Pub Date : 2024-04-13DOI: 10.1016/j.mib.2024.102475
Valentin A Bärreiter , Toni L Meister
In recent years, multiple coronaviruses have emerged, with the latest one, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing a global pandemic. Besides respiratory symptoms, some patients experienced extrapulmonary effects, such as cardiac damage or renal injury, indicating the broad tropism of SARS-CoV-2. The ability of the virus to effectively invade the renal cellular environment can eventually cause tissue-specific damage and disease. Indeed, patients with severe coronavirus disease 2019 exhibited a variety of symptoms such as acute proximal tubular injury, ischemic collapse, and severe acute tubular necrosis resulting in irreversible kidney failure. This review summarizes the current knowledge on how it is believed that SARS-CoV-2 influences the renal environment and induces kidney disease, as well as current therapy approaches.
{"title":"Renal implications of coronavirus disease 2019: insights into viral tropism and clinical outcomes","authors":"Valentin A Bärreiter , Toni L Meister","doi":"10.1016/j.mib.2024.102475","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102475","url":null,"abstract":"<div><p>In recent years, multiple coronaviruses have emerged, with the latest one, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing a global pandemic. Besides respiratory symptoms, some patients experienced extrapulmonary effects, such as cardiac damage or renal injury, indicating the broad tropism of SARS-CoV-2. The ability of the virus to effectively invade the renal cellular environment can eventually cause tissue-specific damage and disease. Indeed, patients with severe coronavirus disease 2019 exhibited a variety of symptoms such as acute proximal tubular injury, ischemic collapse, and severe acute tubular necrosis resulting in irreversible kidney failure. This review summarizes the current knowledge on how it is believed that SARS-CoV-2 influences the renal environment and induces kidney disease, as well as current therapy approaches.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102475"},"PeriodicalIF":5.4,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000511/pdfft?md5=f879234e8b89fb41d282c4ec00f72541&pid=1-s2.0-S1369527424000511-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, contributes to neurological pathologies in nearly 30% of patients, extending beyond respiratory symptoms. These manifestations encompass disorders of both the peripheral and central nervous systems, causing among others cerebrovascular issues and psychiatric manifestations during the acute and/or post-acute infection phases. Despite ongoing research, uncertainties persist about the precise mechanism the virus uses to infiltrate the central nervous system and the involved entry portals. This review discusses the potential entry routes, including hematogenous and anterograde transport. Furthermore, we explore variations in neurotropism, neurovirulence, and neurological manifestations among pandemic-associated variants of concern. In conclusion, SARS-CoV-2 can infect numerous cells within the peripheral and central nervous system, provoke inflammatory responses, and induce neuropathological changes.
{"title":"Neuroinvasion and neurotropism of severe acute respiratory syndrome coronavirus 2 infection","authors":"Michelle Jagst , Lilli Pottkämper , André Gömer , Kalliopi Pitarokoili , Eike Steinmann","doi":"10.1016/j.mib.2024.102474","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102474","url":null,"abstract":"<div><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, contributes to neurological pathologies in nearly 30% of patients, extending beyond respiratory symptoms. These manifestations encompass disorders of both the peripheral and central nervous systems, causing among others cerebrovascular issues and psychiatric manifestations during the acute and/or post-acute infection phases. Despite ongoing research, uncertainties persist about the precise mechanism the virus uses to infiltrate the central nervous system and the involved entry portals. This review discusses the potential entry routes, including hematogenous and anterograde transport. Furthermore, we explore variations in neurotropism, neurovirulence, and neurological manifestations among pandemic-associated variants of concern. In conclusion, SARS-CoV-2 can infect numerous cells within the peripheral and central nervous system, provoke inflammatory responses, and induce neuropathological changes.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102474"},"PeriodicalIF":5.4,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952742400050X/pdfft?md5=3bfb870c627ec36f3aabb71ca1f1947e&pid=1-s2.0-S136952742400050X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-11DOI: 10.1016/j.mib.2024.102473
Molly Elkins , Neha Jain , Çagla Tükel
Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer’s and Parkinson’s disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases.
This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence:
1.
Direct interaction with human amyloids: Bacterial amyloids can directly interact with human amyloids, potentially accelerating the aggregation and deposition of amyloid fibrils associated with diseases such as Alzheimer’s and Parkinson’s disease. This direct interaction may contribute to the pathological progression of these conditions.
2.
Induction of inflammation: Bacterial amyloids have the capacity to induce inflammatory responses within the host organism. Chronic inflammation is increasingly recognized as a contributor to neurodegenerative and autoimmune diseases. We will explore how the activation of inflammatory pathways and neuroinflammation by bacterial amyloids can exacerbate disease pathogenesis.
3.
Acting as a DNA carrier: Bacterial amyloids may also serve as carriers of DNA, facilitating the activation of host DNA sensors. This mechanism can potentially lead to alterations in the host’s immune response and also contribute to the development of autoantibodies.
By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.
{"title":"The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases","authors":"Molly Elkins , Neha Jain , Çagla Tükel","doi":"10.1016/j.mib.2024.102473","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102473","url":null,"abstract":"<div><p>Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer’s and Parkinson’s disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases.</p><p>This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence:</p><ul><li><span>1.</span><span><p><em>Direct interaction with human amyloids:</em> Bacterial amyloids can directly interact with human amyloids, potentially accelerating the aggregation and deposition of amyloid fibrils associated with diseases such as Alzheimer’s and Parkinson’s disease. This direct interaction may contribute to the pathological progression of these conditions.</p></span></li></ul><p></p><ul><li><span>2.</span><span><p><em>Induction of inflammation:</em> Bacterial amyloids have the capacity to induce inflammatory responses within the host organism. Chronic inflammation is increasingly recognized as a contributor to neurodegenerative and autoimmune diseases. We will explore how the activation of inflammatory pathways and neuroinflammation by bacterial amyloids can exacerbate disease pathogenesis.</p></span></li></ul><ul><li><span>3.</span><span><p><em>Acting as a DNA carrier:</em> Bacterial amyloids may also serve as carriers of DNA, facilitating the activation of host DNA sensors. This mechanism can potentially lead to alterations in the host’s immune response and also contribute to the development of autoantibodies.</p></span></li></ul><p>By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102473"},"PeriodicalIF":5.4,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000493/pdfft?md5=2501ce70501d270568f5549ba94ac467&pid=1-s2.0-S1369527424000493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1016/j.mib.2024.102472
Victoria Jeffers
Apicomplexan parasites have complex life cycles, often requiring transmission between two different hosts, facing periods of dormancy within the host or in the environment to maximize chances of transmission. To support survival in these different conditions, tightly regulated and correctly timed gene expression is critical. The modification of histones and nucleosome composition makes a significant contribution to this regulation, and as eukaryotes, the fundamental mechanisms underlying this process in apicomplexans are similar to those in model eukaryotic organisms. However, single-celled intracellular parasites face unique challenges, and regulation of gene expression at the epigenetic level provides tight control for responses that must often be rapid and robust.
Here, we discuss the recent advances in understanding the dynamics of histone modifications across Apicomplexan life cycles and the molecular mechanisms that underlie epigenetic regulation of gene expression to promote parasite life cycle progression, dormancy, and transmission.
{"title":"Histone code: a common language and multiple dialects to meet the different developmental requirements of apicomplexan parasites","authors":"Victoria Jeffers","doi":"10.1016/j.mib.2024.102472","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102472","url":null,"abstract":"<div><p>Apicomplexan parasites have complex life cycles, often requiring transmission between two different hosts, facing periods of dormancy within the host or in the environment to maximize chances of transmission. To support survival in these different conditions, tightly regulated and correctly timed gene expression is critical. The modification of histones and nucleosome composition makes a significant contribution to this regulation, and as eukaryotes, the fundamental mechanisms underlying this process in apicomplexans are similar to those in model eukaryotic organisms. However, single-celled intracellular parasites face unique challenges, and regulation of gene expression at the epigenetic level provides tight control for responses that must often be rapid and robust.</p><p>Here, we discuss the recent advances in understanding the dynamics of histone modifications across Apicomplexan life cycles and the molecular mechanisms that underlie epigenetic regulation of gene expression to promote parasite life cycle progression, dormancy, and transmission.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102472"},"PeriodicalIF":5.4,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1016/j.mib.2024.102457
Amy Prichard, Joe Pogliano
Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.
成核噬菌体(奇异病毒)编码许多基因,负责为病毒复制创造复杂的结构。对这个新近受到重视的噬菌体家族的研究已经开始揭示基于细胞核的噬菌体复制周期的亚细胞组织机制。这些发现包括噬菌体核壳的结构、膜结合早期噬菌体感染中间体的鉴定、噬菌体 RNA 聚合酶的动态定位、嵌合体病毒的系统发育和核心基因组,以及不同核形成噬菌体复制机制的差异。荧光显微镜和低温电子显微镜的应用,以及近距离标记和 RNA 靶向聚类正则间隔短联合重复序列(Clustered Regularly Interspaced Short Palindromic Repeats-Cas)系统等新工具的创新使用,推动了这项研究的发展。
{"title":"The intricate organizational strategy of nucleus-forming phages","authors":"Amy Prichard, Joe Pogliano","doi":"10.1016/j.mib.2024.102457","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102457","url":null,"abstract":"<div><p>Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102457"},"PeriodicalIF":5.4,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1016/j.mib.2024.102468
Gregory B Whitfield, Yves V Brun
Bacteria utilize type IV pili (T4P) to interact with their environment, where they facilitate processes including motility, adherence, and DNA uptake. T4P require multisubunit, membrane-spanning nanomachines for assembly. The tight adherence (Tad) pili are an Archaea-derived T4P subgroup whose machinery exhibits significant mechanistic and architectural differences from bacterial type IVa and IVb pili. Most Tad biosynthetic genes are encoded in a single locus that is widespread in bacteria due to facile acquisition via horizontal gene transfer. These loci experience extensive structural rearrangements, including the acquisition of novel regulatory or biosynthetic genes, which fine-tune their function. This has permitted their integration into many different bacterial lifestyles, including the Caulobacter crescentus cell cycle, Myxococcus xanthus predation, and numerous plant and mammalian pathogens and symbionts.
细菌利用 IV 型纤毛(T4P)与周围环境相互作用,促进运动、粘附和 DNA 吸收等过程。T4P 需要多亚基、跨膜的纳米机器来组装。紧密粘附(Tad)纤毛虫是一种源自古细菌的 T4P 亚群,其机制和结构与细菌 IVa 型和 IVb 型纤毛虫有显著不同。大多数 Tad 生物合成基因都由一个基因座编码,该基因座通过水平基因转移很容易获得,因此在细菌中广泛存在。这些基因座经历了广泛的结构重排,包括获得新的调控或生物合成基因,从而对其功能进行微调。这使得它们能够融入许多不同的细菌生活方式,包括新月杆菌的细胞周期、黄腐霉菌的捕食,以及许多植物和哺乳动物病原体和共生体。
{"title":"The type IVc pilus: just a Tad different","authors":"Gregory B Whitfield, Yves V Brun","doi":"10.1016/j.mib.2024.102468","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102468","url":null,"abstract":"<div><p>Bacteria utilize type IV pili (T4P) to interact with their environment, where they facilitate processes including motility, adherence, and DNA uptake. T4P require multisubunit, membrane-spanning nanomachines for assembly. The tight adherence (Tad) pili are an Archaea-derived T4P subgroup whose machinery exhibits significant mechanistic and architectural differences from bacterial type IVa and IVb pili. Most Tad biosynthetic genes are encoded in a single locus that is widespread in bacteria due to facile acquisition via horizontal gene transfer. These loci experience extensive structural rearrangements, including the acquisition of novel regulatory or biosynthetic genes, which fine-tune their function. This has permitted their integration into many different bacterial lifestyles, including the <em>Caulobacter crescentus</em> cell cycle, <em>Myxococcus xanthus</em> predation, and numerous plant and mammalian pathogens and symbionts.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102468"},"PeriodicalIF":5.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000444/pdfft?md5=6a90712ed76dec20b12ea24efdd445b9&pid=1-s2.0-S1369527424000444-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140347489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1016/j.mib.2024.102469
Till S Voss , Nicolas MB Brancucci
Malaria blood stage parasites commit to either one of two distinct cellular fates while developing within erythrocytes of their mammalian host: they either undergo another round of asexual replication or they differentiate into nonreplicative transmissible gametocytes. Depending on the state of infection, either path may support or impair the ultimate goal of human-to-human transmission via the mosquito vector. Malaria parasites therefore evolved strategies to control investments into asexual proliferation versus gametocyte formation. Recent work provided fascinating molecular insight into shared and unique mechanisms underlying the control and environmental modulation of sexual commitment in the two most widely studied malaria parasite species, Plasmodium falciparum and P. berghei. With this review, we aim at placing these findings into a comparative mechanistic context.
{"title":"Regulation of sexual commitment in malaria parasites — a complex affair","authors":"Till S Voss , Nicolas MB Brancucci","doi":"10.1016/j.mib.2024.102469","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102469","url":null,"abstract":"<div><p>Malaria blood stage parasites commit to either one of two distinct cellular fates while developing within erythrocytes of their mammalian host: they either undergo another round of asexual replication or they differentiate into nonreplicative transmissible gametocytes. Depending on the state of infection, either path may support or impair the ultimate goal of human-to-human transmission via the mosquito vector. Malaria parasites therefore evolved strategies to control investments into asexual proliferation versus gametocyte formation. Recent work provided fascinating molecular insight into shared and unique mechanisms underlying the control and environmental modulation of sexual commitment in the two most widely studied malaria parasite species, <em>Plasmodium falciparum</em> and <em>P. berghei</em>. With this review, we aim at placing these findings into a comparative mechanistic context.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102469"},"PeriodicalIF":5.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000456/pdfft?md5=09982c2601b9412f6cd1c5659d1dc74d&pid=1-s2.0-S1369527424000456-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.mib.2024.102467
IW Rathnayaka-Mudiyanselage , V Nandana , JM Schrader
Bacterial cells have a unique challenge to organize their cytoplasm without the use of membrane-bound organelles. Biomolecular condensates (henceforth BMCs) are a class of nonmembrane-bound organelles, which, through the physical process of phase separation, can form liquid-like droplets with proteins/nucleic acids. BMCs have been broadly characterized in eukaryotic cells, and BMCs have been recently identified in bacteria, with the first and best studied example being bacterial ribonucleoprotein bodies (BR-bodies). BR-bodies contain the RNA decay machinery and show functional parallels to eukaryotic P-bodies (PBs) and stress granules (SGs). Due to the finding that mRNA decay machinery is compartmentalized in BR-bodies and in eukaryotic PBs/SGs, we will explore the functional similarities in the proteins, which are known to enrich in these structures based on recent proteomic studies. Interestingly, despite the use of different mRNA decay and post-transcriptional regulatory machinery, this analysis has revealed evolutionary convergence in the classes of enriched enzymes in these structures.
{"title":"Proteomic composition of eukaryotic and bacterial RNA decay condensates suggests convergent evolution","authors":"IW Rathnayaka-Mudiyanselage , V Nandana , JM Schrader","doi":"10.1016/j.mib.2024.102467","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102467","url":null,"abstract":"<div><p>Bacterial cells have a unique challenge to organize their cytoplasm without the use of membrane-bound organelles. Biomolecular condensates (henceforth BMCs) are a class of nonmembrane-bound organelles, which, through the physical process of phase separation, can form liquid-like droplets with proteins/nucleic acids. BMCs have been broadly characterized in eukaryotic cells, and BMCs have been recently identified in bacteria, with the first and best studied example being bacterial ribonucleoprotein bodies (BR-bodies). BR-bodies contain the RNA decay machinery and show functional parallels to eukaryotic P-bodies (PBs) and stress granules (SGs). Due to the finding that mRNA decay machinery is compartmentalized in BR-bodies and in eukaryotic PBs/SGs, we will explore the functional similarities in the proteins, which are known to enrich in these structures based on recent proteomic studies. Interestingly, despite the use of different mRNA decay and post-transcriptional regulatory machinery, this analysis has revealed evolutionary convergence in the classes of enriched enzymes in these structures.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102467"},"PeriodicalIF":5.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140341197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.mib.2024.102470
Jennifer Amstutz , Elizaveta Krol , Audrey Verhaeghe , Xavier De Bolle , Anke Becker , Pamela JB Brown
The governing principles and suites of genes for lateral elongation or incorporation of new cell wall material along the length of a rod-shaped cell are well described. In contrast, relatively little is known about unipolar elongation or incorporation of peptidoglycan at one end of the rod. Recent work in three related model systems of unipolar growth (Agrobacterium tumefaciens, Brucella abortus, and Sinorhizobium meliloti) has clearly established that unipolar growth in the Hyphomicrobiales order relies on a set of genes distinct from the canonical elongasome. Polar incorporation of envelope components relies on homologous proteins shared by the Hyphomicrobiales, reviewed here. Ongoing and future work will reveal how unipolar growth is integrated into the alphaproteobacterial cell cycle and coordinated with other processes such as chromosome segregation and cell division.
{"title":"Getting to the point: unipolar growth of Hyphomicrobiales","authors":"Jennifer Amstutz , Elizaveta Krol , Audrey Verhaeghe , Xavier De Bolle , Anke Becker , Pamela JB Brown","doi":"10.1016/j.mib.2024.102470","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102470","url":null,"abstract":"<div><p>The governing principles and suites of genes for lateral elongation or incorporation of new cell wall material along the length of a rod-shaped cell are well described. In contrast, relatively little is known about unipolar elongation or incorporation of peptidoglycan at one end of the rod. Recent work in three related model systems of unipolar growth (<em>Agrobacterium tumefaciens</em>, <em>Brucella abortus,</em> and <em>Sinorhizobium meliloti</em>) has clearly established that unipolar growth in the Hyphomicrobiales order relies on a set of genes distinct from the canonical elongasome. Polar incorporation of envelope components relies on homologous proteins shared by the Hyphomicrobiales, reviewed here. Ongoing and future work will reveal how unipolar growth is integrated into the alphaproteobacterial cell cycle and coordinated with other processes such as chromosome segregation and cell division.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102470"},"PeriodicalIF":5.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000468/pdfft?md5=d6f05b89d34f4ca9ad052ee50a625c18&pid=1-s2.0-S1369527424000468-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140341196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.mib.2024.102471
Alessandra G de Melo , Carlee Morency , Sylvain Moineau
Bacterial pathogens can infect a wide range of hosts and pose a threat to public and animal health as well as to agriculture. The emergence of antibiotic-resistant strains has increased this risk by making the treatment of bacterial infections even more challenging. Pathogenic bacteria thrive in various ecological niches, but they can also be specifically targeted and killed by bacteriophages (phages). Lytic phages are now investigated and even used, in some cases, as alternatives or complements to antibiotics for preventing or treating bacterial infections (phage therapy). As such, it is key to identify factors responsible for phage specificity and efficiency. Here, we review recent advances in virulence-associated factors that are targeted by phages. We highlight components of the bacterial cell surface, effector systems, and motility structures exploited by phages and the effects of phages on cell aggregation and communication. We also look at the fitness trade-off of phage resistance.
{"title":"Virulence-associated factors as targets for phage infection","authors":"Alessandra G de Melo , Carlee Morency , Sylvain Moineau","doi":"10.1016/j.mib.2024.102471","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102471","url":null,"abstract":"<div><p>Bacterial pathogens can infect a wide range of hosts and pose a threat to public and animal health as well as to agriculture. The emergence of antibiotic-resistant strains has increased this risk by making the treatment of bacterial infections even more challenging. Pathogenic bacteria thrive in various ecological niches, but they can also be specifically targeted and killed by bacteriophages (phages). Lytic phages are now investigated and even used, in some cases, as alternatives or complements to antibiotics for preventing or treating bacterial infections (phage therapy). As such, it is key to identify factors responsible for phage specificity and efficiency. Here, we review recent advances in virulence-associated factors that are targeted by phages. We highlight components of the bacterial cell surface, effector systems, and motility structures exploited by phages and the effects of phages on cell aggregation and communication. We also look at the fitness trade-off of phage resistance.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102471"},"PeriodicalIF":5.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952742400047X/pdfft?md5=39a1ff368d77b41ac7fbece60a957e90&pid=1-s2.0-S136952742400047X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140341198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}