Advances in cement recipe, additives and cementing technology including light weight cement, ultra-low fluid loss cement blend and improved cement to mud rheology mixing to seal the continuous liquid channels have prompted the industry to find an innovative way to evaluate the cement bond and integrity with a more robust and integrated approach. Evaluating cement bond behind casing based on single tool platform had shown some inherent uncertainties mainly due to borehole effects, tool eccentralization and processing variation. This paper will highlight few case studies on the application of both electromagnetic acoustic wave (EMAT) and ultrasonic cement evaluation logs including the world's first tool combination in single run to enhance understanding on cement integrity and optimize the perforation interval for production. Channeling and microannulus occurrences whether dry or wet are the most common features in cement integrity evaluation and yet poorly characterized to prevent any unwanted cross-flow or adverse impact to production. Electromagnetic acoustic wave cement evaluation in combination with an ultrasonic tool allow direct quantification of compressional, shear and flexural attenuation properties of cement downhole as well as acoustic impedance and microdebonding feature of the cement. Separation between average shear and flexural attenuation curves may indicate presence of microannulus depending on the extent of the separation without any requirement of additional pressurized logging pass. Parameter threshold determination based on shear and flexural attenuation cross-plot also indicates severity of cement microdebonding. Results showed that good production rate with lower water cut and low GOR reading had been achieved from specific perforated zones in the well. Electromagnetic acoustic wave and ultrasonic cement evaluation tools had successfully defined the zonal isolation layers as thin as 2 to 3 meters along the wellbore and optimized the perforated zones to avoid any liquid channeling or premature water and gas breakthrough into the wells, which can affect the production attainability and drainage efficiency from particular reservoirs. In a nutshell, combination of EMAT acoustic wave and ultrasonic cement evaluation principles prove to provide a more comprehensive overview on the cement bond integrity behind the casing. Having two independent downhole measurement which complement each other will reinvent the effort in cement bond assessment for complex reservoir environment which is susceptible to interpretation ambiguity.
{"title":"Cement Evaluation in Highly Laminated and Multi-Stacked Sandstone Reservoirs: The World First Novel Approach Using Dual-Physics Cement Bond Assessment","authors":"S. Zulkipli, Saikat Das, Emma Smith","doi":"10.2118/207333-ms","DOIUrl":"https://doi.org/10.2118/207333-ms","url":null,"abstract":"\u0000 Advances in cement recipe, additives and cementing technology including light weight cement, ultra-low fluid loss cement blend and improved cement to mud rheology mixing to seal the continuous liquid channels have prompted the industry to find an innovative way to evaluate the cement bond and integrity with a more robust and integrated approach. Evaluating cement bond behind casing based on single tool platform had shown some inherent uncertainties mainly due to borehole effects, tool eccentralization and processing variation. This paper will highlight few case studies on the application of both electromagnetic acoustic wave (EMAT) and ultrasonic cement evaluation logs including the world's first tool combination in single run to enhance understanding on cement integrity and optimize the perforation interval for production.\u0000 Channeling and microannulus occurrences whether dry or wet are the most common features in cement integrity evaluation and yet poorly characterized to prevent any unwanted cross-flow or adverse impact to production. Electromagnetic acoustic wave cement evaluation in combination with an ultrasonic tool allow direct quantification of compressional, shear and flexural attenuation properties of cement downhole as well as acoustic impedance and microdebonding feature of the cement. Separation between average shear and flexural attenuation curves may indicate presence of microannulus depending on the extent of the separation without any requirement of additional pressurized logging pass. Parameter threshold determination based on shear and flexural attenuation cross-plot also indicates severity of cement microdebonding.\u0000 Results showed that good production rate with lower water cut and low GOR reading had been achieved from specific perforated zones in the well. Electromagnetic acoustic wave and ultrasonic cement evaluation tools had successfully defined the zonal isolation layers as thin as 2 to 3 meters along the wellbore and optimized the perforated zones to avoid any liquid channeling or premature water and gas breakthrough into the wells, which can affect the production attainability and drainage efficiency from particular reservoirs.\u0000 In a nutshell, combination of EMAT acoustic wave and ultrasonic cement evaluation principles prove to provide a more comprehensive overview on the cement bond integrity behind the casing. Having two independent downhole measurement which complement each other will reinvent the effort in cement bond assessment for complex reservoir environment which is susceptible to interpretation ambiguity.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82392809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew Nakatsuka, Basile Marco, Sumil Thapa, Alexander Ventura, Osvaldo Pascolini, L. Pellicciotta, V. Veedu
Fouling of heat exchanger equipment through the formation and attachment of hard scale, microbially induced corrosion (MIC) products, or particulate erosion is a serious challenge to reliable production in the oil and gas industry. Exchangers which become fouled in this way perform 15-30% worse than their rated ability, requiring either constant intervention to clean away biofilms, continuous injection of biocides and corrosion inhibitors, or the regular plugging of tubes to prevent leaks, representing a significant operating expense and billions of dollars in lost production time. When an exchanger is unable to provide sufficient heat due to tube fouling, additional sources of heating must be utilized to make up for this deficit and to ensure that facility processes remain within design allowances. This need for supplemental heating is a significant source of carbon emissions in the industry and represents a significant obstacle towards decarbonization efforts. However, it also represents an economically attractive way to simultaneously lower emissions while also lowering a producer's cost per barrel. This work describes an alternate strategy to control and prevent fouling in heat exchangers, through the one-time application of an omniphobic (water- and oil-repelling) nano-surface treatment. Once applied to a heat exchanger, the extremely smooth and low-surface energy material greatly reduces the ability of MIC-causing bacteria to deposit and adhere to the surface. Because it imparts functionality to the surface itself, rather than simply function as a physical barrier, it enables long lasting protection which was validated under laboratory conditions in a pressurized autoclave, as well as two pilot demonstrations. Results from both the laboratory and field evaluations of the treatment's promise showed that treated surfaces showed a corrosion rate over 36-times lower when compared to untreated surfaces, while also completely arresting the formation of corrosion pitting, tube fouling, and erosion of the tube interior. These field-validated results were then applied to the observed heating deficit of a proposed deployment site, resulting in calculated carbon emissions savings of up to 17,000 Tons CO2 per year.
{"title":"Decarbonization and Improved Energy Efficiency Using a Novel Nanocomposite Surface Treatment","authors":"Matthew Nakatsuka, Basile Marco, Sumil Thapa, Alexander Ventura, Osvaldo Pascolini, L. Pellicciotta, V. Veedu","doi":"10.2118/208080-ms","DOIUrl":"https://doi.org/10.2118/208080-ms","url":null,"abstract":"\u0000 Fouling of heat exchanger equipment through the formation and attachment of hard scale, microbially induced corrosion (MIC) products, or particulate erosion is a serious challenge to reliable production in the oil and gas industry. Exchangers which become fouled in this way perform 15-30% worse than their rated ability, requiring either constant intervention to clean away biofilms, continuous injection of biocides and corrosion inhibitors, or the regular plugging of tubes to prevent leaks, representing a significant operating expense and billions of dollars in lost production time.\u0000 When an exchanger is unable to provide sufficient heat due to tube fouling, additional sources of heating must be utilized to make up for this deficit and to ensure that facility processes remain within design allowances. This need for supplemental heating is a significant source of carbon emissions in the industry and represents a significant obstacle towards decarbonization efforts. However, it also represents an economically attractive way to simultaneously lower emissions while also lowering a producer's cost per barrel.\u0000 This work describes an alternate strategy to control and prevent fouling in heat exchangers, through the one-time application of an omniphobic (water- and oil-repelling) nano-surface treatment. Once applied to a heat exchanger, the extremely smooth and low-surface energy material greatly reduces the ability of MIC-causing bacteria to deposit and adhere to the surface. Because it imparts functionality to the surface itself, rather than simply function as a physical barrier, it enables long lasting protection which was validated under laboratory conditions in a pressurized autoclave, as well as two pilot demonstrations.\u0000 Results from both the laboratory and field evaluations of the treatment's promise showed that treated surfaces showed a corrosion rate over 36-times lower when compared to untreated surfaces, while also completely arresting the formation of corrosion pitting, tube fouling, and erosion of the tube interior. These field-validated results were then applied to the observed heating deficit of a proposed deployment site, resulting in calculated carbon emissions savings of up to 17,000 Tons CO2 per year.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89577884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Foam Enhanced Oil Recovery (EOR) has been employed as an improved recovery method due to its best sweep efficiency and best mobility control over the other injection method such as gas flooding, water flooding and other EOR methods. Foam which has high viscosity illustrates great potential for displacing liquid. The relative immobility of foam in porous media seems to be able to suppress the formation of fingers during oil displacement leading a more stable displacement. However, there are still various parameters that may influence the efficiency of foam assisted oil displacement such as oil properties, permeability of reservoir rock, physical and chemical properties of foam, and other parameters. Also, the interaction and displacement patterns of foam inside the porous media are remained unknown. Thus, in this study, we investigated the three-dimensional (3D) characteristics of oil recovery with gases, water, surfactant, and foam injection in a porous media set-up. By using CT scanning machine, the fluid displacement patterns were captured and analyzed. Moreover, the effect of oil viscosity on foam displacement patterns is studied. The study provides a qualitative and quantitative experimental visualization of 3D displacement structure, oil recovery with gases, liquid and foam injection. As a result, the comparison of fluid displacement patterns between gases, water, surfactant and foam injection show that foam has the good ability in sweeping and forms stable displacement front. The combination of surfactant, liquid and gas, which makes up foam resulted in a synergistic effect in oil displacement. On the other hand, viscous fingering, gravity segregation, trapped oil phenomena are shown in gas flooding and liquid flooding experiments. Thus, foam which displaced stably across the permeable bed resulted in the highest oil recovery factor. The mechanism of foam flow in porous media was understood in this study. Foam, as a series of bubble, burst and become free moving liquid and gas particles when in contact with oil and porous media. Therefore, two displacement fronts could be found from the foam injection experiment, in which the front layer moving ahead in contacting with oil bank is the discontinuous gas/liquid layer and followed by stably foam bank at the back. Due to the stable displacement of foam bank, the effect of oil viscosity on foam displacement is suppressed and showed no distinction in terms of displacement patterns. The flow regimes are found to be the same despite different viscosity of displaced oil. There has been no linear correlation proved between the oil viscosity and oil recovery factor.
{"title":"Three-Dimensional Visualization of Oil Displacement by Foam in Porous Media","authors":"Josiah Siew Kai Wong, T. Suekane","doi":"10.2118/207397-ms","DOIUrl":"https://doi.org/10.2118/207397-ms","url":null,"abstract":"\u0000 Foam Enhanced Oil Recovery (EOR) has been employed as an improved recovery method due to its best sweep efficiency and best mobility control over the other injection method such as gas flooding, water flooding and other EOR methods. Foam which has high viscosity illustrates great potential for displacing liquid. The relative immobility of foam in porous media seems to be able to suppress the formation of fingers during oil displacement leading a more stable displacement. However, there are still various parameters that may influence the efficiency of foam assisted oil displacement such as oil properties, permeability of reservoir rock, physical and chemical properties of foam, and other parameters. Also, the interaction and displacement patterns of foam inside the porous media are remained unknown. Thus, in this study, we investigated the three-dimensional (3D) characteristics of oil recovery with gases, water, surfactant, and foam injection in a porous media set-up. By using CT scanning machine, the fluid displacement patterns were captured and analyzed. Moreover, the effect of oil viscosity on foam displacement patterns is studied. The study provides a qualitative and quantitative experimental visualization of 3D displacement structure, oil recovery with gases, liquid and foam injection. As a result, the comparison of fluid displacement patterns between gases, water, surfactant and foam injection show that foam has the good ability in sweeping and forms stable displacement front. The combination of surfactant, liquid and gas, which makes up foam resulted in a synergistic effect in oil displacement. On the other hand, viscous fingering, gravity segregation, trapped oil phenomena are shown in gas flooding and liquid flooding experiments. Thus, foam which displaced stably across the permeable bed resulted in the highest oil recovery factor. The mechanism of foam flow in porous media was understood in this study. Foam, as a series of bubble, burst and become free moving liquid and gas particles when in contact with oil and porous media. Therefore, two displacement fronts could be found from the foam injection experiment, in which the front layer moving ahead in contacting with oil bank is the discontinuous gas/liquid layer and followed by stably foam bank at the back. Due to the stable displacement of foam bank, the effect of oil viscosity on foam displacement is suppressed and showed no distinction in terms of displacement patterns. The flow regimes are found to be the same despite different viscosity of displaced oil. There has been no linear correlation proved between the oil viscosity and oil recovery factor.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"79 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72620269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shell & Tube Heat exchangers are critical for incessant operation of processing plant. These exchangers may face integrity threats due to reduction in shell thicknesses at Nozzle to Shell Junction below design code requirements. This paper presents the Cost Effective fit for purpose approach utilizing advance Finite Element analysis to explore and recommend the solutions for existing numerous exchangers that are to be safely used even after reported low thickness on account of manufacturing imperfection. Reduction in Shell thickness below design value can affect its ability to sustain design pressure & vacuum including nozzle integrity for associated piping loads and service life reduction for exclusion of corrosion allowance. As short-term Mitigation methodology, weld overlay was adopted to restore the areas with lower thickness. For long term solution, fit for purpose review approach was adopted for continued usage of exchangers which involves nozzle load analysis using WRC & FEA based on PAUT thickness data and utilizing actual piping loads, derating of design pressure, comparison of thickness data to establish corrosion rate and service life of exchanger. Thorough Integrity review based on design Code (ASME BPVC Section VIII) and WRC analysis have confirmed that majority of the exchangers have thickness higher than that required to sustain design pressure, vacuum conditions when considered with piping loads acting on nozzles. Thickness data comparison between three (03) year old manual UT and latest Phase array UT confirmed that majority of the exchangers are in clean non-corrosive service thus allowance for corrosion is not required. Where in the nature of exchanger service require corrosion allowance, it is considered in analysis and usage of stiffeners at nozzle to shell intersection and/or on full circumference of shell is recommended to prevent overstress due to piping loads / buckling distortion due to vacuum conditions respectively, based on detailed Finite element analysis (FEA). In order to establish more reliable long-term corrosion rate, next inspection after four (04) years is recommended and impact on integrity can be further evaluated based on the latest data. Change in exchanger nameplate is recommended to consider for design pressure as MAWP and accordingly adjust hydro test pressure followed by R-stamp requirements for rerating and repair. Shell side hydro test is restricted until recommendations are implemented Although conventional approach of replacing complete Shells to meet code requirement would have ensured process safety, performance and structural integrity. However, alternative fit for purpose approach utilizing advanced FEA has not only ensured all these but also led to potential cost saving of multimillion US$. Associated risks of thickness reduction due to corrosion may still be observed, however analysis confirmed structural integrity and safety of heat exchangers with low thicknesses.
{"title":"Avoid Exchanger Replacement Using Advanced Analysis and Fit for Service Approach","authors":"Ibrahim Al Awadhi, Ashok Sharma, Sohail Akhter","doi":"10.2118/207450-ms","DOIUrl":"https://doi.org/10.2118/207450-ms","url":null,"abstract":"\u0000 \u0000 \u0000 Shell & Tube Heat exchangers are critical for incessant operation of processing plant. These exchangers may face integrity threats due to reduction in shell thicknesses at Nozzle to Shell Junction below design code requirements. This paper presents the Cost Effective fit for purpose approach utilizing advance Finite Element analysis to explore and recommend the solutions for existing numerous exchangers that are to be safely used even after reported low thickness on account of manufacturing imperfection.\u0000 \u0000 \u0000 \u0000 Reduction in Shell thickness below design value can affect its ability to sustain design pressure & vacuum including nozzle integrity for associated piping loads and service life reduction for exclusion of corrosion allowance. As short-term Mitigation methodology, weld overlay was adopted to restore the areas with lower thickness. For long term solution, fit for purpose review approach was adopted for continued usage of exchangers which involves nozzle load analysis using WRC & FEA based on PAUT thickness data and utilizing actual piping loads, derating of design pressure, comparison of thickness data to establish corrosion rate and service life of exchanger.\u0000 \u0000 \u0000 \u0000 Thorough Integrity review based on design Code (ASME BPVC Section VIII) and WRC analysis have confirmed that majority of the exchangers have thickness higher than that required to sustain design pressure, vacuum conditions when considered with piping loads acting on nozzles. Thickness data comparison between three (03) year old manual UT and latest Phase array UT confirmed that majority of the exchangers are in clean non-corrosive service thus allowance for corrosion is not required. Where in the nature of exchanger service require corrosion allowance, it is considered in analysis and usage of stiffeners at nozzle to shell intersection and/or on full circumference of shell is recommended to prevent overstress due to piping loads / buckling distortion due to vacuum conditions respectively, based on detailed Finite element analysis (FEA). In order to establish more reliable long-term corrosion rate, next inspection after four (04) years is recommended and impact on integrity can be further evaluated based on the latest data. Change in exchanger nameplate is recommended to consider for design pressure as MAWP and accordingly adjust hydro test pressure followed by R-stamp requirements for rerating and repair. Shell side hydro test is restricted until recommendations are implemented\u0000 \u0000 \u0000 \u0000 Although conventional approach of replacing complete Shells to meet code requirement would have ensured process safety, performance and structural integrity. However, alternative fit for purpose approach utilizing advanced FEA has not only ensured all these but also led to potential cost saving of multimillion US$. Associated risks of thickness reduction due to corrosion may still be observed, however analysis confirmed structural integrity and safety of heat exchangers with low thicknesses.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"306 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75669325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Present day industries worldwide, including oil and gas sector, are going through a transition from the traditional concept of isolated operation to a more cohesive and interconnected digital transformation. The driving forces behind the transformation can be summarized as follows: -A collaborative workplace spanning multiple locations, where the processes can be synchronized through an integrated work management system-Reduced deployment of manpower to remote and hazardous locations through implementation of remote monitoring and control from a central location-Providing intelligent guidance to operation and maintenance through implementation of training, real-time troubleshooting etc.-Informed decision making through historical data, real-time video, lessons learnt etc.-Storage and mobility of data, efficient computing and distributed workload-Machine substitution of human performance (artificial intelligence, drones, robots etc.) From all these drivers, evolves the concept of Internet of Things (IoT). On the field side, the idea of IoT means to deploy web-enabled devices having unique addressable identity. A plethora of such field instruments, devices, machines, processes and people then need to be interconnected over internet through a robust and reliable telecom infrastructure to make such integrated platform happen. Therefore, on the backbone side, this complex mesh of interconnectivity largely depends on the availability of a feasible and practical communication media. Providing a viable communication media becomes more challenging with the constraints of locations involved – their remoteness, difficult terrains, prevalent hazardous atmosphere, to name a few. The objective of this paper is to present one such communication scheme through VSAT, which is easy to deploy, economically viable, scalable with growing demand and based on emerging technology of private satellite communication. For the sake of objectivity, this paper discusses most of the scenarios with an offshore oil and gas field, although the idea can be generalized to apply on other sectors and industries.
{"title":"Remote Internet Coverage through Satellite Broadband","authors":"Sujoy Palit, Sherooq Saleh Alteneiji","doi":"10.2118/207408-ms","DOIUrl":"https://doi.org/10.2118/207408-ms","url":null,"abstract":"Present day industries worldwide, including oil and gas sector, are going through a transition from the traditional concept of isolated operation to a more cohesive and interconnected digital transformation. The driving forces behind the transformation can be summarized as follows: -A collaborative workplace spanning multiple locations, where the processes can be synchronized through an integrated work management system-Reduced deployment of manpower to remote and hazardous locations through implementation of remote monitoring and control from a central location-Providing intelligent guidance to operation and maintenance through implementation of training, real-time troubleshooting etc.-Informed decision making through historical data, real-time video, lessons learnt etc.-Storage and mobility of data, efficient computing and distributed workload-Machine substitution of human performance (artificial intelligence, drones, robots etc.) From all these drivers, evolves the concept of Internet of Things (IoT). On the field side, the idea of IoT means to deploy web-enabled devices having unique addressable identity. A plethora of such field instruments, devices, machines, processes and people then need to be interconnected over internet through a robust and reliable telecom infrastructure to make such integrated platform happen. Therefore, on the backbone side, this complex mesh of interconnectivity largely depends on the availability of a feasible and practical communication media. Providing a viable communication media becomes more challenging with the constraints of locations involved – their remoteness, difficult terrains, prevalent hazardous atmosphere, to name a few. The objective of this paper is to present one such communication scheme through VSAT, which is easy to deploy, economically viable, scalable with growing demand and based on emerging technology of private satellite communication. For the sake of objectivity, this paper discusses most of the scenarios with an offshore oil and gas field, although the idea can be generalized to apply on other sectors and industries.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76302656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the main concerns of Oil & Gas Plants and associated Buildings is how to improve indoor air quality (IAQ) and tackling viruses. IAQ can be affected, or may become under high risk by some of nearby gases, microbial contaminates or energy stressor that affect the HSE condition. This paper presents the main factors that been considered to provide practical solutions to achieve high IAQ and tackling viruses (such as COVID-19). IAQ refers to the air quality within and around the plants/buildings. IAQ can usually be affected, or may become under high risk by nearby gases, particulates, microbial contaminates or any mass that affect 100% HSE. Inadequate air quality in building will increase the risk and impact on transferring viruses to people (such as COVID and Flue) and equipment performance (such as equipment failure, components corrosion and short circuits on control board). Survey and data was recorded to evaluate air quality performance in atmosphere instead of assuming it. Accordingly, the impact of inadequate IAQ was studied and evaluated. The international standard set a good IAQ in respect of gas concentration and human who works inside buildings in a way that less than 50% people should not detect any odor, 25% should not experience discomfort, 10% should not suffer from mucosal irritation and 5% should not experience annoyance. Study concluded that inadequate IAQ inside the building will affect people performance/health and installed equipment performance. In addition, improper HVAC system operation will be become breeding site for odor causing mold and bacteria, specifically on cooling coil. Hence, several technics were studied to improve IAQ, by installing Ultraviolet (UV) light to stop growing bacterial inside the HVAC system, installing chemical filter in air intakes to remove atmospheric dust, gases and bacteria by 100%, upgrading filtration efficiency to MERV-13 or highest achievable to capture at least 75 – 95% of airborne particles between 0.3 and 1.0 micron, increase outdoor air ventilation and temperature/humidity control. The performance of HVAC system and quality of air inside building were monitored by simulating IAQ based on ISO 16890, filters life cycle, energy consumption, and the results were found 100% satisfactory and provided solutions that are now successfully implemented in all new and some of the existing buildings. There are several buildings with similar issues and these approach/technics now being adopted in new constructed/existing buildings to protect human and asset integrity, which will support ADNOC Way by sustaining safe environment operation, lower health risk, reduce of equipment failure, reduce maintenance cost and 100% HSE. There are numbers of occupied buildings across the world were surrounded by aggressive gases/pollution with poor IAQ and above approaches it can be followed to realize larger benefits.
{"title":"Enhancing Indoor Air Quality and Tackling COVID - 19 Virus","authors":"Ibrahim Al Awadhi, Ashok Sharma, Twana Karim","doi":"10.2118/208151-ms","DOIUrl":"https://doi.org/10.2118/208151-ms","url":null,"abstract":"\u0000 \u0000 \u0000 One of the main concerns of Oil & Gas Plants and associated Buildings is how to improve indoor air quality (IAQ) and tackling viruses. IAQ can be affected, or may become under high risk by some of nearby gases, microbial contaminates or energy stressor that affect the HSE condition. This paper presents the main factors that been considered to provide practical solutions to achieve high IAQ and tackling viruses (such as COVID-19).\u0000 \u0000 \u0000 \u0000 IAQ refers to the air quality within and around the plants/buildings. IAQ can usually be affected, or may become under high risk by nearby gases, particulates, microbial contaminates or any mass that affect 100% HSE. Inadequate air quality in building will increase the risk and impact on transferring viruses to people (such as COVID and Flue) and equipment performance (such as equipment failure, components corrosion and short circuits on control board). Survey and data was recorded to evaluate air quality performance in atmosphere instead of assuming it. Accordingly, the impact of inadequate IAQ was studied and evaluated.\u0000 \u0000 \u0000 \u0000 The international standard set a good IAQ in respect of gas concentration and human who works inside buildings in a way that less than 50% people should not detect any odor, 25% should not experience discomfort, 10% should not suffer from mucosal irritation and 5% should not experience annoyance. Study concluded that inadequate IAQ inside the building will affect people performance/health and installed equipment performance. In addition, improper HVAC system operation will be become breeding site for odor causing mold and bacteria, specifically on cooling coil. Hence, several technics were studied to improve IAQ, by installing Ultraviolet (UV) light to stop growing bacterial inside the HVAC system, installing chemical filter in air intakes to remove atmospheric dust, gases and bacteria by 100%, upgrading filtration efficiency to MERV-13 or highest achievable to capture at least 75 – 95% of airborne particles between 0.3 and 1.0 micron, increase outdoor air ventilation and temperature/humidity control.\u0000 The performance of HVAC system and quality of air inside building were monitored by simulating IAQ based on ISO 16890, filters life cycle, energy consumption, and the results were found 100% satisfactory and provided solutions that are now successfully implemented in all new and some of the existing buildings.\u0000 \u0000 \u0000 \u0000 There are several buildings with similar issues and these approach/technics now being adopted in new constructed/existing buildings to protect human and asset integrity, which will support ADNOC Way by sustaining safe environment operation, lower health risk, reduce of equipment failure, reduce maintenance cost and 100% HSE. There are numbers of occupied buildings across the world were surrounded by aggressive gases/pollution with poor IAQ and above approaches it can be followed to realize larger benefits.\u0000","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74119249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The two main factors that drive the shift to liquid cracking in the Middle East are the restricted availability of ethane and the fact that naphtha or mixed feed cracking provides us with a much more diverse product mix. This opens the path to a higher share of performance chemicals. Building petrochemical complexes based on liquid or mixed feed cracking requires very complicated downstream configurations at a high level of integration with refinery streams. The value created by such a project rests on the ability of the operator to solve complex optimization problems in a volatile market environment. Inevitably, the correctness of the investment decision rests on the ability of the management to determine the value of the project under conditions of uncertainty regarding the future market prices. This paper demonstrates how the approach that was developed originally for the option valuation, can be used to address the problem of project assessment under the conditions of uncertainty. A real-life example of an investment decision about a modification of a rail terminal is used to illustrate the problem and to present a solution to it. Building on this example further, the paper argues that the method of Real Option valuation can support a creation of a competitive advantage in the conditions of uncertainty.
{"title":"The Optimistic View to Uncertainty. Benefits of Real Option Valuation Methodology in Project Valuation; Example of its Application for a Rail Terminal Modification Project","authors":"Nikita Anatoljevitsj Andreev","doi":"10.2118/207858-ms","DOIUrl":"https://doi.org/10.2118/207858-ms","url":null,"abstract":"\u0000 The two main factors that drive the shift to liquid cracking in the Middle East are the restricted availability of ethane and the fact that naphtha or mixed feed cracking provides us with a much more diverse product mix. This opens the path to a higher share of performance chemicals. Building petrochemical complexes based on liquid or mixed feed cracking requires very complicated downstream configurations at a high level of integration with refinery streams. The value created by such a project rests on the ability of the operator to solve complex optimization problems in a volatile market environment. Inevitably, the correctness of the investment decision rests on the ability of the management to determine the value of the project under conditions of uncertainty regarding the future market prices. This paper demonstrates how the approach that was developed originally for the option valuation, can be used to address the problem of project assessment under the conditions of uncertainty. A real-life example of an investment decision about a modification of a rail terminal is used to illustrate the problem and to present a solution to it. Building on this example further, the paper argues that the method of Real Option valuation can support a creation of a competitive advantage in the conditions of uncertainty.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81092786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Yugay, H. Daghmouni, Andrey Nestyagin, F. Abdulsallam, Annie Morales, G. Salem, Saleh Salem Al Ameri, Ali Yahya Suleiman, Sandip Kumar, Daniel McPherson, Andre Kjonnerod, Mousa Bakri, Ali ElMobaddr
Well Cementing can be divided into two phases – primary and remedial cementing. Primary cementing may have 3 functions: casing support, zonal isolation and casing protection against corrosion. First two functions are commonly recognized while the third one might be a point of discussion, as the full casing coverage with 100% clean cement is not something common in most of the fields. In fact, poorly cemented areas of the casing may become negatively charged and create a zones of accelerated corrosion rate. This paper is about main role of cementing - zonal isolation. The process of primary cementing assumes that cement slurry is being pumped into the casing and displaced outside. After wait on cement time (WOC) it becomes hard, develops compressive strength and creates impermeable seal that ensures hydraulic isolation. Old and well-known technique, it still remains one of the most challenging rig operations. It is unlikely to find a service company that would guarantee 100% cement displacement behind the casing all the way from top to bottom. Main challenges in this region are quiet common for many other fields – displacement in deviated sections, losses before and during cementing, exposure to pressure during cement settling. In case the main target is not achieved (no hydraulic isolation behind the casing) – we may observe behind casing communications resulting in sustainable pressures in casing-casing annuluses. In this situation the remedial cementing takes place. It's function is to restore isolation so the cement can work as a barrier that seals off the pressure source. Despite of the good number of sealants available on the market (time, pressure, temperature activated) that can be injected from surface to cure this casing-casing pressure, Company prefers not to do so unless there is a proven injectivity capability that would allow for the sealant to reach deep enough, to protect aquifers in case of outer casing corrosion. Otherwise that would be just a ‘masking" the pressure at surface. Therefore in general Company prefers rig intervention to cure the pressure across the cap rock in between the aquifers and the reservoir. Those aquifers are illustrated on the Figure 1 below: More details on Company casing design, cement evaluation issues, sustained casing pressure phenomena and challenges have been mentioned previously [Yugay, 2019].
{"title":"Advanced Remedial Hydraulic Isolation by Perforate and Wash Technique","authors":"A. Yugay, H. Daghmouni, Andrey Nestyagin, F. Abdulsallam, Annie Morales, G. Salem, Saleh Salem Al Ameri, Ali Yahya Suleiman, Sandip Kumar, Daniel McPherson, Andre Kjonnerod, Mousa Bakri, Ali ElMobaddr","doi":"10.2118/208182-ms","DOIUrl":"https://doi.org/10.2118/208182-ms","url":null,"abstract":"\u0000 Well Cementing can be divided into two phases – primary and remedial cementing. Primary cementing may have 3 functions: casing support, zonal isolation and casing protection against corrosion. First two functions are commonly recognized while the third one might be a point of discussion, as the full casing coverage with 100% clean cement is not something common in most of the fields. In fact, poorly cemented areas of the casing may become negatively charged and create a zones of accelerated corrosion rate.\u0000 This paper is about main role of cementing - zonal isolation. The process of primary cementing assumes that cement slurry is being pumped into the casing and displaced outside. After wait on cement time (WOC) it becomes hard, develops compressive strength and creates impermeable seal that ensures hydraulic isolation. Old and well-known technique, it still remains one of the most challenging rig operations. It is unlikely to find a service company that would guarantee 100% cement displacement behind the casing all the way from top to bottom. Main challenges in this region are quiet common for many other fields – displacement in deviated sections, losses before and during cementing, exposure to pressure during cement settling. In case the main target is not achieved (no hydraulic isolation behind the casing) – we may observe behind casing communications resulting in sustainable pressures in casing-casing annuluses. In this situation the remedial cementing takes place. It's function is to restore isolation so the cement can work as a barrier that seals off the pressure source. Despite of the good number of sealants available on the market (time, pressure, temperature activated) that can be injected from surface to cure this casing-casing pressure, Company prefers not to do so unless there is a proven injectivity capability that would allow for the sealant to reach deep enough, to protect aquifers in case of outer casing corrosion. Otherwise that would be just a ‘masking\" the pressure at surface. Therefore in general Company prefers rig intervention to cure the pressure across the cap rock in between the aquifers and the reservoir. Those aquifers are illustrated on the Figure 1 below:\u0000 More details on Company casing design, cement evaluation issues, sustained casing pressure phenomena and challenges have been mentioned previously [Yugay, 2019].","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81706648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sand production is a common problem in wells completed in unconsolidated or poorly consolidated formation. Several problems are associated with sand production including erosion damage, and plugging of the well and surface production equipment, such as lines, valves, etc. Various mechanical solutions have been implemented to control or eliminate sand production. Screenless completion is an alternative method to conventional sand control techniques. Screenless completion methodology involves sand consolidation, a field-proven technique which offers viable and effective strategies to prevent sand production throughout the life of the well. Sand production can lead to production loss through sand filling up, production tubing restrictions, etc. Consequently, the need for an effective sand control is mandatory. Sand consolidation is a promising technique due to significant advancement in chemicals development for sand control. The challenge with the chemical consolidation systems is their ability to provide the highest possible compressive strength with minimum permeability reduction. A newly developed sand consolidation system was assessed in this study for its effectiveness in both sand consolidation and retained permeability. Two techniques were investigated in preparation/conditioning of sand samples. Following the conditioning state, the sand samples were treated with equivalent amounts of the two components of the newly developed sand consolidation system (Resin-A and Resin-B). A consolidation chamber was used to cure sand under simulated downhole conditions of a temperature (300°F) and a stress of 3,000 psi. The consolidated sand sample prepared using 3 wt% KCl brine preflush was associated with a reduction in plug permeability of more than 99% with a compressive strength of 1,100 psi. In the second method, which employed a diesel preflush in the sand sample preparation step, an average permeability of 63 mD and unconfined compressive strength nearly 900 psi were obtained. The effect of temperature and flow rate on return permeability were investigate. The paper presents in detail the lab work conducted to evaluate/optimize a newly developed chemical system for sand consolidation in HT/HP gas wells.
{"title":"Evaluation and Optimization of a Newly Developed Chemical for Sand Consolidation: HTHP Gas Wells","authors":"A. Al-Taq, M. Alqam, Abdulla A. Alrustum","doi":"10.2118/207905-ms","DOIUrl":"https://doi.org/10.2118/207905-ms","url":null,"abstract":"\u0000 Sand production is a common problem in wells completed in unconsolidated or poorly consolidated formation. Several problems are associated with sand production including erosion damage, and plugging of the well and surface production equipment, such as lines, valves, etc. Various mechanical solutions have been implemented to control or eliminate sand production. Screenless completion is an alternative method to conventional sand control techniques. Screenless completion methodology involves sand consolidation, a field-proven technique which offers viable and effective strategies to prevent sand production throughout the life of the well. Sand production can lead to production loss through sand filling up, production tubing restrictions, etc. Consequently, the need for an effective sand control is mandatory. Sand consolidation is a promising technique due to significant advancement in chemicals development for sand control. The challenge with the chemical consolidation systems is their ability to provide the highest possible compressive strength with minimum permeability reduction.\u0000 A newly developed sand consolidation system was assessed in this study for its effectiveness in both sand consolidation and retained permeability. Two techniques were investigated in preparation/conditioning of sand samples. Following the conditioning state, the sand samples were treated with equivalent amounts of the two components of the newly developed sand consolidation system (Resin-A and Resin-B). A consolidation chamber was used to cure sand under simulated downhole conditions of a temperature (300°F) and a stress of 3,000 psi. The consolidated sand sample prepared using 3 wt% KCl brine preflush was associated with a reduction in plug permeability of more than 99% with a compressive strength of 1,100 psi. In the second method, which employed a diesel preflush in the sand sample preparation step, an average permeability of 63 mD and unconfined compressive strength nearly 900 psi were obtained. The effect of temperature and flow rate on return permeability were investigate. The paper presents in detail the lab work conducted to evaluate/optimize a newly developed chemical system for sand consolidation in HT/HP gas wells.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88112219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Burke, Abdallah Mohd AR Al Tamimi, Wael Salem Al Shouly, Mohamed Ali Jaber, David Erik Baetsen
Industry-wide, the degradation and corrosion of steel infrastructure and the associated maintenance to prevent or mitigate this, poses a heavy environmental and operational burden across many industry segments. To address these challenges, ADNOC Group Technology, led by our Non-Metallic Steering Committee and ADNOC Upstream, in partnership with several selected specialist product companies, is deploying a range of innovative solutions as pilot trials within a holistic R&D program – which is aiming to transform our production and processing facilities, with a close focus on integrity management – and specifically we are assessing the deployment of non-metallic pipelines, storage and process vessels as well as downhole tubing and casing. Focusing specifically on flowlines and pipelines - traditional steel pipes used in the oil patch are burdensome to store, transport and install, as well as susceptible to degradation, corrosion-driven wall loss in challenging operational environments, such as those found Onshore and Offshore Abu Dhabi. This vulnerability results in increased operating risks as facilities mature, adding cost and time for inspection, maintenance and eventually - replacements that will lead to production deferrals or interruptions. A range of non-metallic pipeline technologies are being assessed and piloted in this program, including stand-alone extruded polymeric pipe and liners, Reinforced Thermoplastic Pipe (RTP) used Onshore and Offshore, specialized non-metallic flexible pipelines for Offshore including Thermoplastic Composite Pipe (TCP) and downhole tubulars. The methodology involves placing segments of RTP into live pipeline systems for a finite duration of operation – usually one year – and then removing sections to assess any degradation in performance, or capability of the RTP during that time. These test results will be the subject of a further publication at the end of this trial period. In this paper, we will focus on RTP piloting Onshore and specifically mention a unique trial in an ultra-sour gas field, where the technology has already delivered the required performance: safely transporting gas with levels of H2S up to 10% by volume. This trial also proves that specifically engineered non-metallic products may be successfully operated at the high temperature and high pressure (HPHT) levels that are characteristic of our reservoirs.
{"title":"Non-Metallic Technology Deployment for the Next Generation of ADNOC Production Facilities","authors":"R. Burke, Abdallah Mohd AR Al Tamimi, Wael Salem Al Shouly, Mohamed Ali Jaber, David Erik Baetsen","doi":"10.2118/207830-ms","DOIUrl":"https://doi.org/10.2118/207830-ms","url":null,"abstract":"\u0000 Industry-wide, the degradation and corrosion of steel infrastructure and the associated maintenance to prevent or mitigate this, poses a heavy environmental and operational burden across many industry segments. To address these challenges, ADNOC Group Technology, led by our Non-Metallic Steering Committee and ADNOC Upstream, in partnership with several selected specialist product companies, is deploying a range of innovative solutions as pilot trials within a holistic R&D program – which is aiming to transform our production and processing facilities, with a close focus on integrity management – and specifically we are assessing the deployment of non-metallic pipelines, storage and process vessels as well as downhole tubing and casing.\u0000 Focusing specifically on flowlines and pipelines - traditional steel pipes used in the oil patch are burdensome to store, transport and install, as well as susceptible to degradation, corrosion-driven wall loss in challenging operational environments, such as those found Onshore and Offshore Abu Dhabi. This vulnerability results in increased operating risks as facilities mature, adding cost and time for inspection, maintenance and eventually - replacements that will lead to production deferrals or interruptions.\u0000 A range of non-metallic pipeline technologies are being assessed and piloted in this program, including stand-alone extruded polymeric pipe and liners, Reinforced Thermoplastic Pipe (RTP) used Onshore and Offshore, specialized non-metallic flexible pipelines for Offshore including Thermoplastic Composite Pipe (TCP) and downhole tubulars. The methodology involves placing segments of RTP into live pipeline systems for a finite duration of operation – usually one year – and then removing sections to assess any degradation in performance, or capability of the RTP during that time. These test results will be the subject of a further publication at the end of this trial period.\u0000 In this paper, we will focus on RTP piloting Onshore and specifically mention a unique trial in an ultra-sour gas field, where the technology has already delivered the required performance: safely transporting gas with levels of H2S up to 10% by volume. This trial also proves that specifically engineered non-metallic products may be successfully operated at the high temperature and high pressure (HPHT) levels that are characteristic of our reservoirs.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85198368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}