahideh Tarhriz, M. Hejazi","doi":"10.2174/2211550110666210917105655","DOIUrl":"https://doi.org/10.2174/2211550110666210917105655","url":null,"abstract":"\u0000\u0000Sabalan (Savalan) Lake is a stable crater lake locating at the summit of Sabalan, an inactive stratovolcano and the third highest mountain of Iran. Because of cold weather conditions, the lake is frozen in most months of the year. The biodiversity of microbial flora in this area needs to be explored to find its similarity with the arctic regions’ biodiversity.\u0000\u0000\u0000\u0000\u0000 The psychrophilic bacterial population of Sabalan (Savalan) Crater Lake was identified. The current research is the first report of aquatic bacterial strains isolation and characterization from Sabalan Lake.\u0000\u0000\u0000\u0000\u0000 Water sample collections were cultured on four different media, then colonies were isolated by the plating method. The phylogenetic features of the isolates were scrutinized and finally, the phenotypic characteristics were investigated using specific culture methods.\u0000\u0000\u0000\u0000\u0000 The results of morphological tests indicated that most isolates were Gram-negative and rod shape, which were able to grow between ˗4 and +37 ºC. According to the phylogenetic analysis the isolated strains belong to Pseudomonas, Yersinia, Kocuria, and Micrococcus genera and about 60% of the isolates belong to the various species of Pseudomonas as a dominant genus with abounded frequency. In addition, several isolates showed 99% similarity with bacteria, which were previously isolated from Antarctic regions such as Pseudomonas antarctica and Micrococcus antarctica.\u0000\u0000\u0000\u0000\u0000 It can be concluded that the microbial populations of cold areas is the same across the geographical distances. In addition, these bacterial strains could be a primitive source of new enzymes for technological applications such as biosurfactant production.\u0000\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77880102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-08DOI: 10.2174/2211550110666210908111751
S. Malik, S. Awan, M. Hashim, A. Farzand, Shumaila Nadeem
Mesenchymal stromal cells (MSCs) and their paracrine factors make them a suitable cell-free-therapeutic candidate. Cellular lysate usage could be an effective treatment strategy that circumvents the possible associated drawbacks of stem cell therapies. Objective: Thus, this research aims to examine the injury regeneration potential of MSCs cellular lysate derived from bone marrow by studying its anti-apoptotic, proliferative, and anti-oxidative effects. Hydrogen peroxide (H2O2) was used to induce cellular injury. MTT assay, trypan blue, and crystal violet assays were used to assess bone marrow-derived mesenchymal stromal cell (BMSCs) lysate treated cells' viabilities. Next, to investigate the BMSCs lysate anti-oxidative potential anti-oxidants, ascorbate peroxidase (APX), glutathione reductase (GR), and superoxide dismutase (SOD) assays were performed. Simultaneously, the proliferative and anti-apoptotic potential was measured via vascular endothelial growth factor (VEGF A) and p53 expression analysis through immunostaining and ELISA. It was observed that BMSCs lysate enhances the viability of H2O2 injured cells. APX, GR, and SOD's results indicated that after H2O2 injury, the anti-oxidant status decreased significantly and was uplifted by BMSCs lysate treatment. Additionally, the results of p53, BAX, and caspase-3 expression revealed that BMSCs lysate inhibits apoptosis by downregulating their expression in treated cells. The VEGF protein expression findings demonstrated that BMSCs lysate upregulates the downregulated expression of VEGF in H2O2 injured cells. The expression of proliferative markers (TOP2A, PCNA, and Ki-67) was also elevated in BMSCs treated cells. To conclude this study's findings, it was observed that BMSCs lysate could decrease H2O2 injury and possibly regenerate the injured cells by enhancing their viability and proliferation, improving anti-oxidants levels, and alleviating apoptosis.
{"title":"Regeneration Potential of Bone Marrow-derived Mesenchymal Stromal Cells Lysate for H2O2 (In-Vitro) Injured Cells","authors":"S. Malik, S. Awan, M. Hashim, A. Farzand, Shumaila Nadeem","doi":"10.2174/2211550110666210908111751","DOIUrl":"https://doi.org/10.2174/2211550110666210908111751","url":null,"abstract":"\u0000\u0000 Mesenchymal stromal cells (MSCs) and their paracrine factors make them a suitable cell-free-therapeutic candidate. Cellular lysate usage could be an effective treatment strategy that circumvents the possible associated drawbacks of stem cell therapies. Objective: Thus, this research aims to examine the injury regeneration potential of MSCs cellular lysate derived from bone marrow by studying its anti-apoptotic, proliferative, and anti-oxidative effects. \u0000\u0000\u0000\u0000\u0000 Hydrogen peroxide (H2O2) was used to induce cellular injury. MTT assay, trypan blue, and crystal violet assays were used to assess bone marrow-derived mesenchymal stromal cell (BMSCs) lysate treated cells' viabilities. Next, to investigate the BMSCs lysate anti-oxidative potential anti-oxidants, ascorbate peroxidase (APX), glutathione reductase (GR), and superoxide dismutase (SOD) assays were performed. Simultaneously, the proliferative and anti-apoptotic potential was measured via vascular endothelial growth factor (VEGF A) and p53 expression analysis through immunostaining and ELISA. \u0000\u0000\u0000\u0000\u0000 It was observed that BMSCs lysate enhances the viability of H2O2 injured cells. APX, GR, and SOD's results indicated that after H2O2 injury, the anti-oxidant status decreased significantly and was uplifted by BMSCs lysate treatment. Additionally, the results of p53, BAX, and caspase-3 expression revealed that BMSCs lysate inhibits apoptosis by downregulating their expression in treated cells. The VEGF protein expression findings demonstrated that BMSCs lysate upregulates the downregulated expression of VEGF in H2O2 injured cells. The expression of proliferative markers (TOP2A, PCNA, and Ki-67) was also elevated in BMSCs treated cells. \u0000\u0000\u0000\u0000\u0000To conclude this study's findings, it was observed that BMSCs lysate could decrease H2O2 injury and possibly regenerate the injured cells by enhancing their viability and proliferation, improving anti-oxidants levels, and alleviating apoptosis. \u0000\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"223 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83908149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-25DOI: 10.2174/2211550110666210825095338
Amisha Patel, Harshvadan Patel, Amita Shah
Lignocellulosic biomass is an attractive resource for production of ethanol because of its abundance and lower cost. The economics of lignocellulosic ethanol production can be improved by enhancing the ethanol titres along with utilisation of waste generated during bioconversion process. The present study was aimed at development of a bioconversion process for production high concentration of ethanol from alkali treated cellulose rich wheat straw (WS) and utilization of unused hemicellulosic fraction into value added products. WS was subjected to microwave assisted alkali (MAA) treatment. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to analyse structural changes in untreated and pretreated WS. Bioethanol production from pretreated WS was carried out by pre hydrolysis and simultaneous saccharification and fermentation (P-SSF) process using newly isolated Saccharomyces cerevisisae SM1. Liquid fraction generated during pretreatment was utilised for xylooligosaccharides (XOS) production using indigenously produced endoxylanase. MAA treatment of WS was successful in enriching cellulose content of WS by solubilizing hemicellulose and lignin. Ethanol fermentation by P-SSF method lead to high concentration of ethanol (42.10±1.15 g/L) in 48 h. Ethanol productivity and yield were, 0.88 g/L/h and 69.14%, respectively. It can be predicted that 7.143 tons of raw WS may be required to produce 1 ton of ethanol and for additional revenue 191.93 kg xylitol and 263.58 kg XOS (DP2 - DP5) can also be produced simultaneously. The study has demonstrated the feasibility of a bio-refinery process for production of value added compounds in addition to high ethanol yields.
{"title":"Production of cellulosic ethanol from alkali treated wheat straw using P-SSF process and bioconversion of hemicellulosic fraction into high value products","authors":"Amisha Patel, Harshvadan Patel, Amita Shah","doi":"10.2174/2211550110666210825095338","DOIUrl":"https://doi.org/10.2174/2211550110666210825095338","url":null,"abstract":"\u0000\u0000Lignocellulosic biomass is an attractive resource for production of ethanol because of its abundance and lower cost. The economics of lignocellulosic ethanol production can be improved by enhancing the ethanol titres along with utilisation of waste generated during bioconversion process. \u0000\u0000\u0000\u0000\u0000 The present study was aimed at development of a bioconversion process for production high concentration of ethanol from alkali treated cellulose rich wheat straw (WS) and utilization of unused hemicellulosic fraction into value added products.\u0000\u0000\u0000\u0000\u0000 WS was subjected to microwave assisted alkali (MAA) treatment. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to analyse structural changes in untreated and pretreated WS. Bioethanol production from pretreated WS was carried out by pre hydrolysis and simultaneous saccharification and fermentation (P-SSF) process using newly isolated Saccharomyces cerevisisae SM1. Liquid fraction generated during pretreatment was utilised for xylooligosaccharides (XOS) production using indigenously produced endoxylanase.\u0000\u0000\u0000\u0000\u0000MAA treatment of WS was successful in enriching cellulose content of WS by solubilizing hemicellulose and lignin. Ethanol fermentation by P-SSF method lead to high concentration of ethanol (42.10±1.15 g/L) in 48 h. Ethanol productivity and yield were, 0.88 g/L/h and 69.14%, respectively. It can be predicted that 7.143 tons of raw WS may be required to produce 1 ton of ethanol and for additional revenue 191.93 kg xylitol and 263.58 kg XOS (DP2 - DP5) can also be produced simultaneously.\u0000\u0000\u0000\u0000\u0000The study has demonstrated the feasibility of a bio-refinery process for production of value added compounds in addition to high ethanol yields. \u0000\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73848863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-26DOI: 10.2174/2211550110666210726154149
Shruti Gupta, S. S. Kanwar
Kidney stones have become a common disease worldwide and their incidence and recurrence rates have drastically increased over the past few decades. Oxalate decarboxylase (OxDC) enzyme which catalyzes the disproportionation reaction of oxalate monoanions into formate and CO2 could exhibit significant potential in the treatment of hyperoxaluria. The present work describes isolation and screening of new OxDC producing bacterial strain from oxalate rich soils and one-factor-at-a-time (OFAT) and response surface methodology (RSM) statistical approaches were used to optimize the production media to obtain an improved intracellular OxDC production. An OxDC producing bacterial strain isolated from spinach soil sample(s) was identified to be Pseudomonas sp. OXDC12 by 16S rRNA sequencing. The OFAT approach was used to determine the effect of supplementation of carbon, nitrogen and other physical conditions like pH, temperature etc. on intracellular OxDC production by Pseudomonas sp. OXDC12. The three factors screened by Plackett Burman design (PBD) were further used by central composite design (CCD) approach of RSM to determine their interactive effects on OxDC production. The anti-urolithiatic activity of the enzyme OxDC was determined by carrying out in vitro calcium oxalate crystallization in presence and absence of OxDC. The factorial values selected by 23 CCD for OxDC were temperature 30ºC, manganese ion concentration 5 mmol l-1 and innoculum size 3.25% (v/v). The highest predicted value of OxDC was 5.7 U ml-1 while the actual value obtained was 6.7 U ml-1 which was 79.1% and 2.92 fold greater than the initial activity of OxDC produced by Pseudomonas sp. OXDC12. As depicted by the light micrographs, OxDC displayed a significant reduction in the crystallization and formation of calcium oxalate stones as compared to the control under in vitro conditions. OFAT and RSM statistical optimization approaches led to improved OxDC production with a final activity of 6.7 U ml-1 and a 2.92 fold increase in the enzyme activity. The study suggests that OFAT and RSM optimization approaches significantly enhanced OxDC production from Pseudomonas sp. OXDC12. The enzyme may serve as a potential therapeutic agent for hyperoxaluria or kidney stones as it significantly inhibited the formation of calcium oxalate crystals under in vitro conditions.
肾结石已成为世界范围内的一种常见疾病,其发病率和复发率在过去几十年中急剧增加。草酸脱羧酶(OxDC)酶能催化草酸单阴离子歧化反应生成甲酸和二氧化碳,在高草酸尿症的治疗中具有重要的应用潜力。本研究描述了从富含草酸盐的土壤中分离和筛选新的氧化dc产生细菌菌株,并使用单因子一次(OFAT)和响应面法(RSM)统计方法优化生产培养基,以提高细胞内氧化dc的产量。从菠菜土壤样品中分离到一株产OxDC的细菌,经16S rRNA测序鉴定为Pseudomonas sp. OXDC12。利用OFAT法测定了添加碳、氮及pH、温度等物理条件对假单胞菌OXDC12胞内产氧的影响。利用Plackett Burman设计(PBD)筛选的3个因素,进一步采用RSM中心复合设计(CCD)方法,确定它们对氧化二氯甲烷生成的交互作用。在体外草酸钙结晶实验中,测定了OxDC酶的抗尿石活性。23个CCD选择的氧化直流因子值为:温度30℃,锰离子浓度5 mmol l-1,微孔大小3.25% (v/v)。OxDC的最高预测值为5.7 U ml-1,实际值为6.7 U ml-1,比假单胞菌OXDC12产生的OxDC的初始活性高79.1%和2.92倍。正如光学显微照片所示,与体外条件下的对照相比,OxDC在草酸钙结石的结晶和形成方面显着减少。OFAT和RSM统计优化方法提高了OxDC产量,最终活性为6.7 U ml-1,酶活性提高了2.92倍。研究表明,OFAT和RSM优化方法可显著提高假单胞菌OXDC12的氧化dc产量。该酶可以作为高草酸尿症或肾结石的潜在治疗剂,因为它在体外条件下显著抑制草酸钙晶体的形成。
{"title":"Optimization of growth conditions for oxalate decarboxylase production from Pseudomonas sp. OXDC12 and in vitro inhibition of calcium oxalate crystallization by oxalate decarboxylase","authors":"Shruti Gupta, S. S. Kanwar","doi":"10.2174/2211550110666210726154149","DOIUrl":"https://doi.org/10.2174/2211550110666210726154149","url":null,"abstract":"\u0000\u0000Kidney stones have become a common disease worldwide and their incidence and recurrence rates have drastically increased over the past few decades. Oxalate decarboxylase (OxDC) enzyme which catalyzes the disproportionation reaction of oxalate monoanions into formate and CO2 could exhibit significant potential in the treatment of hyperoxaluria. \u0000\u0000\u0000\u0000The present work describes isolation and screening of new OxDC producing bacterial strain from oxalate rich soils and one-factor-at-a-time (OFAT) and response surface methodology (RSM) statistical approaches were used to optimize the production media to obtain an improved intracellular OxDC production. \u0000\u0000\u0000\u0000An OxDC producing bacterial strain isolated from spinach soil sample(s) was identified to be Pseudomonas sp. OXDC12 by 16S rRNA sequencing. The OFAT approach was used to determine the effect of supplementation of carbon, nitrogen and other physical conditions like pH, temperature etc. on intracellular OxDC production by Pseudomonas sp. OXDC12. The three factors screened by Plackett Burman design (PBD) were further used by central composite design (CCD) approach of RSM to determine their interactive effects on OxDC production. The anti-urolithiatic activity of the enzyme OxDC was determined by carrying out in vitro calcium oxalate crystallization in presence and absence of OxDC. The factorial values selected by 23 CCD for OxDC were temperature 30ºC, manganese ion concentration 5 mmol l-1 and innoculum size 3.25% (v/v). The highest predicted value of OxDC was 5.7 U ml-1 while the actual value obtained was 6.7 U ml-1 which was 79.1% and 2.92 fold greater than the initial activity of OxDC produced by Pseudomonas sp. OXDC12. As depicted by the light micrographs, OxDC displayed a significant reduction in the crystallization and formation of calcium oxalate stones as compared to the control under in vitro conditions. \u0000\u0000\u0000\u0000OFAT and RSM statistical optimization approaches led to improved OxDC production with a final activity of 6.7 U ml-1 and a 2.92 fold increase in the enzyme activity. The study suggests that OFAT and RSM optimization approaches significantly enhanced OxDC production from Pseudomonas sp. OXDC12. The enzyme may serve as a potential therapeutic agent for hyperoxaluria or kidney stones as it significantly inhibited the formation of calcium oxalate crystals under in vitro conditions.\u0000","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"190 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72783938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}