The present study investigated the effect of a single administration of long-acting follicle simulation hormone (FSH) on testicular blood perfusion as measured by pulsed-wave Doppler ultrasonography, testicular echotexture, and circulating testosterone (T), estradiol (E2), and nitric oxide (NO) in the plasma of rams in the non-breeding season. Twelve Ossimi rams were subjected to either a single administration of long-acting FSH subcutaneously (FSH group; n = 6) or the vehicle (control group; n = 6). Assessment of testicular hemodynamics at the level of the supratesticular artery was performed just before administration (0 h), and at 4, 24, 48, 72, 96, and 168 h after FSH or the vehicle administrations. Testicular volume (TV), and echotexture of testicular parenchyma including pixel intensity and heterogeneity were derived by the computer analysis software. Concentrations of T, E2, and NO were measured using commercial kits. Results revealed significant decreases (P ˂ 0.05) in the values of Doppler indices (resistive index: RI and pulsatility index: PI), especially at 48 h after administration of FSH (RI: 0.42 ± 0.02, PI: 0.56 ± 0.04) compared to their values in the control group (RI: 0.54 ± 0.03, PI: 0.77 ± 0.04). FSH administration induced significant decreases (P ˂ 0.05) in the pixel intensity of testicular parenchyma. Testicular volume and T concentrations were not significantly changed (P ˃ 0.05). Concentrations of E2 increased significantly (P ˂ 0.05) at 48 h and 72 h after FSH administration. (30.07 ± 5.23 pg/ml, 29.93 ± 1.44 pg/ml, respectively) compared to their values before FSH administration (14.63 ± 1.37 pg/ml). Concentrations of NO increased significantly (P ˂ 0.05) in the FSH group between 4 h to 48 h compared to the values in the control one. In conclusion, a single administration of long-acting FSH enhanced testicular blood perfusion as measured by pulsed Doppler ultrasonography in rams during the non-breeding season. Concurrently, significant increases in the concentrations of E2 and NO were found.