首页 > 最新文献

Earth and Planetary Science Letters最新文献

英文 中文
Snapshots of magmatic evolution revealed by zircon depth profiling 锆石深度剖面显示的岩浆演化快照
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-27 DOI: 10.1016/j.epsl.2024.118987
Erik J. Schoonover , Michael R. Ackerson , Joshua M. Garber , Andrew J. Smye , Andrew R. Kylander-Clark , Jesse R. Reimink
Upper-crustal granitoids are a late-stage product of crustal differentiation. This last stage in the evolution has been proposed to be the key interval that governs volcanic eruptions, ore formation, and fluid migration. Though numerous techniques have been employed to understand the evolution of late-stage felsic magmas, there remains little agreement regarding their crystallization histories. Here we use laser ablation depth profiling of zircon trace elements to probe the thermochemical evolution of well-characterized granitoid rocks from the Tuolumne Intrusive Suite (CA, USA). In combination with titanite trace-element data, we can determine the T-X trajectory of the magmatic system during zircon growth at the latest stage of crystallization. Our data also allows for a robust empirical calibration of the widely used Ti-in-zircon thermometer arising from the onset of titanite crystallization captured in zircon rims. These data show that Tuolumne zircon growth occurred at an aTiO2 of 0.4–0.5, which is lower than many previous estimates. We further model zircon growth up- and down-temperature from titanite saturation, and document extended thermochemical growth records preserved in zircons from these upper-crustal melts. The calculated temperatures are consistent with zircon growth from 775 to 625 °C, indicating that zircon growth occurred over a wide temperature range down to, or potentially below, the water-saturated granite solidus. These findings provide empirically-calibrated values for use in other Ti-in-zircon and Zr-in-titanite temperature calculations, particularly to understand late-stage, low-temperature melts in granitoid systems.
上地壳花岗岩是地壳分异的后期产物。演化的最后阶段被认为是火山喷发、矿石形成和流体迁移的关键阶段。尽管已经采用了许多技术来了解晚期长岩岩浆的演化过程,但对其结晶历史的认识仍鲜有一致。在这里,我们利用锆石痕量元素的激光烧蚀深度剖面探测了来自图卢姆侵入岩组(美国加利福尼亚州)的特征良好的花岗岩岩石的热化学演化。结合榍石痕量元素数据,我们可以确定锆石生长过程中岩浆系统在结晶最新阶段的T-X轨迹。我们的数据还可以根据锆石边缘捕捉到的榍石结晶的起始点,对广泛使用的钛锆石温度计进行可靠的经验校准。这些数据表明,Tuolumne锆石的生长发生在二氧化钛a值为0.4-0.5时,这比之前的许多估计值都要低。我们进一步模拟了钛铁矿饱和后锆石生长的升温和降温过程,并记录了保存在这些上地壳熔体锆石中的扩展热化学生长记录。计算得出的温度与锆石在 775 ℃ 至 625 ℃ 之间的生长相一致,表明锆石生长的温度范围很广,一直到或可能低于水饱和花岗岩固结温度。这些发现提供了经验校准值,可用于其他钛-锆石和锆-钛铁矿的温度计算,特别是用于了解花岗岩体系中的晚期低温熔体。
{"title":"Snapshots of magmatic evolution revealed by zircon depth profiling","authors":"Erik J. Schoonover ,&nbsp;Michael R. Ackerson ,&nbsp;Joshua M. Garber ,&nbsp;Andrew J. Smye ,&nbsp;Andrew R. Kylander-Clark ,&nbsp;Jesse R. Reimink","doi":"10.1016/j.epsl.2024.118987","DOIUrl":"10.1016/j.epsl.2024.118987","url":null,"abstract":"<div><div>Upper-crustal granitoids are a late-stage product of crustal differentiation. This last stage in the evolution has been proposed to be the key interval that governs volcanic eruptions, ore formation, and fluid migration. Though numerous techniques have been employed to understand the evolution of late-stage felsic magmas, there remains little agreement regarding their crystallization histories. Here we use laser ablation depth profiling of zircon trace elements to probe the thermochemical evolution of well-characterized granitoid rocks from the Tuolumne Intrusive Suite (CA, USA). In combination with titanite trace-element data, we can determine the <em>T-X</em> trajectory of the magmatic system during zircon growth at the latest stage of crystallization. Our data also allows for a robust empirical calibration of the widely used Ti-in-zircon thermometer arising from the onset of titanite crystallization captured in zircon rims. These data show that Tuolumne zircon growth occurred at an <em>a</em>TiO<sub>2</sub> of 0.4–0.5, which is lower than many previous estimates. We further model zircon growth up- and down-temperature from titanite saturation, and document extended thermochemical growth records preserved in zircons from these upper-crustal melts. The calculated temperatures are consistent with zircon growth from 775 to 625 °C, indicating that zircon growth occurred over a wide temperature range down to, or potentially below, the water-saturated granite solidus. These findings provide empirically-calibrated values for use in other Ti-in-zircon and Zr-in-titanite temperature calculations, particularly to understand late-stage, low-temperature melts in granitoid systems.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 118987"},"PeriodicalIF":4.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamorphic CO2 fluxes offset the net geological carbon sink in the Himalayan-Tibetan orogen 变质二氧化碳通量抵消喜马拉雅-西藏造山带的净地质碳汇
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-27 DOI: 10.1016/j.epsl.2024.119018
Samyak Pradhan, Indra Sekhar Sen
The carbon budget of the Himalayan-Tibetan orogen often neglects the poorly constrained CO2 fluxes from the mantle and metamorphism that emerge directly from hot springs or diffusely through the soil, which can potentially warm the climate. What exists are either metamorphic phase relations, thermodynamic model-based CO2 flux estimates, or field-based estimates in a single catchment extrapolated to the entire orogen having diverse geological and tectonics characteristics, heat flow, and hydrological regimes. Here, we apply a steady-state isotope mass balance model to observations of carbon isotope ratios to quantify the fluxes of CO2 degassed using a global compilation of hot springs located on the fault systems of the Himalayan Tibetan orogen. We estimate that the hot springs could degas up to ∼84 % of the dissolved CO2, releasing up to 1.5 ± 1.0 × 1011 mol CO2 yr-1. When combined with diffused soil CO2 emissions, the Himalayan Tibetan orogen has the potential to emit 3.0 ± 1.3 × 1011 mol CO2 yr-1, which is similar in magnitude to CO2 emission from continental rifts as well as the CO2 drawdown due to silicate weathering in the orogen. We find that CO2 released from the catchments of Himalayan-Tibetan orogen is primarily controlled by metamorphic processes (7925+21%), with secondary controls from mantle degassing (77+17%), and carbonate dissolution (1414+26%) and is insensitive to contributions from younger biospheric sources. Reevaluation of the geological carbon budget in Narayani Basin, Nepal, shows that metamorphic CO2 in the collisional orogen is comparable to other carbon sources and sinks. We conclude that metamorphic CO2 could offset the CO2 drawdown by silicate weathering and OCbiosphere burial in the Himalayan-Tibet orogen, resulting in global warming over million-year time scales.
喜马拉雅-西藏造山带的碳预算往往忽略了来自地幔和变质作用的二氧化碳通量,这些通量直接来自温泉或通过土壤扩散,有可能使气候变暖。现有的研究要么是变质相关系、基于热力学模型的二氧化碳通量估算,要么是将单个集水区的实地估算推断到具有不同地质和构造特征、热流和水文机制的整个造山带。在这里,我们将稳态同位素质量平衡模型应用于碳同位素比率观测,利用喜马拉雅西藏造山带断层系统上的全球温泉汇编来量化脱气的二氧化碳通量。据估计,温泉可脱除高达 ∼ 84 % 的溶解二氧化碳,释放高达 1.5 ± 1.0 × 1011 mol CO2 yr-1。如果加上扩散的土壤二氧化碳排放量,喜马拉雅西藏造山带有可能每年排放 3.0 ± 1.3 × 1011 mol CO2,与大陆裂谷的二氧化碳排放量以及造山带硅酸盐风化导致的二氧化碳汲取量相近。我们发现,喜马拉雅-西藏造山带集水区释放的二氧化碳主要受变质过程控制(79-25+21%),地幔脱气(7-7+17%)和碳酸盐溶解(14-14+26%)是次要控制因素,对年轻生物圈源的贡献不敏感。对尼泊尔 Narayani 盆地地质碳预算的重新评估表明,碰撞造山带的变质二氧化碳与其他碳源和碳汇相当。我们的结论是,变质二氧化碳可以抵消喜马拉雅-西藏造山带硅酸盐风化和OC生物圈埋藏造成的二氧化碳减少,从而导致全球在百万年时间尺度内变暖。
{"title":"Metamorphic CO2 fluxes offset the net geological carbon sink in the Himalayan-Tibetan orogen","authors":"Samyak Pradhan,&nbsp;Indra Sekhar Sen","doi":"10.1016/j.epsl.2024.119018","DOIUrl":"10.1016/j.epsl.2024.119018","url":null,"abstract":"<div><div>The carbon budget of the Himalayan-Tibetan orogen often neglects the poorly constrained CO<sub>2</sub> fluxes from the mantle and metamorphism that emerge directly from hot springs or diffusely through the soil, which can potentially warm the climate. What exists are either metamorphic phase relations, thermodynamic model-based CO<sub>2</sub> flux estimates, or field-based estimates in a single catchment extrapolated to the entire orogen having diverse geological and tectonics characteristics, heat flow, and hydrological regimes. Here, we apply a steady-state isotope mass balance model to observations of carbon isotope ratios to quantify the fluxes of CO<sub>2</sub> degassed using a global compilation of hot springs located on the fault systems of the Himalayan Tibetan orogen. We estimate that the hot springs could degas up to ∼84 % of the dissolved CO<sub>2</sub>, releasing up to 1.5 ± 1.0 × 10<sup>11</sup> mol CO<sub>2</sub> yr<sup>-1</sup>. When combined with diffused soil CO<sub>2</sub> emissions, the Himalayan Tibetan orogen has the potential to emit 3.0 ± 1.3 × 10<sup>11</sup> mol CO<sub>2</sub> yr<sup>-1</sup>, which is similar in magnitude to CO<sub>2</sub> emission from continental rifts as well as the CO<sub>2</sub> drawdown due to silicate weathering in the orogen. We find that CO<sub>2</sub> released from the catchments of Himalayan-Tibetan orogen is primarily controlled by metamorphic processes <span><math><mrow><mo>(</mo><msubsup><mn>79</mn><mrow><mo>−</mo><mn>25</mn></mrow><mrow><mo>+</mo><mn>21</mn></mrow></msubsup><mrow><mspace></mspace><mo>%</mo></mrow><mo>)</mo></mrow></math></span>, with secondary controls from mantle degassing <span><math><mrow><mo>(</mo><msubsup><mn>7</mn><mrow><mo>−</mo><mn>7</mn></mrow><mrow><mo>+</mo><mn>17</mn></mrow></msubsup><mrow><mspace></mspace><mo>%</mo></mrow><mo>)</mo></mrow></math></span>, and carbonate dissolution (<span><math><mrow><msubsup><mn>14</mn><mrow><mo>−</mo><mn>14</mn></mrow><mrow><mo>+</mo><mn>26</mn></mrow></msubsup><mspace></mspace></mrow></math></span>%) and is insensitive to contributions from younger biospheric sources. Reevaluation of the geological carbon budget in Narayani Basin, Nepal, shows that metamorphic CO<sub>2</sub> in the collisional orogen is comparable to other carbon sources and sinks. We conclude that metamorphic CO<sub>2</sub> could offset the CO<sub>2</sub> drawdown by silicate weathering and OC<sub>biosphere</sub> burial in the Himalayan-Tibet orogen, resulting in global warming over million-year time scales.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119018"},"PeriodicalIF":4.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fate of ultramafic-rich mélanges in cold to hot subduction zones: Implications for diapirism (or not) and chemical geodynamics 冷热俯冲带富含超基性岩的熔岩的命运:对断裂(或不断裂)和化学地球动力学的影响
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-26 DOI: 10.1016/j.epsl.2024.119020
Anna M. Rebaza , Ananya Mallik , Emily H.G. Cooperdock , Bridgett I. Holman
<div><div>Buoyant ultramafic-rich (serpentine- or chlorite-rich) mélange diapirs in sediment-starved subduction zones can transport slab material to arc sources. While the buoyancy of chlorite-rich mélanges was previously investigated, serpentine-rich mélanges were never explored. Thus, the overall contribution of ultramafic-rich mélanges to buoyancy, the conditions for diapir formation, and their fate in subduction zones are not well constrained. Here, we investigate the partial melting behavior and the associated density transformations of a serpentine-rich matrix (5–10 wt.% H<sub>2</sub>O) with minor sediments (9:1 ratio) at fore-arc (∼65 km) to sub-arc (∼95 km) depths (2–3 GPa and 800–1250 °C) and compare to that of chlorite-rich mélanges from the literature. Our results show that the solidus of serpentine-rich matrices is between 1050 and 1100 °C and requires either diapiric rise of the mélange into the hotter mantle wedge or interactions with a hotter asthenosphere through slab tears to partially melt and produce basaltic melts, whether in hot or cold slab channels. Chlorite-rich mélanges may account for the sources of some arc lavas, but partial melting of serpentine-rich mélanges produce melts depleted in CaO, TiO<sub>2</sub>, alkalis, and are highly enriched in MgO compared to basaltic arc lavas. Both serpentine-rich and chlorite-rich matrices dehydrate to form denser peridotite and lose buoyancy at ∼800 °C and ≥1000 °C, respectively. Even if diapirism initiates in such mélanges near the slab-mantle interface, they would likely lose buoyancy upon ascent into the hotter mantle wedge resulting in stalled or failed diapirs. Diapir growth (τa) is controlled by the interplay of density, thickness and viscosity of the mélange, as well as the timescale of slab subduction (τs) and thermal structure of the subduction zone. We observe that the onset of diapirs in cold subduction zones requires mélanges that may sometimes be thicker than that observed by field and geophysical studies, while hot subduction zones overall require thinner mélanges. Thus, ultramafic-rich mélange diapirs may occur but only under specific conditions and when the diapiric ascent timescale is faster than the thermal equilibration barrier of ∼800–1000 °C (especially at the core of the mélange). Dehydration or partial melting of ultramafic-rich mélanges can affect the large ion lithophile element (LILE), volatiles, and high-field strength element (HFSE) budgets in the mantle wedge. Partial melting (caused by a diapiric rise or slab tear) does not fractionate LILEs from HFSEs at <em>T</em> ≥ 1100 °C and if the mélange has a lower LILE/HFSE to begin with, that signature is transferred to arc sources. Dehydration releases aqueous fluids rich in fluid-mobile elements (LILE and volatiles) relative to HFSE. Thus, the characteristic high LILE/HFSE signature of aqueous fluids is transferred to arc magma sources. Given high LILE/HFSE ratio is a ubiquitous arc magma signature, but slab
沉积物匮乏的俯冲带中富含超基性岩(蛇纹岩或绿泥石)的斜长岩具有浮力,可将板块物质运往弧源。以前曾研究过富绿泥石mélanges的浮力,但从未探讨过富蛇纹石mélanges。因此,富含超辉石的熔岩对浮力的总体贡献、斜长岩形成的条件以及它们在俯冲带的命运都没有得到很好的解释。在这里,我们研究了富蛇纹石基质(5-10 wt.% H2O)与少量沉积物(9:1比例)在前弧(∼65 km)到次弧(∼95 km)深度(2-3 GPa和800-1250 °C)的部分熔融行为和相关密度变化,并与文献中的富绿泥石熔岩进行了比较。我们的研究结果表明,富蛇纹石基质的固结温度在1050-1100 °C之间,无论是在热板块还是冷板块通道中,都需要熔融体以陡坡上升的方式进入较热的地幔楔,或者通过板块裂隙与较热的岩石圈相互作用,以部分熔化并产生玄武岩熔体。富含绿泥石的熔岩可能是某些弧状熔岩的来源,但与玄武岩弧状熔岩相比,富含蛇纹石的熔岩部分熔化后产生的熔体中CaO、TiO2和碱的含量都很低,而MgO的含量却很高。富蛇纹石基质和富绿泥石基质都会脱水形成密度较大的橄榄岩,并分别在 ∼800 °C 和 ≥1000 °C 时失去浮力。即使在板块-地幔界面附近的此类熔融体中开始了二长岩作用,它们在上升到较热的地幔楔中时也可能失去浮力,导致二长岩停滞或失效。斜长岩的生长(τa)受斜长岩的密度、厚度和粘度以及板块俯冲的时间尺度(τs)和俯冲带的热结构的相互作用控制。我们观察到,在冷俯冲带开始出现二叠纪时,所需要的熔岩层有时可能比野外和地球物理研究观察到的更厚,而热俯冲带总体上需要更薄的熔岩层。因此,富含超基性岩的熔岩斜长岩可能会出现,但只有在特定的条件下,并且斜长岩上升的时间尺度快于800-1000 °C的热平衡屏障时(尤其是在熔岩的核心部位)才会出现。富含超基性岩的mélange的脱水或部分熔融会影响地幔楔中的大离子亲石元素(LILE)、挥发物和高场强元素(HFSE)预算。在温度≥ 1100 °C时,部分熔融(由陡坡上升或板块撕裂引起)不会将LILE从HFSE中分馏出来,如果熔块一开始就具有较低的LILE/HFSE,那么这种特征就会转移到弧源上。相对于 HFSE,脱水会释放出富含流体流动元素(LILE 和挥发物)的含水流体。因此,水流体特有的高 LILE/HFSE 特征会转移到弧岩浆源。鉴于高LILE/HFSE比值是无处不在的弧岩浆特征,但板块撕裂却并非如此,而且富含超基性岩的熔岩中的斜长岩是高度有条件的,因此这项研究证实了沉积物匮乏的熔岩释放的水流体是主要的质量转移媒介,而不是斜长岩。
{"title":"The fate of ultramafic-rich mélanges in cold to hot subduction zones: Implications for diapirism (or not) and chemical geodynamics","authors":"Anna M. Rebaza ,&nbsp;Ananya Mallik ,&nbsp;Emily H.G. Cooperdock ,&nbsp;Bridgett I. Holman","doi":"10.1016/j.epsl.2024.119020","DOIUrl":"10.1016/j.epsl.2024.119020","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Buoyant ultramafic-rich (serpentine- or chlorite-rich) mélange diapirs in sediment-starved subduction zones can transport slab material to arc sources. While the buoyancy of chlorite-rich mélanges was previously investigated, serpentine-rich mélanges were never explored. Thus, the overall contribution of ultramafic-rich mélanges to buoyancy, the conditions for diapir formation, and their fate in subduction zones are not well constrained. Here, we investigate the partial melting behavior and the associated density transformations of a serpentine-rich matrix (5–10 wt.% H&lt;sub&gt;2&lt;/sub&gt;O) with minor sediments (9:1 ratio) at fore-arc (∼65 km) to sub-arc (∼95 km) depths (2–3 GPa and 800–1250 °C) and compare to that of chlorite-rich mélanges from the literature. Our results show that the solidus of serpentine-rich matrices is between 1050 and 1100 °C and requires either diapiric rise of the mélange into the hotter mantle wedge or interactions with a hotter asthenosphere through slab tears to partially melt and produce basaltic melts, whether in hot or cold slab channels. Chlorite-rich mélanges may account for the sources of some arc lavas, but partial melting of serpentine-rich mélanges produce melts depleted in CaO, TiO&lt;sub&gt;2&lt;/sub&gt;, alkalis, and are highly enriched in MgO compared to basaltic arc lavas. Both serpentine-rich and chlorite-rich matrices dehydrate to form denser peridotite and lose buoyancy at ∼800 °C and ≥1000 °C, respectively. Even if diapirism initiates in such mélanges near the slab-mantle interface, they would likely lose buoyancy upon ascent into the hotter mantle wedge resulting in stalled or failed diapirs. Diapir growth (τa) is controlled by the interplay of density, thickness and viscosity of the mélange, as well as the timescale of slab subduction (τs) and thermal structure of the subduction zone. We observe that the onset of diapirs in cold subduction zones requires mélanges that may sometimes be thicker than that observed by field and geophysical studies, while hot subduction zones overall require thinner mélanges. Thus, ultramafic-rich mélange diapirs may occur but only under specific conditions and when the diapiric ascent timescale is faster than the thermal equilibration barrier of ∼800–1000 °C (especially at the core of the mélange). Dehydration or partial melting of ultramafic-rich mélanges can affect the large ion lithophile element (LILE), volatiles, and high-field strength element (HFSE) budgets in the mantle wedge. Partial melting (caused by a diapiric rise or slab tear) does not fractionate LILEs from HFSEs at &lt;em&gt;T&lt;/em&gt; ≥ 1100 °C and if the mélange has a lower LILE/HFSE to begin with, that signature is transferred to arc sources. Dehydration releases aqueous fluids rich in fluid-mobile elements (LILE and volatiles) relative to HFSE. Thus, the characteristic high LILE/HFSE signature of aqueous fluids is transferred to arc magma sources. Given high LILE/HFSE ratio is a ubiquitous arc magma signature, but slab","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119020"},"PeriodicalIF":4.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Receiver function image of the mantle transition zone beneath western China: Fragmented subduction and counterflow upwelling 中国西部地下地幔过渡带的接收函数图像:破碎俯冲与逆流上涌
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-24 DOI: 10.1016/j.epsl.2024.119019
Zheng Tang , Jordi Julià , Walter D. Mooney , Yanqiang Wu
A uniform image of the mantle transition zone (MTZ) beneath western China and neighboring regions is produced through Variable Bin Radius Stacking of receiver functions. We utilized a large data set of 218,050 receiver functions from 1,991 broadband seismic stations. Our results, after 3-D velocity corrections, show significant lateral variations in topography of the 410- and 660-km discontinuity and thickness of the MTZ. The observed lateral variations of the MTZ correlate with seismic-velocity anomalies identified in independent tomographic studies, which are interpreted as cold and hot thermal anomalies from lithospheric downwellings and mantle upwellings, respectively. In the southern Tibetan Plateau, the MTZ topography reveals four segmented zones of up to ∼20 km thicker-than-average MTZ from west to east interfingered with regions of thin-to-normal MTZ. These segmented MTZ thickenings likely originate from a series of cold lithospheric fingers associated with the fragmented subduction of the Indian lithosphere, while the thin-to-normal MTZ may result from an absence of the subducting Indian slab. These observations provide novel evidence for the proposed fragmentation of the Indian subduction. Moreover, we observe regions of thickened MTZ under the Tien Shan orogen and the Qaidam block, which likely result from the foundering of cold delaminated/broken-off lithospheric blocks triggered by the underthrusting of the Junggar and Tarim blocks. Regions of thinned MTZ beneath the Tien Shan region are additionally observed, which could be attributed to counterflow upwellings.
通过对接收函数进行变分半径叠加,得到了中国西部及邻近地区地下地幔过渡带(MTZ)的统一图像。我们利用了来自 1,991 个宽带地震台站的 218,050 个接收函数的大型数据集。经过三维速度校正后,我们的结果显示 410 公里和 660 公里不连续面的地形和 MTZ 厚度存在显著的横向变化。观测到的MTZ横向变化与独立层析成像研究中发现的地震速度异常相关,这些异常被解释为分别来自岩石圈下沉和地幔上涌的冷热异常。在青藏高原南部,地幔区地形显示出四个分段带,自西向东,地幔区厚度比平均厚度厚达20千米,与薄至正常的地幔区相互交错。这些分段的MTZ增厚可能源于一系列与印度岩石圈碎裂俯冲有关的冷岩石圈指,而薄至正常的MTZ可能源于没有俯冲的印度板块。这些观测结果为印度俯冲的碎裂提供了新的证据。此外,我们还在天山造山带和柴达木地块下观察到增厚的MTZ区域,这可能是准噶尔地块和塔里木地块下推引发的冷脱层/断裂岩石圈地块的创始。此外,在天山地区下方还观测到了变薄的MTZ区域,这可能是逆流上涌造成的。
{"title":"Receiver function image of the mantle transition zone beneath western China: Fragmented subduction and counterflow upwelling","authors":"Zheng Tang ,&nbsp;Jordi Julià ,&nbsp;Walter D. Mooney ,&nbsp;Yanqiang Wu","doi":"10.1016/j.epsl.2024.119019","DOIUrl":"10.1016/j.epsl.2024.119019","url":null,"abstract":"<div><div>A uniform image of the mantle transition zone (MTZ) beneath western China and neighboring regions is produced through Variable Bin Radius Stacking of receiver functions. We utilized a large data set of 218,050 receiver functions from 1,991 broadband seismic stations. Our results, after 3-D velocity corrections, show significant lateral variations in topography of the 410- and 660-km discontinuity and thickness of the MTZ. The observed lateral variations of the MTZ correlate with seismic-velocity anomalies identified in independent tomographic studies, which are interpreted as cold and hot thermal anomalies from lithospheric downwellings and mantle upwellings, respectively. In the southern Tibetan Plateau, the MTZ topography reveals four segmented zones of up to ∼20 km thicker-than-average MTZ from west to east interfingered with regions of thin-to-normal MTZ. These segmented MTZ thickenings likely originate from a series of cold lithospheric fingers associated with the fragmented subduction of the Indian lithosphere, while the thin-to-normal MTZ may result from an absence of the subducting Indian slab. These observations provide novel evidence for the proposed fragmentation of the Indian subduction. Moreover, we observe regions of thickened MTZ under the Tien Shan orogen and the Qaidam block, which likely result from the foundering of cold delaminated/broken-off lithospheric blocks triggered by the underthrusting of the Junggar and Tarim blocks. Regions of thinned MTZ beneath the Tien Shan region are additionally observed, which could be attributed to counterflow upwellings.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119019"},"PeriodicalIF":4.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and geodynamic interpretation of Nazca Plate bathymetric anomalies 纳斯卡板块测深异常的特征和地球动力学解释
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-24 DOI: 10.1016/j.epsl.2024.119009
Gabriel Orozco , Luis E. Lara , Andrés Tassara
The interaction between upwelling plumes and the oceanic lithosphere can provide important clues about the internal structure and dynamics of the Earth. Plume-derived processes disturb the lithosphere at different depths, amplitudes, and wavelengths. While the spatially wider process is dynamic uplift, commonly described as on the order of 1000 km wide and 1 km high bathymetric swell, volcanism is the most focused plume manifestation. These two end-members are commonly described and measured in terms of volumetric rates, such as buoyancy flux and volcanic production rate, respectively. However, intermediate processes such as magmatic trapping at lithospheric depths, although reported, has remained less studied. While the topographic separation between volcanic and regional (non-volcanic) features has numerous developments, the recognition of signatures of processes occurring at intermediate depths is a problem that has been less studied.
To better understand the relationship between plate structure and the distribution of plume effects, we investigated the spatial distribution of topographic plume signatures on the relatively fast and thin oceanic Nazca plate. Using morphological criteria, we adjusted the width of two filtered surfaces, which together allow us to divide the bathymetric anomalies into three components that could be reflecting morphological features supported below, inside, and above the plate.
The resulting decomposition suggests the existence of two superimposed components of swells on the Nazca plate, contrasting in distribution, morphology, and nature: local swells exhibit a clear spatial correlation with volcanic chains. The regional swell component in turn collectively encompasses all hotspots in the Nazca plate and show widths up to 2000 km. We hypothesize distinct driving processes for both swell components, with local swells connected to the intra-lithospheric domain and regional swells probably associated with sub-lithospheric processes.
上涌羽流与海洋岩石圈之间的相互作用可以提供有关地球内部结构和动力学的重要线索。羽流衍生过程在不同深度、振幅和波长上扰动岩石圈。空间范围更广的过程是动态隆起,通常被描述为宽 1000 千米、高 1 千米的水深膨胀,而火山活动则是最集中的羽流表现。这两个终端过程通常分别以浮力通量和火山生成率等体积率来描述和测量。然而,中间过程,如岩石圈深度的岩浆捕集,虽然有报道,但研究仍然较少。为了更好地理解板块结构与羽流效应分布之间的关系,我们研究了相对快速而薄的大洋纳斯卡板块上地形羽流特征的空间分布。利用形态学标准,我们调整了两个滤波表面的宽度,从而将测深异常分为三个部分,分别反映了板块下方、内部和上方的形态特征。而区域性的膨胀部分则总括了纳斯卡板块的所有热点,宽度可达 2000 公里。我们假设这两个膨胀部分有不同的驱动过程,局部膨胀与岩石圈内领域有关,而区域膨胀可能与岩石圈下过程有关。
{"title":"Characterization and geodynamic interpretation of Nazca Plate bathymetric anomalies","authors":"Gabriel Orozco ,&nbsp;Luis E. Lara ,&nbsp;Andrés Tassara","doi":"10.1016/j.epsl.2024.119009","DOIUrl":"10.1016/j.epsl.2024.119009","url":null,"abstract":"<div><div>The interaction between upwelling plumes and the oceanic lithosphere can provide important clues about the internal structure and dynamics of the Earth. Plume-derived processes disturb the lithosphere at different depths, amplitudes, and wavelengths. While the spatially wider process is dynamic uplift, commonly described as on the order of 1000 km wide and 1 km high bathymetric swell, volcanism is the most focused plume manifestation. These two end-members are commonly described and measured in terms of volumetric rates, such as buoyancy flux and volcanic production rate, respectively. However, intermediate processes such as magmatic trapping at lithospheric depths, although reported, has remained less studied. While the topographic separation between volcanic and regional (non-volcanic) features has numerous developments, the recognition of signatures of processes occurring at intermediate depths is a problem that has been less studied.</div><div>To better understand the relationship between plate structure and the distribution of plume effects, we investigated the spatial distribution of topographic plume signatures on the relatively fast and thin oceanic Nazca plate. Using morphological criteria, we adjusted the width of two filtered surfaces, which together allow us to divide the bathymetric anomalies into three components that could be reflecting morphological features supported below, inside, and above the plate.</div><div>The resulting decomposition suggests the existence of two superimposed components of swells on the Nazca plate, contrasting in distribution, morphology, and nature: local swells exhibit a clear spatial correlation with volcanic chains. The regional swell component in turn collectively encompasses all hotspots in the Nazca plate and show widths up to 2000 km. We hypothesize distinct driving processes for both swell components, with local swells connected to the intra-lithospheric domain and regional swells probably associated with sub-lithospheric processes.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119009"},"PeriodicalIF":4.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for a missing late veneer from 182W and 142Nd systematics in the Archean São Francisco Craton 从182W和142Nd系统学角度看奥陶纪圣弗朗西斯科克拉通中缺失的晚期薄片的证据
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-24 DOI: 10.1016/j.epsl.2024.119022
F.P. Leitzke , J.J. Pakulla , J. Tusch , A. Ravindran , R. Gordilho-Barbosa , S.A. Zincone , M. Hellers , A.A. Martins , R.R. Spreafico , R. Yang , F. Wombacher , J.S.F. Barbosa , C. Münker
The oldest crustal remnants on Earth are represented by greenstone belts and tonalite-trondhjemite-granodiorite (TTG) associations that form most of Archean blocks worldwide. Although several studies reported combined long-lived radiogenic isotope and trace element data of Archean rocks, the chemical evolution of the early Earth is still a matter of debate, often due to younger metamorphic disturbance that overprints primary patterns. To provide further insights, combined data for short-lived (146Sm–142Nd and 182Hf–182W) and long-lived (147Sm–143Nd and 176Lu–176Hf) isotope systems were acquired from a set of Eo- to Paleoarchean amphibolites, TTG gneisses, granites and a gabbroic rock in the northern segment of the São Francisco Craton (SFC) in Brazil, a largely unexplored area regarding short-lived radiogenic isotope datasets. Our samples cover an age range from ca. 3.65 to 3.30 Ga comprising both mafic and felsic rocks. Excesses of µ182W in the samples indicate the presence of a long-lasting Hadean component in the source of Archean rocks from the SFC, which was preserved for at least ca. 1.0 Ga. Conversely, all samples depict µ142Nd similar to modern upper mantle values. The most plausible interpretation of the µ182W and µ142Nd data is a (partially) missing Hadean late veneer component similar to that previously found, for example, at the Pilbara Craton, in NW Australia.
地球上最古老的地壳遗迹以绿岩带和构成全球大部分阿新世岩块的碳酸盐岩-特长闪长岩-花岗闪长岩(TTG)组合为代表。尽管有多项研究报告了阿基坦岩石的长寿命放射性同位素和痕量元素综合数据,但早期地球的化学演化仍是一个争论不休的问题,这往往是由于较年轻的变质扰动覆盖了原生模式。为了提供更深入的见解,我们从巴西圣弗朗西斯科克拉通(SFC)北段的一组始新世至古新世闪长岩、TTG片麻岩、花岗岩和一块辉长岩中获取了短寿命(146Sm-142Nd和182Hf-182W)和长寿命(147Sm-143Nd和176Lu-176Hf)同位素系统的综合数据。我们的样本涵盖了约 3.65 至 3.30 Ga 的年龄范围,包括岩浆岩和长英岩。样品中过量的µ182W表明,在来自SFC的Archean岩石源中存在着一个长效的Hadean成分,它至少保存了约1.0 Ga。1.0 Ga。相反,所有样品的µ142Nd值都与现代上地幔值相似。对µ182W和µ142Nd数据最合理的解释是(部分)缺失的哈代晚期饰面成分,类似于以前在澳大利亚西北部皮尔巴拉克拉通发现的情况。
{"title":"Evidence for a missing late veneer from 182W and 142Nd systematics in the Archean São Francisco Craton","authors":"F.P. Leitzke ,&nbsp;J.J. Pakulla ,&nbsp;J. Tusch ,&nbsp;A. Ravindran ,&nbsp;R. Gordilho-Barbosa ,&nbsp;S.A. Zincone ,&nbsp;M. Hellers ,&nbsp;A.A. Martins ,&nbsp;R.R. Spreafico ,&nbsp;R. Yang ,&nbsp;F. Wombacher ,&nbsp;J.S.F. Barbosa ,&nbsp;C. Münker","doi":"10.1016/j.epsl.2024.119022","DOIUrl":"10.1016/j.epsl.2024.119022","url":null,"abstract":"<div><div>The oldest crustal remnants on Earth are represented by greenstone belts and tonalite-trondhjemite-granodiorite (TTG) associations that form most of Archean blocks worldwide. Although several studies reported combined long-lived radiogenic isotope and trace element data of Archean rocks, the chemical evolution of the early Earth is still a matter of debate, often due to younger metamorphic disturbance that overprints primary patterns. To provide further insights, combined data for short-lived (<sup>146</sup>Sm–<sup>142</sup>Nd and <sup>182</sup>Hf–<sup>182</sup>W) and long-lived (<sup>147</sup>Sm–<sup>143</sup>Nd and <sup>176</sup>Lu–<sup>176</sup>Hf) isotope systems were acquired from a set of Eo- to Paleoarchean amphibolites, TTG gneisses, granites and a gabbroic rock in the northern segment of the São Francisco Craton (SFC) in Brazil, a largely unexplored area regarding short-lived radiogenic isotope datasets. Our samples cover an age range from ca. 3.65 to 3.30 Ga comprising both mafic and felsic rocks. Excesses of µ<sup>182</sup>W in the samples indicate the presence of a long-lasting Hadean component in the source of Archean rocks from the SFC, which was preserved for at least ca. 1.0 Ga. Conversely, all samples depict µ<sup>142</sup>Nd similar to modern upper mantle values. The most plausible interpretation of the µ<sup>182</sup>W and µ<sup>142</sup>Nd data is a (partially) missing Hadean late veneer component similar to that previously found, for example, at the Pilbara Craton, in NW Australia.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119022"},"PeriodicalIF":4.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paleomagnetic constraints on the primary iron minerals of the late Paleoproterozoic Xuanlong-type ironstone in the North China Craton 对华北克拉通晚古生代玄龙型铁岩原生铁矿物的古地磁约束
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1016/j.epsl.2024.119013
Yuhang Cai , Shuan-Hong Zhang , Junling Pei , Yabo Tong , Zaizheng Zhou , Lifu Hou
The Xuanlong-type ironstone is a late Paleoproterozoic (∼1.64 Ga) hematite-dominated granular iron formation (GIF) in the North China Craton (NCC). However, recent geochemical studies indicated this GIF was precipitated in a weakly oxygenated environment. The conflicts between the mineral composition of the Xuanlong-type ironstone and its geochemical interpretations can be attributed to the potential occurrence of secondary hematite. Here we used paleomagnetic, rock magnetic measurements and petrographic analysis to determine the mineralization age of the hematite. Our objectives were to determine the primary iron mineralogy and to further explore the paleoenvironmental information preserved in the Xuanlong-type ironstone. Rock magnetic measurements and petrographic analysis identified Al-substituted hematite and siderite as the magnetic minerals. The high-temperature characteristic remanent magnetizations, which passed a C-classification reversal test and a fold test, yielded a paleomagnetic pole position at 51°N, 197°E. This pole position is in close proximity to the coeval paleomagnetic pole reconstructed from the ∼1.64 Ga Cuizhuang Formation in the southern NCC. Therefore, the high-temperature component of the natural remanent magnetization is interpreted as primary remanent magnetization acquired through crystal growth of Al-substituted hematite during early diagenesis. The degree of Al-substitution in hematite seems to be influenced by the alternating dense and porous laminae within the hematitic ooids of Xuanlong-type ironstones. It is hypothesized that these laminae are a result of periodic sea level fluctuations, considering that the ironstones were likely formed in a shallow water setting.
玄龙型铁岩是华北克拉通(NCC)晚古生代(∼1.64 Ga)以赤铁矿为主的粒状铁岩层(GIF)。然而,最近的地球化学研究表明,该GIF是在弱含氧环境中沉淀的。玄龙型铁岩的矿物组成与其地球化学解释之间的矛盾可归因于可能存在的次生赤铁矿。在这里,我们利用古地磁、岩石磁性测量和岩石学分析来确定赤铁矿的成矿年代。我们的目标是确定原生铁矿物学,并进一步探索玄龙型铁岩中保存的古环境信息。岩石磁性测量和岩相分析确定了铝代赤铁矿和菱铁矿为磁性矿物。高温特征剩磁通过了 C 级反转测试和褶皱测试,得出了位于北纬 51°、东经 197°的古地磁极位置。该磁极位置与南昌南部∼1.64Ga崔庄地层重建的共生古磁极位置相近。因此,天然剩磁中的高温成分被解释为在早期成岩过程中通过铝代赤铁矿晶体生长获得的原生剩磁。赤铁矿中的铝置换程度似乎受到玄龙型铁矿赤铁矿卵岩中致密和多孔层状交替的影响。考虑到这些铁石很可能是在浅水环境中形成的,因此推测这些层理是周期性海平面波动的结果。
{"title":"Paleomagnetic constraints on the primary iron minerals of the late Paleoproterozoic Xuanlong-type ironstone in the North China Craton","authors":"Yuhang Cai ,&nbsp;Shuan-Hong Zhang ,&nbsp;Junling Pei ,&nbsp;Yabo Tong ,&nbsp;Zaizheng Zhou ,&nbsp;Lifu Hou","doi":"10.1016/j.epsl.2024.119013","DOIUrl":"10.1016/j.epsl.2024.119013","url":null,"abstract":"<div><div>The Xuanlong-type ironstone is a late Paleoproterozoic (∼1.64 Ga) hematite-dominated granular iron formation (GIF) in the North China Craton (NCC). However, recent geochemical studies indicated this GIF was precipitated in a weakly oxygenated environment. The conflicts between the mineral composition of the Xuanlong-type ironstone and its geochemical interpretations can be attributed to the potential occurrence of secondary hematite. Here we used paleomagnetic, rock magnetic measurements and petrographic analysis to determine the mineralization age of the hematite. Our objectives were to determine the primary iron mineralogy and to further explore the paleoenvironmental information preserved in the Xuanlong-type ironstone. Rock magnetic measurements and petrographic analysis identified Al-substituted hematite and siderite as the magnetic minerals. The high-temperature characteristic remanent magnetizations, which passed a C-classification reversal test and a fold test, yielded a paleomagnetic pole position at 51°N, 197°E. This pole position is in close proximity to the coeval paleomagnetic pole reconstructed from the ∼1.64 Ga Cuizhuang Formation in the southern NCC. Therefore, the high-temperature component of the natural remanent magnetization is interpreted as primary remanent magnetization acquired through crystal growth of Al-substituted hematite during early diagenesis. The degree of Al-substitution in hematite seems to be influenced by the alternating dense and porous laminae within the hematitic ooids of Xuanlong-type ironstones. It is hypothesized that these laminae are a result of periodic sea level fluctuations, considering that the ironstones were likely formed in a shallow water setting.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119013"},"PeriodicalIF":4.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astronomical forcing of terrestrial organic carbon burial in East Asia during the Eocene 始新世时期东亚陆地有机碳埋藏的天文作用力
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-21 DOI: 10.1016/j.epsl.2024.119014
Juan Liu , Juye Shi , Yongchao Lu , Xiaojie Fan , Ze Zhang , Rui Zhang , Zhixiang Wang , Ke Xu , Anguo Xiao , David B. Kemp , Chunju Huang

Carbon sources and sinks are primary components of the climate system, but their response to external forcing remain unconstrained, especially for past greenhouse climates. Lakes are important carbon sinks that play a key role in the global carbon cycle. In this study, we investigate organic carbon burial processes and the possible role played by astronomical forcing in low to middle latitude lakes in China during the Eocene. Sediment noise modeling of lake level fluctuations in the three basins suggests that TOC maxima coincided with lake level maxima. We suggest that elevated lake levels likely led to stagnation of bottom waters, thereby promoting the development and preservation of organic matter. Total organic carbon (TOC) data spanning the Eocene from three borehole cores of separate basins show a common cyclicity of ∼1.2 Myr. According to the three TOC time series studied, maxima in TOC are linked to maxima in long-term 1.2 Myr obliquity modulation cycles, with long-term 2.4 Myr eccentricity cycles either at a maxima or minima. Our analysis elucidates a likely control on the burial of organic carbon by long-term astronomical climate cycles. The superposition of different orbital cycles may have driven the process of differential enrichment of organic matter by inducing perturbations in the carbon cycle through nonlinear climate effects. Overall, our chemostratigraphy results illustrate the sensitivity of the terrestrial carbon cycle to orbital forcing on geological timescales.

碳源和碳汇是气候系统的主要组成部分,但它们对外部作用力的响应仍未受到制约,尤其是在过去的温室气候条件下。湖泊是重要的碳汇,在全球碳循环中发挥着关键作用。本研究探讨了始新世时期中国中低纬度湖泊的有机碳埋藏过程以及天文强迫可能发挥的作用。对三个盆地的湖泊水位波动进行的沉积噪音建模表明,有机碳总量的最大值与湖泊水位的最大值相吻合。我们认为,湖泊水位升高很可能导致底层水停滞,从而促进了有机质的发育和保存。来自三个不同盆地钻孔岩心的始新世总有机碳(TOC)数据显示出 1.2 Myr 的共同周期性。根据所研究的三个 TOC 时间序列,TOC 的最大值与长期 1.2 Myr 斜度调制周期的最大值有关,而长期 2.4 Myr 偏心率周期要么是最大值,要么是最小值。我们的分析阐明了长期天文气候周期对有机碳埋藏的可能控制。不同轨道周期的叠加可能通过非线性气候效应引起碳循环的扰动,从而推动了有机物的差异富集过程。总之,我们的化合地层学结果说明了地球碳循环在地质时间尺度上对轨道作用力的敏感性。
{"title":"Astronomical forcing of terrestrial organic carbon burial in East Asia during the Eocene","authors":"Juan Liu ,&nbsp;Juye Shi ,&nbsp;Yongchao Lu ,&nbsp;Xiaojie Fan ,&nbsp;Ze Zhang ,&nbsp;Rui Zhang ,&nbsp;Zhixiang Wang ,&nbsp;Ke Xu ,&nbsp;Anguo Xiao ,&nbsp;David B. Kemp ,&nbsp;Chunju Huang","doi":"10.1016/j.epsl.2024.119014","DOIUrl":"10.1016/j.epsl.2024.119014","url":null,"abstract":"<div><p>Carbon sources and sinks are primary components of the climate system, but their response to external forcing remain unconstrained, especially for past greenhouse climates. Lakes are important carbon sinks that play a key role in the global carbon cycle. In this study, we investigate organic carbon burial processes and the possible role played by astronomical forcing in low to middle latitude lakes in China during the Eocene. Sediment noise modeling of lake level fluctuations in the three basins suggests that TOC maxima coincided with lake level maxima. We suggest that elevated lake levels likely led to stagnation of bottom waters, thereby promoting the development and preservation of organic matter. Total organic carbon (TOC) data spanning the Eocene from three borehole cores of separate basins show a common cyclicity of ∼1.2 Myr. According to the three TOC time series studied, maxima in TOC are linked to maxima in long-term 1.2 Myr obliquity modulation cycles, with long-term 2.4 Myr eccentricity cycles either at a maxima or minima. Our analysis elucidates a likely control on the burial of organic carbon by long-term astronomical climate cycles. The superposition of different orbital cycles may have driven the process of differential enrichment of organic matter by inducing perturbations in the carbon cycle through nonlinear climate effects. Overall, our chemostratigraphy results illustrate the sensitivity of the terrestrial carbon cycle to orbital forcing on geological timescales.</p></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"646 ","pages":"Article 119014"},"PeriodicalIF":4.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potassium isotope evidence for subducted upper and lower oceanic crust in ocean island basalt sources 洋岛玄武岩源中上下洋壳俯冲的钾同位素证据
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-21 DOI: 10.1016/j.epsl.2024.119015
Haiyang Liu , Ying-Yu Xue , Jörg Geldmacher , Kaj Hoernle , Uwe Wiechert , Shichao An , Hai-Ou Gu , He Sun , Fanfan Tian , Xiaoqiang Li , Kun Wang , Hongli Zhu , Wei-Dong Sun

The Madeira mantle plume is proposed to contain a complete package of recycled oceanic lithosphere. It has not been possible, however, to establish if both lower oceanic crust and peridotitic lithospheric mantle are present within the Madeira magma source. This study reports potassium (K) and oxygen isotope data of lavas from the Madeira Archipelago, which show that δ41K (-0.50 ± 0.06‰ to -0.31 ± 0.01‰) correlates with Sr-Nd-Pb-Hf isotopic compositions, confirming the incorporation of recycled crustal material. The increase in δ41K from Madeira's early shield stage lavas (-0.50 ± 0.06‰ to -0.40 ± 0.05‰) to the subsequent post-erosional stage lavas (-0.34 ± 0.04‰ to -0.31 ± 0.01‰) is consistent with the mantle source becoming progressively depleted in recycled upper oceanic crust (converted to eclogite or pyroxenite) through melt extraction with decreasing age. The post-erosional lavas, however, require a source with higher δ41K values than in depleted peridotitic lithospheric mantle. Modeling demonstrates that during dehydration of high-temperature altered lower oceanic crust, the initial heavy K isotopic signature is preserved, consistent with the high δ41K values of the post-erosional lavas being derived from hydrothermally-altered lower oceanic crust in the Madeira plume source. Consequently, K isotopes provide direct evidence that ocean island magma sources can contain both upper and lower recycled oceanic crust. This study provides important constraints on the cause of the temporal changes in geochemical composition of ocean island basalts, the origin of mantle heterogeneity and the recycling of K through subduction zones and the deep mantle.

马德拉地幔羽流被认为包含一整套回收的大洋岩石圈。然而,目前还无法确定马德拉岩浆源中是否同时存在下洋壳和橄榄岩岩石圈地幔。本研究报告了马德拉群岛熔岩的钾(K)和氧同位素数据,数据显示δ41K(-0.50 ± 0.06‰至-0.31 ± 0.01‰)与锶-钕-铅-铪同位素组成相关,证实了回收地壳物质的存在。从马德拉早期盾构期熔岩(-0.50±0.06‰至-0.40±0.05‰)到随后的后蚀变期熔岩(-0.34±0.04‰至-0.31±0.01‰),δ41K的增加与地幔源通过熔融萃取使回收的上洋壳(转化为斜长岩或辉长岩)随着年龄的降低而逐渐枯竭是一致的。然而,啮蚀后熔岩需要一个比贫化橄榄岩岩石圈地幔δ41K值更高的来源。建模表明,在高温蚀变的下洋壳脱水过程中,保留了最初的重 K 同位素特征,这与后断裂熔岩的高δ41K 值来自马德拉羽流源中的水热蚀变的下洋壳是一致的。因此,K 同位素提供了直接证据,证明大洋岛屿岩浆源可能同时包含上层和下层再循环大洋地壳。这项研究对大洋岛屿玄武岩地球化学组成的时间变化原因、地幔异质性的起源以及钾通过俯冲带和深地幔的循环提供了重要的制约因素。
{"title":"Potassium isotope evidence for subducted upper and lower oceanic crust in ocean island basalt sources","authors":"Haiyang Liu ,&nbsp;Ying-Yu Xue ,&nbsp;Jörg Geldmacher ,&nbsp;Kaj Hoernle ,&nbsp;Uwe Wiechert ,&nbsp;Shichao An ,&nbsp;Hai-Ou Gu ,&nbsp;He Sun ,&nbsp;Fanfan Tian ,&nbsp;Xiaoqiang Li ,&nbsp;Kun Wang ,&nbsp;Hongli Zhu ,&nbsp;Wei-Dong Sun","doi":"10.1016/j.epsl.2024.119015","DOIUrl":"10.1016/j.epsl.2024.119015","url":null,"abstract":"<div><p>The Madeira mantle plume is proposed to contain a complete package of recycled oceanic lithosphere. It has not been possible, however, to establish if both lower oceanic crust and peridotitic lithospheric mantle are present within the Madeira magma source. This study reports potassium (K) and oxygen isotope data of lavas from the Madeira Archipelago, which show that δ<sup>41</sup>K (-0.50 ± 0.06‰ to -0.31 ± 0.01‰) correlates with Sr-Nd-Pb-Hf isotopic compositions, confirming the incorporation of recycled crustal material. The increase in δ<sup>41</sup>K from Madeira's early shield stage lavas (-0.50 ± 0.06‰ to -0.40 ± 0.05‰) to the subsequent post-erosional stage lavas (-0.34 ± 0.04‰ to -0.31 ± 0.01‰) is consistent with the mantle source becoming progressively depleted in recycled upper oceanic crust (converted to eclogite or pyroxenite) through melt extraction with decreasing age. The post-erosional lavas, however, require a source with higher δ<sup>41</sup>K values than in depleted peridotitic lithospheric mantle. Modeling demonstrates that during dehydration of high-temperature altered lower oceanic crust, the initial heavy K isotopic signature is preserved, consistent with the high δ<sup>41</sup>K values of the post-erosional lavas being derived from hydrothermally-altered lower oceanic crust in the Madeira plume source. Consequently, K isotopes provide direct evidence that ocean island magma sources can contain both upper and lower recycled oceanic crust. This study provides important constraints on the cause of the temporal changes in geochemical composition of ocean island basalts, the origin of mantle heterogeneity and the recycling of K through subduction zones and the deep mantle.</p></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"646 ","pages":"Article 119015"},"PeriodicalIF":4.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early generation of a refractory inclusions-enriched H-chondritic parent body: A safe harbor for Ca, Al-rich inclusions 难熔夹杂物富集的H-软玉母体的早期生成:富含钙、铝包裹体的安全港湾
IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-21 DOI: 10.1016/j.epsl.2024.119010
Samuel Ebert , Kazuhide Nagashima , Alexander N. Krot , Shigeru Wakita , Jean-Alix Barrat , Addi Bischoff

Calcium-aluminum-rich inclusions (CAIs) commonly observed in chondritic meteorites are the oldest dated solids formed in the Solar System. Short-lived isotope chronologies (26Al-26Mg, 182Hf-182W) suggest a ∼2 Ma gap between the formation of CAIs and the accretion of the final chondrite parent bodies. One thin section, 3.27 cm2 in size, of an ordinary chondrite NWA 3358 (H3.1) studied contains 52 refractory inclusions (CAIs and amoeboid olivine aggregates (AOAs)) comprising 0.14 % of its area, which is the highest abundance of refractory inclusions among non-carbonaceous chondrites containing on average ∼0.009 area % of CAIs and AOAs. In combination with a low chondrule/matrix ratio of ∼1.5, this makes NWA 3358 a unique ordinary chondrite. The aqueously-formed fayalites (Fa>99) in NWA 3358 have the inferred initial 53Mn/55Mn ratio of (5.56 ± 0.44) × 10−6 which is the highest measured value for secondary minerals in chondrites and corresponds to the formation time of ∼1.0–1.5 Ma after CAIs. Based on the 53Mn-53Cr chronology of fayalite formation and the thermal modeling, we infer that the first-generation of an H chondrite parent body, ∼6–12 km in diameter, accreted within 1.0 Ma after formation of CAIs, filling the gap of ∼2 Ma between CAIs and the earliest chondrite parent bodies. This early accretion provides a possible mechanism of CAIs/AOAs storage in the inner solar nebula and could explain the high amount of refractory inclusions in NWA 3358. A later destruction of these first-generation bodies may also explain the presence of CAIs and chondrules of different ages within later formed chondrite parent bodies.

通常在软玉陨石中观察到的富钙铝包裹体(CAIs)是太阳系中形成的年代最久远的固体。短寿命同位素年代学(26Al-26Mg,182Hf-182W)表明,CAIs的形成与最终的软玉母体的吸积之间有2 Ma的差距。所研究的普通软玉NWA 3358 (H3.1)的一个3.27平方厘米的薄片含有52个难熔包裹体(CAIs和变形橄榄石聚集体(AOAs)),占其面积的0.14%,这是非碳质软玉中难熔包裹体含量最高的,CAIs和AOAs的平均含量为0.009。结合1.5的低软骨/基质比,这使得NWA 3358成为独特的普通软玉。NWA 3358中的水成法英岩(Fa>99)的初始53Mn/55Mn比值推断为(5.56 ± 0.44) × 10-6,这是软玉中次生矿物的最高测量值,与CAIs之后1.0-1.5 Ma的形成时间相符。根据法雅岩形成的53Mn-53Cr年表和热建模,我们推断第一代直径为6~12 km的H型软玉母体是在CAIs形成后1.0 Ma内增生的,填补了CAIs与最早的软玉母体之间2 Ma的空白。这种早期的吸积为CAIs/AOAs在太阳星云内部的储存提供了一种可能的机制,也可以解释NWA 3358中大量的难熔包裹体。这些第一代天体后来的破坏也可以解释在后来形成的软玉母体中存在不同年龄的CAIs和软玉体的原因。
{"title":"Early generation of a refractory inclusions-enriched H-chondritic parent body: A safe harbor for Ca, Al-rich inclusions","authors":"Samuel Ebert ,&nbsp;Kazuhide Nagashima ,&nbsp;Alexander N. Krot ,&nbsp;Shigeru Wakita ,&nbsp;Jean-Alix Barrat ,&nbsp;Addi Bischoff","doi":"10.1016/j.epsl.2024.119010","DOIUrl":"10.1016/j.epsl.2024.119010","url":null,"abstract":"<div><p>Calcium-aluminum-rich inclusions (CAIs) commonly observed in chondritic meteorites are the oldest dated solids formed in the Solar System. Short-lived isotope chronologies (<sup>26</sup>Al-<sup>26</sup>Mg, <sup>182</sup>Hf-<sup>182</sup>W) suggest a ∼2 Ma gap between the formation of CAIs and the accretion of the final chondrite parent bodies. One thin section, 3.27 cm<sup>2</sup> in size, of an ordinary chondrite NWA 3358 (H3.1) studied contains 52 refractory inclusions (CAIs and amoeboid olivine aggregates (AOAs)) comprising 0.14 % of its area, which is the highest abundance of refractory inclusions among non-carbonaceous chondrites containing on average ∼0.009 area % of CAIs and AOAs. In combination with a low chondrule/matrix ratio of ∼1.5, this makes NWA 3358 a unique ordinary chondrite. The aqueously-formed fayalites (Fa<sub>&gt;99</sub>) in NWA 3358 have the inferred initial <sup>53</sup>Mn/<sup>55</sup>Mn ratio of (5.56 ± 0.44) × 10<sup>−6</sup> which is the highest measured value for secondary minerals in chondrites and corresponds to the formation time of ∼1.0–1.5 Ma after CAIs. Based on the <sup>53</sup>Mn-<sup>53</sup>Cr chronology of fayalite formation and the thermal modeling, we infer that the first-generation of an H chondrite parent body, ∼6–12 km in diameter, accreted within 1.0 Ma after formation of CAIs, filling the gap of ∼2 Ma between CAIs and the earliest chondrite parent bodies. This early accretion provides a possible mechanism of CAIs/AOAs storage in the inner solar nebula and could explain the high amount of refractory inclusions in NWA 3358. A later destruction of these first-generation bodies may also explain the presence of CAIs and chondrules of different ages within later formed chondrite parent bodies.</p></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"646 ","pages":"Article 119010"},"PeriodicalIF":4.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012821X24004424/pdfft?md5=8b09b36f84f5eb27d51cdd486c15c50e&pid=1-s2.0-S0012821X24004424-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earth and Planetary Science Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1