Pub Date : 2024-11-20DOI: 10.1021/acscentsci.4c0142810.1021/acscentsci.4c01428
Ylenia Mazzocato, Nicola Frasson, Matthew Sample, Cristian Fregonese, Angela Pavan, Alberto Caregnato, Marta Simeoni, Alessandro Scarso, Laura Cendron, Petr Šulc and Alessandro Angelini*,
Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further in vitro studies showed that such in silico-evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target. Crystal structure of the cyclic peptides in complex with the protease resembled those of protein complexes, with large interaction surfaces, constrained peptide backbones, and multiple inter- and intramolecular interactions, leading to good binding affinity and selectivity.
Combination of statistical and computational approaches enables rapid and cost-effective generation of potent cyclic peptide inhibitors of a human cancer associated protease.
{"title":"Combination of Coevolutionary Information and Supervised Learning Enables Generation of Cyclic Peptide Inhibitors with Enhanced Potency from a Small Data Set","authors":"Ylenia Mazzocato, Nicola Frasson, Matthew Sample, Cristian Fregonese, Angela Pavan, Alberto Caregnato, Marta Simeoni, Alessandro Scarso, Laura Cendron, Petr Šulc and Alessandro Angelini*, ","doi":"10.1021/acscentsci.4c0142810.1021/acscentsci.4c01428","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01428https://doi.org/10.1021/acscentsci.4c01428","url":null,"abstract":"<p >Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further <i>in vitro</i> studies showed that such <i>in silico</i>-evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target. Crystal structure of the cyclic peptides in complex with the protease resembled those of protein complexes, with large interaction surfaces, constrained peptide backbones, and multiple inter- and intramolecular interactions, leading to good binding affinity and selectivity.</p><p >Combination of statistical and computational approaches enables rapid and cost-effective generation of potent cyclic peptide inhibitors of a human cancer associated protease.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2242–2252 2242–2252"},"PeriodicalIF":12.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01428","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs. Herein, hydrophilic ethylene glycol fragments were inserted between the modification modules and the response modules, and the important effects of hydrophilic fragments on the assembly, drug release, and therapeutic index of the prodrugs were investigated. Notably, the introduction of hydrophilic fragments affected the intermolecular forces of the prodrugs and increased the interaction of hydrogen bonding. In addition, hydrophilic fragments significantly improved the redox drug release profiles, which affected the therapeutic index of the prodrug nanoassemblies. PTX-SS-OA NPs with hydrophilic fragments exhibited increased redox sensitivity, enhanced cytotoxicity, and superior antitumor efficacy. In comparison, PTX-SS-OAL NPs without hydrophilic fragments showed limited redox sensitivity and cytotoxicity but displayed better safety. Overall, the hydrophilic fragment is a critical determinant in modulating the therapeutic index of the prodrug nanoassemblies, which contributes to the development of advanced prodrug nanodelivery systems.
{"title":"Hydrophilic Ethylene Glycol Fragments: A Determinant Affecting the Therapeutic Index of Paclitaxel Prodrug Nanoassemblies.","authors":"Yaqi Li, Yixin Sun, Qing Wang, Shuo Wang, Cuiyun Liu, Yuetong Huang, Wenxin Zhong, Xiyan Wang, Wenjing Wang, Shiyi Zuo, Xianbao Shi, Xiaohui Pu, Jin Sun, Zhonggui He, Bingjun Sun","doi":"10.1021/acscentsci.4c01004","DOIUrl":"10.1021/acscentsci.4c01004","url":null,"abstract":"<p><p>Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs. Herein, hydrophilic ethylene glycol fragments were inserted between the modification modules and the response modules, and the important effects of hydrophilic fragments on the assembly, drug release, and therapeutic index of the prodrugs were investigated. Notably, the introduction of hydrophilic fragments affected the intermolecular forces of the prodrugs and increased the interaction of hydrogen bonding. In addition, hydrophilic fragments significantly improved the redox drug release profiles, which affected the therapeutic index of the prodrug nanoassemblies. PTX-SS-OA NPs with hydrophilic fragments exhibited increased redox sensitivity, enhanced cytotoxicity, and superior antitumor efficacy. In comparison, PTX-SS-OAL NPs without hydrophilic fragments showed limited redox sensitivity and cytotoxicity but displayed better safety. Overall, the hydrophilic fragment is a critical determinant in modulating the therapeutic index of the prodrug nanoassemblies, which contributes to the development of advanced prodrug nanodelivery systems.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2253-2265"},"PeriodicalIF":12.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20eCollection Date: 2024-11-27DOI: 10.1021/acscentsci.4c01794
Charlotte E Willans
{"title":"Bespoke and Accessible Electrochemical Reactors.","authors":"Charlotte E Willans","doi":"10.1021/acscentsci.4c01794","DOIUrl":"10.1021/acscentsci.4c01794","url":null,"abstract":"","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 11","pages":"2000-2002"},"PeriodicalIF":12.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20eCollection Date: 2024-12-25DOI: 10.1021/acscentsci.4c01428
Ylenia Mazzocato, Nicola Frasson, Matthew Sample, Cristian Fregonese, Angela Pavan, Alberto Caregnato, Marta Simeoni, Alessandro Scarso, Laura Cendron, Petr Šulc, Alessandro Angelini
Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further in vitro studies showed that such in silico-evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target. Crystal structure of the cyclic peptides in complex with the protease resembled those of protein complexes, with large interaction surfaces, constrained peptide backbones, and multiple inter- and intramolecular interactions, leading to good binding affinity and selectivity.
{"title":"Combination of Coevolutionary Information and Supervised Learning Enables Generation of Cyclic Peptide Inhibitors with Enhanced Potency from a Small Data Set.","authors":"Ylenia Mazzocato, Nicola Frasson, Matthew Sample, Cristian Fregonese, Angela Pavan, Alberto Caregnato, Marta Simeoni, Alessandro Scarso, Laura Cendron, Petr Šulc, Alessandro Angelini","doi":"10.1021/acscentsci.4c01428","DOIUrl":"10.1021/acscentsci.4c01428","url":null,"abstract":"<p><p>Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further <i>in vitro</i> studies showed that such <i>in silico</i>-evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target. Crystal structure of the cyclic peptides in complex with the protease resembled those of protein complexes, with large interaction surfaces, constrained peptide backbones, and multiple inter- and intramolecular interactions, leading to good binding affinity and selectivity.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2242-2252"},"PeriodicalIF":12.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1021/acscentsci.4c0065410.1021/acscentsci.4c00654
Prem D. Nayak, Büsra Dereli, David Ohayon, Shofarul Wustoni, Tania Cecilia Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Craig Combe, Sophie Griggs, Maryam Alsufyani, Rajendar Sheelamanthula, Iain McCulloch, Luigi Cavallo and Sahika Inal*,
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O2-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O2 interactions to enhance operational stability and performance at n-type film/water interfaces.
The onset of oxygen reduction reaction for n-type organic mixed ionic-electronic conductors closely aligns with their reduction onset and can hardly be mitigated by frontier energy level adjustment.
{"title":"Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices","authors":"Prem D. Nayak, Büsra Dereli, David Ohayon, Shofarul Wustoni, Tania Cecilia Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Craig Combe, Sophie Griggs, Maryam Alsufyani, Rajendar Sheelamanthula, Iain McCulloch, Luigi Cavallo and Sahika Inal*, ","doi":"10.1021/acscentsci.4c0065410.1021/acscentsci.4c00654","DOIUrl":"https://doi.org/10.1021/acscentsci.4c00654https://doi.org/10.1021/acscentsci.4c00654","url":null,"abstract":"<p >Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O<sub>2</sub>-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O<sub>2</sub> interactions to enhance operational stability and performance at n-type film/water interfaces.</p><p >The onset of oxygen reduction reaction for n-type organic mixed ionic-electronic conductors closely aligns with their reduction onset and can hardly be mitigated by frontier energy level adjustment.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2229–2241 2229–2241"},"PeriodicalIF":12.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c00654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19eCollection Date: 2024-12-25DOI: 10.1021/acscentsci.4c00654
Prem D Nayak, Büsra Dereli, David Ohayon, Shofarul Wustoni, Tania Cecilia Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Craig Combe, Sophie Griggs, Maryam Alsufyani, Rajendar Sheelamanthula, Iain McCulloch, Luigi Cavallo, Sahika Inal
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O2-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O2 interactions to enhance operational stability and performance at n-type film/water interfaces.
{"title":"Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.","authors":"Prem D Nayak, Büsra Dereli, David Ohayon, Shofarul Wustoni, Tania Cecilia Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Craig Combe, Sophie Griggs, Maryam Alsufyani, Rajendar Sheelamanthula, Iain McCulloch, Luigi Cavallo, Sahika Inal","doi":"10.1021/acscentsci.4c00654","DOIUrl":"10.1021/acscentsci.4c00654","url":null,"abstract":"<p><p>Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O<sub>2</sub>-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O<sub>2</sub> interactions to enhance operational stability and performance at n-type film/water interfaces.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2229-2241"},"PeriodicalIF":12.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18eCollection Date: 2024-12-25DOI: 10.1021/acscentsci.4c01541
Yu-Qing Zheng, Zhenan Bao
Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties. In this Outlook, we highlight the current understanding of structure-property relationships for intrinsically stretchable electronic materials with a focus on the nanoconfinement strategy as a promising approach to incorporate skin-like properties and other functionalities without compromising charge transport. We outline emerging directions and challenges for intrinsically stretchable electronic materials with the aim of constructing skin-like electronic systems.
{"title":"Molecularly Designed and Nanoconfined Polymer Electronic Materials for Skin-like Electronics.","authors":"Yu-Qing Zheng, Zhenan Bao","doi":"10.1021/acscentsci.4c01541","DOIUrl":"10.1021/acscentsci.4c01541","url":null,"abstract":"<p><p>Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties. In this Outlook, we highlight the current understanding of structure-property relationships for intrinsically stretchable electronic materials with a focus on the nanoconfinement strategy as a promising approach to incorporate skin-like properties and other functionalities without compromising charge transport. We outline emerging directions and challenges for intrinsically stretchable electronic materials with the aim of constructing skin-like electronic systems.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2188-2199"},"PeriodicalIF":12.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acscentsci.4c0154110.1021/acscentsci.4c01541
Yu-Qing Zheng*, and , Zhenan Bao*,
Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties. In this Outlook, we highlight the current understanding of structure–property relationships for intrinsically stretchable electronic materials with a focus on the nanoconfinement strategy as a promising approach to incorporate skin-like properties and other functionalities without compromising charge transport. We outline emerging directions and challenges for intrinsically stretchable electronic materials with the aim of constructing skin-like electronic systems.
Nanoconfinement reduces conformational disorder in functional polymers, enhancing charge transport and enabling multiple skin-like properties through a tailored elastic matrix.
{"title":"Molecularly Designed and Nanoconfined Polymer Electronic Materials for Skin-like Electronics","authors":"Yu-Qing Zheng*, and , Zhenan Bao*, ","doi":"10.1021/acscentsci.4c0154110.1021/acscentsci.4c01541","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01541https://doi.org/10.1021/acscentsci.4c01541","url":null,"abstract":"<p >Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties. In this Outlook, we highlight the current understanding of structure–property relationships for intrinsically stretchable electronic materials with a focus on the nanoconfinement strategy as a promising approach to incorporate skin-like properties and other functionalities without compromising charge transport. We outline emerging directions and challenges for intrinsically stretchable electronic materials with the aim of constructing skin-like electronic systems.</p><p >Nanoconfinement reduces conformational disorder in functional polymers, enhancing charge transport and enabling multiple skin-like properties through a tailored elastic matrix.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2188–2199 2188–2199"},"PeriodicalIF":12.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C═C bonds with oxalate as a masked CO2 source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π–cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO2 and CO2 radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions. The in situ generated CO2•– and CO2 molecules from oxalic radical anions could both add to the C═C bond without assistance of any photocatalyst or additives, which made this reaction sustainable, clean, and efficient.
Tetrabutylammonium oxalate (TBAO) works as a carboxylation reagent for 1,2-, 1,4-, and 1,6-difunctionalization of alkene, diene, and triene substrates in the absence of photocatalyst or any additives.
{"title":"Visible-Light-Driven Carboxylative 1,2-Difunctionalization of C═C Bonds with Tetrabutylammonium Oxalate","authors":"Sai Wang, Pei Xu, Zhi-Tao Liu, Yi-Qin Liu, Hao-Qiang Jiang, Tian-Zi Hao, Hui-Xian Jiang, Hui Xu, Xu-Dong Cao*, Dong Guo* and Xu Zhu*, ","doi":"10.1021/acscentsci.4c0146410.1021/acscentsci.4c01464","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01464https://doi.org/10.1021/acscentsci.4c01464","url":null,"abstract":"<p >Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C═C bonds with oxalate as a masked CO<sub>2</sub> source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π–cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO<sub>2</sub> and CO<sub>2</sub> radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions. The <i>in situ</i> generated CO<sub>2</sub><sup>•–</sup> and CO<sub>2</sub> molecules from oxalic radical anions could both add to the C═C bond without assistance of any photocatalyst or additives, which made this reaction sustainable, clean, and efficient.</p><p >Tetrabutylammonium oxalate (TBAO) works as a carboxylation reagent for 1,2-, 1,4-, and 1,6-difunctionalization of alkene, diene, and triene substrates in the absence of photocatalyst or any additives.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"46–56 46–56"},"PeriodicalIF":12.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143091787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C=C bonds with oxalate as a masked CO2 source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π-cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO2 and CO2 radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions. The in situ generated CO2•- and CO2 molecules from oxalic radical anions could both add to the C=C bond without assistance of any photocatalyst or additives, which made this reaction sustainable, clean, and efficient.
在此,我们报告了在无催化剂条件下,以草酸盐为掩蔽二氧化碳源,通过可见光诱导电荷转移络合物实现 C=C 键的二羧化和脱氚羧化反应。在这一反应中,我们首次发现草酸四丁基铵能够通过π-阳离子相互作用与芳基底物聚集形成电荷转移络合物,随后在 450 纳米波长的发光二极管照射下,引发单电子从草酸二阴离子转移到反阳离子铵,释放出二氧化碳和二氧化碳自由基阴离子。在温和的条件下,各种烯烃、二烯烃、三烯烃和吲哚(包括具有挑战性的三取代烯烃)以高选择性进行了二羧化和反马尔科夫尼科夫脱氘羧化反应,从而获得了有价值的 1,2- 和 1,4- 二羧酸以及吲哚啉衍生的二酸和β-脱氘羧酸。原位生成的 CO2 -- 和草酸基阴离子产生的 CO2 分子都可以添加到 C=C 键上,而无需任何光催化剂或添加剂的辅助,这使得该反应具有可持续性、清洁性和高效性。
{"title":"Visible-Light-Driven Carboxylative 1,2-Difunctionalization of C=C Bonds with Tetrabutylammonium Oxalate.","authors":"Sai Wang, Pei Xu, Zhi-Tao Liu, Yi-Qin Liu, Hao-Qiang Jiang, Tian-Zi Hao, Hui-Xian Jiang, Hui Xu, Xu-Dong Cao, Dong Guo, Xu Zhu","doi":"10.1021/acscentsci.4c01464","DOIUrl":"10.1021/acscentsci.4c01464","url":null,"abstract":"<p><p>Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C=C bonds with oxalate as a masked CO<sub>2</sub> source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π-cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO<sub>2</sub> and CO<sub>2</sub> radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions. The <i>in situ</i> generated CO<sub>2</sub> <sup>•-</sup> and CO<sub>2</sub> molecules from oxalic radical anions could both add to the C=C bond without assistance of any photocatalyst or additives, which made this reaction sustainable, clean, and efficient.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"46-56"},"PeriodicalIF":12.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}